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Abstract. We introduce a new tool for obtaining efficient a posteriori estimates of errors of
approximate solutions of differential equations the data of which depend linearly on random
parameters. The solution method is the stochastic Galerkin method. Polynomial chaos
expansion of the solution is considered and the approximation spaces are tensor products of
univariate polynomials in random variables and of finite element basis functions. We derive
a uniform upper bound to the strengthened Cauchy-Bunyakowski-Schwarz constant for
a certain hierarchical decomposition of these spaces. Based on this, an adaptive algorithm
is proposed. A simple numerical example illustrates the efficiency of the algorithm. Only
the uniform distribution of random variables is considered in this paper, but the results
obtained can be modified to any other type of random variables.
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1. Introduction

Theoretical and engineering problems can be affected by uncertainties in input

data. Numerical solution methods should then provide quantification of uncertainty

of the approximate solution. The most popular such methods are the Monte Carlo

method, collocation methods and the stochastic Galerkin method (SGM). The SGM

is especially useful for solution of elliptic or parabolic problems dependent on random

parameters. Approximation spaces are usually tensor products of finite element

(FE) function spaces of physical variables and of spans of orthogonal polynomials of

random variables. This leads to a huge dimensionality of the resulting systems of

linear equations. Various methods can be applied to reduce the number of unknowns

or for preconditioning these systems.

Hierarchical reduction of approximation spaces is a well known approach for pre-

conditioning of the Galerkin method for numerical solution of partial differential
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equations. Hierarchical bases of approximation spaces have been used for many

decades [1], [2], [6]. Relations between levels of hierarchy can be also used for a pos-

teriori error estimates of approximate solutions. An important role is played by the

strengthened Cauchy-Bunyakowski-Schwarz (CBS) constant γ. If the upper bound

to γ is sufficiently small, efficient a posteriori error estimates can be evaluated. In

this paper we apply these ideas to a new context: to hierarchical approximation

spaces of polynomials of random variables in the SGM.

First ideas in this direction were presented in [18], [21], where a hierarchical block

preconditioning for approximation spaces using sets of complete polynomials was

introduced. In our present paper we focus on tensor products of orthogonal polyno-

mials. As for the bases of these sets, double orthogonal polynomials can be rather

used [4], because they result in block diagonal matrices and non-intrusive methods.

We show that for a certain types of hierarchy, the strengthened CBS constants are

sufficiently small and the corresponding refinements of approximation spaces can be

used for a posteriori error estimates.

Some approaches to a posteriori error estimates and adaptive algorithms can be

found in the literature. They are based on the idea that the error estimates with

respect to spatial and stochastic approximation spaces can be separated in some

sense [4], [9], [13], [12]. Eigel et al. in [12], [13] describe and prove residual based

a posteriori error estimates derived from the adequate approaches for deterministic

problems. A marking strategy for both physical and stochastic degrees of freedom

is based on the Dorfler property [12]. For dealing with the stochastic part of the

error, the equivalence between the energy norm of the underlying problem and the

energy norm of some related deterministic problem is used. Bryant et al. [9] and But-

ler et al. [10] use the adjoint-based methodology of the a posteriori error estimates

and introduce adaptive algorithms based on evaluating linear quantities of interest.

Bespalov et al. study hierarchical refinements of physical and of stochastic approxi-

mation spaces in [7]. They introduce several types of parameter-free two-sided error

estimates. Instead of the energy scalar product connected to the problem including

both types of variables, they use the scalar product associated with the deterministic

problem and employ the strengthened CBS constant with respect to the spatial dis-

cretization spaces. In our present paper we propose the a posteriori error estimates

based on a splitting of the stochastic approximation spaces and use the strength-

ened CBS constants regarding these spaces as well. This is a novel approach in the

a posteriori estimation in the SGM. We assume that tensor products of polynomials

of random variables are used in the SGM and prove a uniform upper bound to the

strengthened CBS constants for certain hierarchical splittings of them. Based on

this, we can show that projections of current errors onto refined subspaces can be

used as error indicators. Using these estimates we define an adaptive algorithm.
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This paper is organized as follows. In the next section we introduce the problem

and recall the SGM. Namely, we describe the structures of the underlying systems of

linear equations. In Section 3 we remind the idea of the a posteriori error estimates

based on a hierarchical splitting of approximation spaces. We apply this approach

to the sets of tensor products of orthonormal polynomials in random variables and

prove a uniform upper bound to the strengthened CBS constant for this splitting.

In Section 4 we introduce a simple adaptive algorithm based on the devised error

estimates. A simple numerical example demonstrates that using the introduced

adaptivity can reduce the computational cost of the SGM. Some concluding remarks

are presented in Section 5.

2. Stochastic Galerkin method

Let a(x, y) be a scalar random field represented by a finite sum

(2.1) a(x, y) = a0(x) +

N∑

k=1

ak(x)yk,

where x ∈ D, D is a bounded domain with Lipschitz boundary, D ⊂ R
d, d ∈ {1, 2, 3},

and y = (y1(ω), . . . , yN (ω)) : Ω → R
N is a vector of N random variables which

are defined by a probability space (Ω,F ,P), where Ω is a sample space with σ-

algebra F and probability measure P . Let the random variables yk, k = 1, . . . , N ,

be independent and identically distributed and have zero mean and bounded variance

and let us denote by ̺ the probability density function of each of yk, k = 1, . . . , N .

