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ADDITIVE HAZARDS REGRESSION WITH CASE-COHORT
SAMPLED CURRENT STATUS DATA

Wei Chen, Fengling Ren and Guosheng Tang

In a case-cohort design, covariate histories are measured only on cases and a subcohort
that is randomly selected from the entire cohort. This design has been widely used in large
epidemiologic studies, especially when the exposures of interest are expensive to assemble for
all the subjects. In this paper, we propose statistical procedures for analyzing case-cohort
sampled current status data under the additive hazards model. Asymptotical properties of
the proposed estimator are described and we suggest a resampling method to estimate the
variances. Simulation studies show that the proposed method works well for finite sample sizes,
and one data set is analyzed for illustrative purposes.

Keywords: additive hazards model, case-cohort, current status data, estimating equations,
simple random sampling

Classification: 62N02, 62N01

1. INTRODUCTION

The case-cohort design, originally proposed by Prentice [18], is a cost-effective means
in large epidemiological studies and disease prevention trials in which the outcome of
interest is time to event and covariates are measured only on the cases and a subsample
selected from the entire cohort. The reduction of cost offered by this design is specially