Thus the mean value of yk is obtained by

E[yk] =

∫

Ω

yk(ω) dP(ω) =

∫

R

z̺(z) dz.

We assume that there exist a1 and a2 such that

(2.2) 0 < a1 6 a(x, y) 6 a2 <∞ a.e. in D × Ω.

Let us solve the elliptic equation in almost sure sense [23]

(2.3) −∇ · (a(x, y)∇u(x, y)) = b(x),

with homogeneous Dirichlet condition on ∂D × Ω, where ∂D is the boundary of D,
and where b ∈ L2(D). The gradient symbol ∇ denotes the differentiation with
respect to the spatial (physical) variables x. Let us denote the Hilbert space H =
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H1
0 (D)×L2

¯̺(R
N ) = {u(x, y) ;

∫
RN

∫
D
|∇u(x, y)|2 ¯̺(y) dxdy <∞, u(x, y) = 0, (x, y) ∈

∂D × Ω}, where ¯̺(y) = ΠN
k=1̺(yk). The weak form of (2.3) then reads [4], [5], [11]:

find u(x, y) ∈ H such that

(2.4)

∫

RN

∫

D
a(x, y)∇u(x, y)∇v(x, y)¯̺(y) dxdy =

∫

RN

∫

D
b(x)v(x, y)¯̺(y) dxdy

for all v(x, y) ∈ H .

The truncated polynomial chaos approximation [8], [23] to the exact solution

u(x, y) of (2.4) is defined as

(2.5) u(x, y) =
M∑

i=1

ui(x)Φi(y),

where Φ1(y), . . . ,ΦM (y) are N -variate polynomials orthogonal in L2
¯̺(R

N ). The poly-

nomials Φi(y) can be chosen in the form of products of univariate polynomials or-

thogonal in L2
̺(R),

Φi(y) =

N∏

k=1

ϕik(yk),

where the degree of ϕj(z) is equal to j ∈ {0, 1, . . .}, and
∫

R

ϕi(z)ϕj(z)̺(z) dz = δij .

The Hilbert space H is the completion of the sums
M∑
i=1

Ψi(x)Φi(y), where Ψi(x) ∈

H1
0 (D). We refer to [4], [11], [13] for the detailed convergence theory and a priori

error estimates of the SGM.

The physical parts ui(x) of the expansion (2.5) are approximated by some finite

element basis functions ψr(x), r = 1, . . . , F ,

(2.6) uj(x) =

F∑

r=1

ujrψr(x).

A discretization space of the SGM for approximation of the solution u(x, y) of (2.4)

is then a tensor product of some finite element space VD ⊂ H1
0 (D) of a dimension F

and of a set ofM orthogonal multivariate polynomials of N random variables. Basis

functions are of the type ψr(x)Φi(y), r = 1, . . . , F , i = 1, . . . ,M .

The coefficient a(x, y) in (2.3) can be considered in a more general form than

in (2.1). For example, the terms yk can be substituted by polynomials in yk of
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higher orders. For example, the log-normal distribution of y in a(x, y) leads to

this type of the expansion of a(x, y), see [22]. In this paper we consider only the

linear case (2.1). Such an expression can be obtained as a truncated Karhunen-Loeve

expansion of a general scalar random field a(x, y) with some given covariance function

C(x, x̃). Then ak(x) would be the normalized eigenfunctions of C(x, x̃) multiplied

by square roots of the corresponding eigenvalues [8].

In this paper we assume that yk are uniformly distributed on 〈−1, 1〉. To sat-
isfy (2.2), we assume that (see [4], [5], [13], [14], [17])

(2.7)
N∑

k=1

‖ak(x)‖∞ < inf
x∈D

a0(x).

Note that this condition also guarantees positive definiteness of the associated

Galerkin matrix, see Lemma 3.2.

For the polynomial chaos expansion (2.5) of u(x, y) usually one of the following

two sets of orthogonal N -variate polynomials is used: a tensor product of orthogonal

univariate polynomials ϕj(yk), where the degrees of ϕj(yk) do not exceed pk and

where p = (p1, . . . , pN) is a prescribed vector, or complete polynomials, which are

products of univariate orthogonal polynomials, the total degree of which does not

exceed a given constant q. In this paper we will consider the former type of the

approximation polynomials and we denote

(2.8) Vp1,...,pN
=

{ N∏

k=1

ϕik (yk) ; deg(ϕik ) 6 pk, k = 1, . . . , N

}
,

where deg(ϕj) means the degree of ϕj . The dimension of Vp1,...,pN
is

M = dimVp1,...,pN
=

N∏

k=1

(pk + 1).

In practical problems, the tensor products of polynomials should be used rather

than the complete sets of polynomials, if the impact of some of the variables yk is

rather greater than the influence of the others. This can happen, for example, if

the magnitude of ak(x) is much larger than the magnitude of the other aj(x) on D.

Then choosing the bounds pk greater than the others may lead to a more precise

approximation of the solution than by complete polynomials and thus to reducing

the computational cost. In other words, if the magnitudes of ak(x) decay fast with

growing k then pk should decay correspondingly, see for example [15].
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R em a r k 2.1. Instead of the orthogonal polynomials ϕj(z), a set of double-

orthogonal polynomials ϕ̃j(z) can be used in the definition (2.8) of Vp1,...,pN
, see [4].

For i 6= j we then have

∫

R

ϕ̃i(z)ϕ̃j(z)̺(z) dz = 0 and

∫

R

zϕ̃i(z)ϕ̃j(z)̺(z) dz = 0.

Interestingly, this choice of the basis of Vp1,...,pN
results in the same set of linear

equations as if we use the collocation method with some special choice of nodes [4].

The Galerkin matrix obtained from (2.4), (2.5) and (2.6) is then block diagonal.

The orthogonal polynomials ϕj(z) satisfy a three-term recurrence formula [14],

[19]

(2.9) ϕk+1(z) = (qkz + rk)ϕk(z) + skϕk−1(z)

for some appropriate qk, rk, sk. If the weight function ̺ is symmetric, then rk = 0

[14], [19], and thus

∫

R

ϕ2
k(z)̺(z) dz = 1,

∫

R

zϕ2
k(z)̺(z) dz = 0,(2.10)

∫

R

zϕk(z)ϕk+1̺(z) dz =
1

qk
= −sk+1

qk+1
.(2.11)

Since we consider uniform distribution of the random variables yk on 〈−1, 1〉 and
̺(z) = 1

2 , ϕj(z) are the orthogonal Legendre polynomials. The recursive formula for

the normalized Legendre polynomials reads

(k + 1)ϕk+1(z) =
√
(2k + 1)(2k + 3)zϕk(z)−

k
√
2k + 3√
2k − 1

ϕk−1(z),

where ϕ0(z) = 1 and ϕ1(z) = z
√
3. Then instead of (2.11), we have

∫ 1

−1

zϕk(z)ϕk+1(z)
1

2
dz =

k + 1√
(2k + 1)(2k + 3)

.

In this paper we do not distinguish between a function u and its vector representa-

tion with respect to some basis of the approximation space Vp1,...,pN
× VD. Galerkin

discretization of (2.4) leads to the set of M × F linear equations with M × F un-

knowns,

(2.12) Au = B,
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where the elements of A and B are

Air,js =

∫

RN

∫

D
a(x, y)∇ψr(x)∇ψs(x)Φi(y)Φj(y)¯̺(y) dxdy

=

∫

RN

∫

D
a0(x)∇ψr(x)∇ψs(x)Φi(y)Φj(y)¯̺(y) dxdy

+

N∑

k=1

∫

RN

∫

D
ak(x)yk∇ψr(x)∇ψs(x)Φi(y)Φj(y)¯̺(y) dxdy

=: (A0)ir,js +

N∑

k=1

(Ak)ir,js,

Bir =

∫

RN

∫

D
b(x)ψr(x)Φi(y)¯̺(y) dxdy.

Let us define matrices Km, Gm, m = 0, 1, . . . , N , by

(K0)rs =

∫

D
a0(x)∇ψs(x)∇ψr(x) dx,(2.13)

(Km)rs =

∫

D
am(x)∇ψs(x)∇ψr(x) dx,

(G0)ij =

∫

RN

Φi(y)Φj(y)¯̺(y) dy = δij ,(2.14)

(Gm)ij =

∫

RN

ymΦi(y)Φj(y)¯̺(y) dy.

Then the Galerkin matrix of the problem (2.4) is

(2.15) A = G0 ⊗K0 +

N∑

m=1

Gm ⊗Km.

Since the polynomials Φi(y) are tensor products of the univariate normalized orthog-

onal polynomials ϕk(ym), the structure of A can be even more specified. Let us order

the basis functions ψr(x)Φj(y) lexicographically, where the indices at the physical

basis functions ψr(x) are changing fastest. Let the polynomials Φi(y) =
N∏

k=1

ϕik(yk)

be lexicographically ordered in such manner that the indices at the polynomials of

the random variables yk are changing faster than the polynomials of the random

variables yj whenever k < j. Let Gk,0 and Gk,1 be (k + 1) × (k + 1) matrices with

elements

(Gk,0)ij =

∫

R

ϕi(z)ϕj(z)̺(z) dz = δij ,

(Gk,1)ij =

∫

R

zϕi(z)ϕj(z)̺(z) dz = δ|i−j|,1
1

qn
, n = min{i, j}.(2.16)

557



Then Gk,0 is the (k + 1) × (k + 1) identity matrix and Gk,1 is a (k + 1) × (k + 1)

non-negative tridiagonal matrix. In the sequel, we will denote the m ×m identity

matrix by Im. Sometimes we will use only I if its dimension clearly follows from the

context. For the introduced ordering of the basis functions ψr(x)Φi(y), the matrix

A can be written in the form of a sum of tensor products, cf. [14],

A = GpN ,0 ⊗GpN−1,0 ⊗ . . .⊗Gp2,0 ⊗Gp1,0 ⊗K0

+GpN ,0 ⊗GpN−1,0 ⊗ . . .⊗Gp2,0 ⊗Gp1,1 ⊗K1

+GpN ,0 ⊗GpN−1,0 ⊗ . . .⊗Gp2,1 ⊗Gp1,0 ⊗K2

+ . . .+GpN ,1 ⊗GpN−1,0 ⊗ . . .⊗Gp2,0 ⊗Gp1,0 ⊗KN ,

or, more precisely,

(2.17) A = IpN+1 ⊗ IpN−1+1 ⊗ . . .⊗ Ip2+1 ⊗ Ip1+1 ⊗K0

+ IpN+1 ⊗ IpN−1+1 ⊗ . . .⊗ Ip2+1 ⊗Gp1,1 ⊗K1

+ IpN+1 ⊗ IpN−1+1 ⊗ . . .⊗Gp2,1 ⊗ Ip1+1 ⊗K2

+ . . .+GpN ,1 ⊗ IpN−1+1 ⊗ . . .⊗ Ip2+1 ⊗ Ip1+1 ⊗KN .

Let us introduce some examples of the nonzero structures of the matrix A. For

the uniformly distributed random variables ym on 〈−1, 1〉 and for N = 1, p1 = 3,

the block structure of A is

A =




K0
1√
3
K1 0 0

1√
3
K1 K0

2√
15
K1 0

0 2√
15
K1 K0

3√
35
K1

0 0 3√
35
K1 K0


 ,

and for N = 2, p1 = 2, p2 = 1, the block structure of A is

A =




K0
1√
3
K1 0 1√

3
K2 0 0

1√
3
K1 K0

2√
15
K1 0 1√

3
K2 0

0 2√
15
K1 K0 0 0 1√

3
K2

1√
3
K2 0 0 K0

1√
3
K1 0

0 1√
3
K2 0 1√

3
K1 K0

2√
15
K1

0 0 1√
3
K2 0 2√

15
K1 K0




,

Due to the orthogonality of the polynomials ϕj , the matrix A is block sparse

and the nonzero structure of A depends on the numbering of the basis functions

ψr(x)Φi(y). According to our ordering, A is a block matrix where each block is of

the size F × F . Such a block of A with coordinates i, j corresponds to a pair of

polynomials Φi and Φj .
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An example of the nonzero block-structure of A can be seen in Figure 1 for

p = (2, 2, 4). This scheme is obtained for the uniformly distributed random vari-

ables yk on 〈−1, 1〉 and for the Legendre polynomials ϕi(yk). The same nonzero

scheme can be obtained for normally distributed random variables yk and for the

Hermite polynomials. Two dashed lines split the matrix A into four blocks, the

left upper diagonal block of A corresponds to p = (2, 2, 3). Every small rectangle

stands for a block matrix of the size F × F . There are 237 such F × F nonzero

blocks in this A. The small rectangles represent some multiples of matrices Ki, thus

the nonzero structure of these small blocks is the same as the nonzero structure of

the stiffness matrix of the corresponding deterministic problem. The nonzero block

structure of A depends on the properties of the approximation polynomials Φj(y)

and on the expansion of a(x, y). Since for many types of basic random variables

a three term recursive formula is available, the nonzero block structure of A re-

mains the same but, of course, the spectral properties of A may change. See, for

example, [14].

3. A posteriori error estimates

Let us assume a decomposition of some general finite dimensional approximation

space V of (2.4) into a direct sum V = U ⊕W and the resulting Galerkin system of

linear equations with a positive definite matrix A in the form

(3.1) Au =

(
AU AUW

AT
UW AW

)(
u1
u2

)
=

(
BU

BW

)
= B.

The strengthened Cauchy-Bunyakowski-Schwarz (CBS) constant γ ∈ 〈0, 1), see [2],
for subspaces U and W with respect to the energy scalar product (u, v)A = uTAv is

the smallest γ > 0 satisfying

(u1, u2)
2
A 6 γ2(u1, u1)A(u2, u2)A, u1 ∈ U, u2 ∈ W,

or, equivalently,

(vT1 AUW v2)
2
6 γ2vT2 AUv2v

T
1 AW v1,

where v2 and v1 are any real vectors of appropriate dimensions.

Let us consider the original problem (3.1) and the coarse problem AUu = BU and

their solutions uV and uU , respectively,

AuV = B and AUuU = BU .
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Let û be the exact solution of (2.4) and let eV = uV − û and eU = uU − û be the

discretization errors of the solutions uV and uU , respectively. Let ‖·‖A =
√
(·, ·)A

denote the energy norm. Let ẽW be the solution of

AW ẽW = BW −AT
UWuU .

Then from the Galerkin orthogonality we obtain [2], [7]

(3.2) ‖eV ‖2A = ‖eU‖2A − ‖uV − uU‖2A

and

(3.3) ‖ẽW ‖2A 6 ‖uV − uU‖2A 6
1

1− γ2
‖ẽW‖2A.

This means that for a sufficiently small γ, the error decay in the energy norm obtained

after some refinement V = U ⊕W of the approximation space U can be estimated

by the energy norm of the solution ẽW of a small problem with the matrix AW .

Note that ẽW is the projection of eU onto W with respect to the energy scalar

product. The spaceW can be of a much smaller dimension than U , thus ‖ẽW‖A can
be relatively easy to obtain. Moreover, if the saturation assumption [1] holds with

some constant β ∈ 〈0, 1),
‖eV ‖A 6 β‖eU‖A,

the energy norm of eU can be estimated by [1]

‖ẽW ‖2A 6 ‖eU‖2A 6
1

1− γ2
1

1− β2
‖ẽW‖2A,

which means that if γ and β are sufficiently small, the energy error of uU is well

approximated by ‖ẽW ‖A. To the best of our knowledge, no estimates of β are
available for the approximation spaces Vp in the literature, cf. [7]. Some asymptotic

convergence estimates [4] could provide ideas of what type the estimates could be.

Preconditioning and a posteriori error estimates using upper bounds to the

strengthened CBS constant γ (algebraic multilevel methods, hierarchical Schur

complement reduction) are well applicable to the finite element methods for deter-

ministic problems, see for example [1], [2], [3]. To reduce the approximation error

of the solution of (2.4), the physical or stochastic approximation spaces or both of

them can be refined [7], [9], [10], [13]. It appears that the estimates of the physical

and stochastic parts of the error can be separated in some sense. This follows from

theoretical results [4], [7], [9], [13], and from computational experiments [7] as well.

Moreover, the energy norm of the error generated by the scalar product on the
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left-hand side of the weak form (2.4) is usually approximated by a norm derived

form the related deterministic problem. The equivalence of these two norms follows

from the strengthened assumption (2.7), namely, it is assumed that there exists

c1 ∈ (0, 1) such that [13], [17]

N∑

k=1

‖ak(x)‖∞ 6 c1 inf
x∈D

a0(x).

Our approach is different and has not appeared in the literature yet. We suppose

that some algorithm for the refinement of the physical unknowns is available and

we focus only on the stochastic part of the solution. Our aim is to find an efficient

algorithm for refining the current stochastic approximation space Vp1,...,pN
to reduce

the energy norm of the error as much as possible. Since we consider the tensor

product of univariate polynomials ϕi, any refinement of a current approximation

space means increasing the degree of some of the polynomials ϕi. Let us denote

(3.4) Wm;p1,...,pN
=

{ N∏

k=1

ϕik(yk) ; deg(ϕim) = pm + 1, deg(ϕik ) 6 pk, k 6= m

}
.

An example of the nonzero block structure of A can be seen in Figure 1 for N = 3.

The two dashed lines split the matrix A according to the approximation spaces V2,2,3
and W3;2,2,3. The adaptive algorithm which we propose in this paper is based on

an estimate of the error reduction using (3.2) and (3.3) and on proving a sufficiently

small upper bound to the CBS constant γ for spaces Vp1,...,pN
and refining spaces

Wk;p1,...,pN
. We suggest to update the current solution space Vp1,...,pN

according to

the largest estimate of the decay of the error.

In the following two lemmas we first show that under the assumption (2.7), the

matrix A is positive definite.

Lemma 3.1. Let the matrices Km, m = 0, . . . , N , be defined by (2.13) and let

the assumption (2.7) hold. Then for m = 1, . . . , N

‖K−1/2
0 KmK

−1/2
0 ‖ 6

‖am(x)‖∞
inf
x∈D

a0(x)

and thus
N∑

m=1

‖K−1/2
0 KmK

−1/2
0 ‖ < 1.
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Figure 1. Example of a nonzero block scheme of A = A2,2,4. The two dashed lines split the
matrix according to the discretization of (2.4) in random variables of V2,2,3 and
W3;2,2,3, where V2,2,4 = V2,2,3 ⊕W3;2,2,3. The first diagonal block is A2,2,3.

P r o o f. The matrix K0 is the stiffness matrix of the corresponding deterministic

problem, hence it is positive definite. We have for m = 1, . . . , N ,

‖K−1/2
0 KmK

−1/2
0 ‖ = sup

u∈RF ,u6=0

∣∣∣u
TK

−1/2
0 KmK

−1/2
0 u

uTu

∣∣∣ = sup
u∈RF ,u6=0

∣∣∣u
TKmu

uTK0u

∣∣∣

6 sup
u∈H1

0 (D),u6=0

∣∣∣∣

∫
D am(x)(∇u)2 dx∫
D a0(x)(∇u)2 dx

∣∣∣∣

6 sup
u∈H1

0 (D),u6=0

∣∣∣∣
‖am‖∞

∫
D(∇u)2 dx

inf
x∈D

a0(x)
∫
D(∇u)2 dx

∣∣∣∣ =
‖am‖∞
inf
x∈D

a0(x)
,

where u stands for vectors and for functions of H1
0 (D) as well. �

In the following we will deal with the Galerkin matrices A defined by (2.17). Let us

denote them according to the spaces used for the Galerkin projections: let Ap1,...,pN

be the matrix arising from the Galerkin projection of (2.4) onto Vp1,...,pN
× VD,

where VD is a finite element space, VD ⊂ H1
0 (D). Then from (2.17), Ap1,...,pN

can be
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generated recursively as the (pN + 1)× (pN + 1) block tridiagonal matrix

(3.5) Ap1,...,pN
=




Ap1,...,pN−1 BN ;1 0 . . . 0

BN ;1 Ap1,...,pN−1 BN ;2 . . . 0

. . . . . . . . . . . . . . .

0 . . . BN ;pN−1 Ap1,...,pN−1 BN ;pN

0 . . . 0 BN ;pN
Ap1,...,pN−1



,

where BN ;k is a block diagonal matrix

BN ;k =
k√

(2k − 1)(2k + 1)
I ⊗KN

and

Ap1 = I ⊗K0 +G1 ⊗K1.

Note that the Galerkin matrix Ap1,...,pN−1 associated with the projection onto

Vp1,...,pN−1 × VD is equal to the left upper part of Ap1,...,pN
, namely to the matrix

composed from the left upper pN × pN blocks. We would like to point out the

difference between Ap1,...,pN−1 and Ap1,...,pN−1. The matrix Ap1,...,pN−1 is a diagonal

block of Ap1,...,pN−1.

Matrix K0 is positive definite. Let D0 = IM ⊗K
−1/2
0 and denote

Ãp1,...,pN
= D0Ap1,...,pN

D0.

Lemma 3.2. Let ym, m = 1, . . . , N , be random variables uniformly distributed

on 〈−1, 1〉. Then for any N and for any vector p = (p1, . . . , pN) the matrix Ap1,...,pN

is symmetric and positive definite and for all vectors v ∈ R
(M×F )×1, v 6= 0,

0 <
vTAp1,...,pN

v

vTv
6 2‖K0‖.

Especially, every matrix

Ap1,...,pN−1,1 =

(
Ap1,...,pN−1 BN ;1

BN ;1 Ap1,...,pN−1

)

is positive definite and thus r(A−1
p1,...,pN−1

BN ;1) < 1, where r denotes the spectral

radius.

P r o o f. The symmetry of Ap1,...,pN
follows from its definition (2.15) and from

relations (2.13) and (2.14). Let c = (c1, . . . , cN ), ‖c‖ 6= 0, and let

u =
m∑

k=0

ckϕk(z),
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where ϕk(z) are the normalized orthogonal Legendre polynomials. Then for Gm,1

defined by (2.16)

|cTGm,1c| =
∣∣∣∣
∫ 1

−1

zu2(z)
1

2
dz

∣∣∣∣ 6
∫ 1

−1

|z|u2(z)1
2
dz 6

∫ 1

−1

u2(z)
1

2
dz = cTc

and the equality cannot be achieved except for the case where u(z) = 0 on 〈−1, 1〉,
which means c = 0. Thus we have ‖Gm,1‖ < 1 for m = 0, 1, 2, . . . Then we have

vTAp1,...,pN
v

vTv
=
vT(I ⊗K0)v +

∑N
k=1 v

T(I ⊗Gpk,1 ⊗ I ⊗Kk)v

vTv

=
vTv +

∑N
k=1 v

T(I ⊗Gpk,1 ⊗ I ⊗K
−1/2
0 KkK

−1/2
0 )v

vT(I ⊗K−1
0 )v

=
vTv +

∑N
k=1 v

T(I ⊗Gpk,1 ⊗ I ⊗K
−1/2
0 KkK

−1/2
0 )v

vTv

vTv

vT(I ⊗K−1
0 )v

,

where I stands for the identity matrices of the appropriate sizes. Thus from

Lemma 3.1

sup
v 6=0

vTAp1,...,pN
v

vTv
6

(
1 +

N∑

k=1

‖Gpk,1‖‖K
−1/2
0 KkK

−1/2
0 ‖

)
‖K0‖

6

(
1 + max

i=1,...,N
‖Gpk,1‖

)
‖K0‖ 6 2‖K0‖,

inf
v 6=0

vTAp1,...,pN
v

vTv
>

(
1−

N∑

k=1

‖Gpk,1‖‖K
−1/2
0 KkK

−1/2
0 ‖

)
‖K−1

0 ‖−1

>

(
1− max

k=1,...,N
‖Gpk,1‖

)
‖K−1

0 ‖−1 > 0.

�

In the next lemma we prove an auxiliary result for the main theorem of this paper.

Lemma 3.3. Let matrix Mm be of the m×m block tridiagonal form

Mm =




I 1√
3
M̃ 0 . . . 0

1√
3
M̃ I 2√

15
M̃ . . . 0

. . . . . . . . . . . . . . .

0 . . . m−2√
(2m−5)(2m−3)

M̃ I m−1√
(2m−3)(2m−1)

M̃

0 . . . 0 m−1√
(2m−3)(2m−1)

M̃ I



,
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where M̃ is symmetric and ‖M̃‖ 6 1. Then the strengthened CBS constant γ for

the splitting of Mm into the 2× 2 blocks

(3.6) Mm =




0

Mm−1

...

0
m−1√

(2m−3)(2m−1)
M̃

0, . . . , 0, m−1√
(2m−3)(2m−1)

M̃ I




is bounded by

γ2 6
m− 1

2m− 1
.

P r o o f. Let M be a block matrix and let (M)ldb denote its last (lower right)

diagonal block. For the strengthened CBS constant γ corresponding to the 2 × 2

decomposition (3.6) of Mm we have

γ2 6

∥∥∥ (m− 1)2

(2m− 3)(2m− 1)
r
(
M̃(M−1

m−1)ldbM̃
)∥∥∥ 6

(m− 1)2

(2m− 3)(2m− 1)
‖(M−1

m−1)ldb‖,

where r(M) denotes the spectral radius of M . The recursive evaluation of the norm

‖(M−1
m−1)ldb‖ can start with

‖(M−1
2 )ldb‖ =

∥∥∥
(
I − 1

3
M̃2

)−1∥∥∥ 6

∞∑

k=0

1

3k

∥∥M̃2
∥∥k 6

3

2
.

By induction we can prove that

‖(M−1
m )ldb‖ 6

2m− 1

m
.

Indeed, supposing

‖(M−1
m−1)ldb‖ 6

2m− 3

m− 1
,

we get

‖(M−1
m )ldb‖ =

∥∥∥
(
I − (m− 1)2

(2m− 3)(2m− 1)
M̃(M−1

m−1)ldbM̃
)−1∥∥∥

6

∞∑

k=0

( (m− 1)2

(2m− 3)(2m− 1)

∥∥M̃(M−1
m−1)ldbM̃

∥∥
)k

6

∞∑

k=0

( (m− 1)2

(2m− 3)(2m− 1)

2m− 3

m− 1

)k
=

1

1− (m− 1)/(2m− 1)
=

2m− 1

m
.
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Finally, we obtain

γ2 6
(m− 1)2

(2m− 3)(2m− 1)

2m− 3

m− 1
=

m− 1

2m− 1
.

�

The next theorem contains the main result of this paper. It proves the upper bound

to the strengthened CBS constant γ for the spaces Vp1,...,pN
×VD andWm;p1,...,pN

×VD
for any m = 1, . . . , N , and for the energy scalar product defined by the left-hand

side of (2.4).

Theorem 3.1. Let the random variables ym, m = 1, . . . , N , be uniformly dis-

tributed on 〈−1, 1〉. Then the strengthened CBS constant γk;p1,...,pk,...,pN
for spaces

Vp1,...,pk,...,pN
= Vp1,...,pk−1,...,pN

⊕Wk;p1,...,pk−1,...,pN

is bounded by

γ2k;p1,...,pN
6

pk
2pk + 1

P r o o f. Without any loss of generality we can assume k = N . Thus we consider

the splitting Vp1,...,pN
= Vp1,...,pN−1 ⊕ WN ;p1,...,pN−1. Let us consider the scheme

of the corresponding matrix Ap1,...,pN
as in (3.5). Then to obtain the upper bound

to γN ;p1,...,pN
, we need to find the maximum singular value of the matrix

Q = A
−1/2
p1,...,pN−1,pN−1(0, . . . , 0, BN ;pN

)TA−1/2
p1,...,pN−1

,

or, equivalently,

γ2N ;p1,...,pN
6 r(QTQ) = r(A−1/2

p1,...,pN−1
BN ;pN

(A−1
p1,...,pN−1,pN−1)ldbBN ;pN

A−1/2
p1,...,pN−1

),

where r(M) is the spectral radius ofM and (M)ldb stands for the last diagonal block

of M . Notice the difference between p1, . . . , pN − 1 and p1, . . . , pN−1. Let us also

point out that

BN ;k =
k√

(2k − 1)(2k + 1)
I ⊗KN

and that all of the diagonal blocks of Ap1,...,pN
are the same matrices Ap1,...,pN−1 .

Let us denote

DA = A−1/2
p1,...,pN−1

and

B̃N ;k = DABN ;kDA, Ãp1,...,pN−1 = (IpN+1 ⊗DA)Ap1,...,pN−1(IpN+1 ⊗DA).

566



Then

r(QTQ) = r(B̃N ;pN
(Ã−1

p1,...,pN−1,pN−1)ldbB̃N ;pN
),

where

Ãp1,...,pN
=




I B̃1;N 0 ... 0

B̃1;N I B̃2;N ... 0

... ... ... ... ...
0 ... B̃pN−1;N I B̃pN ;N

0 ... 0 B̃pN ;N I




=




I 1
√

3
B̃ 0 ... 0

1
√

3
B̃ I 2

√

15
B̃ ... 0

... ... ... ... ...
0 ...

pN−1√
(2pN−3)(2pN−1)

B̃ I
pN√

(2pN−1)(2pN+1)
B̃

0 ... 0
pN√

(2pN−1)(2pN+1)
B̃ I


 ,

where B̃ = DA(I⊗KN)DA. From Lemma 3.1 and Lemma 3.2 we get ‖B̃‖ < 1. Thus

r(QTQ) can be estimated recursively and from Lemma 3.3 we obtain γ2N ;p1,...,pN
6

pN/(2pN + 1). �

R em a r k 3.1. We would like to emphasize that the refining spacesWm;p1,...,pN
×

VD, m = 1, . . . , N , are pairwise orthogonal with respect to the energy scalar product.

Indeed, for example, for N = 3 and Φi(y) ∈ Wk,p1+1,p2,p3 , Φj(y) ∈ Wm,p1,p2+1,p3 ,

k 6= m, we have ∫

R3

Φi(y)Φj(y)¯̺(y) dy = 0

and ∫

R3

ymΦi(y)Φj(y)¯̺(y) dy = 0

for any m = 1, 2, 3. This means that the projection of the error of u obtained in

Vp1,...,pN
× VD onto the span of

N⋃
k=1

Wk;p1,...,pN
× VD can be decomposed into N

orthogonal components, which are projections onto the spaces Wm;p1,...,pN
× VD,

m = 1, . . . , N .

4. Adaptive algorithm and numerical example

The derived uniform upper bounds to the strengthened CBS constants γ allow us

to use the projections of current errors onto the spaces Wm;p1,...,pN
× VD as reliable

estimates of the discretization error associated with each particular random variable

ym, m = 1, . . . , N , and to guess what refinement would decrease the energy norm

of the error as much as possible. Based on such estimates we propose an adaptive

algorithm. The error of a current solution is projected onto the spaces Wm;p1,...,pN
×

567



VD for every m = 1, . . . , N . Since γ2 < 1/2, we obtain from (3.2) and (3.3) the

estimates of the error decay for each m and thus we can decide the degree of which

polynomial ϕi(ym) should be increased. Moreover, assuming β be sufficiently small,

we obtain a quite accurate estimate of the energy norm of the current error.

Adaptive algorithm.

1. Choose an initial vector p = (p1, . . . , pN ).

2. Compute the Galerkin solution of (2.4) in Vp1,...,pN
× VD.

3. Find a projection of the current error onto the spaces Wk;p1,...,pN
× VD, k =

1, . . . , N , with the largest energy norm. Denote the corresponding index by m.

4. Update (p1, . . . , pm, . . . , pN ) := (p1, . . . , pm + 1, . . . , pN ) and go to Step 2.

To examine the proposed algorithm let us consider a simple 1D problem. Let

us emphasize that the efficiency of the algorithm does not depend on the physical

dimensionality of the problem. Let us solve the equation −(au′)′ = 1 on (0, 1),

u(0) = 0, u(1) = 0, where a(x, y) = a0 + a1(x)y1 + a2(x)y3 + a3(x)y3, thus N = 3.

Let a0 = 1 and let yk be independent and uniformly distributed random variables

on 〈−1, 1〉. Let ak(x) be piecewise constant,

a1(x) = 0.95, x ∈ (0, 1/3),

a2(x) = 0.1, x ∈ (1/3, 2/3),

a3(x) = 0.5, x ∈ (2/3, 1),

ak(x) = 0, otherwise, k = 1, 2, 3.

We use the uniform mesh on (0, 1) and the piecewise linear FE basis functions, F = 20

or F = 41; thus some nodes coincide with the discontinuity points of ak(x). Then we

can suppose that the physical discretization error is relatively small compared to the

stochastic discretization error. We compute the energy norm of the error eU of the

current approximate solution both for the adaptive refinement of the tensor product

(TP) of polynomials and for the sets of complete polynomials (CP) with growing

total degree. These norms are plotted by the solid lines in Figure 2. The dashed

lines indicate the largest energy norm of the projections of eU onto the subspace

Wk;p1,p2,p3 × VD, k = 1, 2, 3, in the case of the TP. For the CP scheme, the dashed

line depicts the energy norm of the projection of eU onto the space of polynomials

of the total degree equal to q + 1, where q is the largest total degree of the current

approximation polynomials. The sequences of vectors pn such that the spaces Vpn ×
VD are used in the Adaptive algorithm are the same for 20 and for 41 spatial nodal

points:

pn : (111), (211), (311), (411), (412), (512), (612), (712), (812), (813).
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Figure 2. Solid lines: Energy norms of current errors ‖eU‖A of the solutions in Vp1,p2,p3 ×
VD for the adaptively refined TP scheme and of the solutions using the CP
schemes dependent on the number of stochastic basis function M . Dashed lines:
Energy norms of the largest projections of the current error eU ontoWk;p1,p2,p3

×
VD for the TP scheme and energy norm of the projection of eU onto the space
of polynomials of the total degree equal to q + 1, where q is the largest total
degree of the current approximation polynomials for the CP scheme. Numbers of
physical nodes are F = 20 or F = 41.

Of course, the first elements pn1 of p
n = (pn1 , p

n
2 , p

n
3 ) are the largest ones due to the

largest magnitude of a1(x). From Figure 2 we can see that the adaptive refinement

of the approximation stochastic spaces leads to a significant memory saving. We

can also notice that the largest error projections onto Wk;p1,p2,p3 well indicate what

refinement should be made in each step of the Adaptive algorithm. It can be also

seen that different spatial meshes almost do not influence the error estimates and

particular refining steps of the Adaptive algorithm.

4.1. Discussion. Function spaces used to approximate the stochastic part of the

solution obtained by the SGM have some properties different from spaces usually

used in the FE methods. This is caused by the following reasons: the domains of

random variables are very regular, usually hypercubes, and thus classes of orthogo-

nal polynomials can be used as the basis functions; many random variables can be

employed, even tens or hundreds; no derivatives with respect to the random variables

are considered. This is why completely new forms of preconditioning, a posteriori

estimates and adaptive strategies can be devised. In this paper, we introduce an

efficient algorithm of refinement of the approximation spaces of the SGM in which
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tensor products of polynomials in random variables are used. Following the first

results [18], we here introduce another form of exploiting the uniform upper bound

to the strengthened CBS constant for a certain hierarchical decomposition of the

stochastic approximation spaces. We prove that for the uniformly distributed ran-

dom variables this upper bounds are sufficiently small for any degrees of polynomials

and for any numbers of random variables. Then a kind of hierarchical a posteriori

error estimates can be applied to define an adaptive algorithm.

Let us emphasize that instead of the orthogonal polynomials ϕk(ym), k = 1, . . . ,

pm, m = 1, . . . , N , one can use the sets of double orthogonal polynomials [4] which

lead to a non-intrusive computational scheme, because the matrix Ap1,...,pN
becomes

block diagonal with diagonal blocks of the same size as the underlying determinis-

tic problem. In this case, the Galerkin projection of current errors onto the spaces

Wm;p1,...,pN
can be computed in the same way as in the case of orthogonal poly-

nomials. But, of course, after any refinement of an approximation space of double

orthogonal polynomials, all of the current polynomials in some variable ym must be

substituted to obtain a new set of double orthogonal polynomials of a higher degree.

In this paper, only the uniform distribution of the random parameters is consid-

ered. Of course, any other distribution can be used and new upper bounds to the

strengthened CBS constants can be obtained. The main limitation of the presented

approach is the linearity of a(x, y) with respect to random parameters. If the coeffi-

cient a(x, y) were in a more general form than in (2.1), the matrix A of the resulting

system of linear equations would have a different structure and can be even full [20].

Instead of the orthogonal polynomials, we can use wavelets, piecewise polynomials

or other functions to approximate the solution [16]. For all such problems, new

techniques of hierarchical a posteriori error estimates can be studied.

A c k n ow l e d gm e n t. The author thanks very much both anonymous referees

for valuable and interesting comments and suggestions.
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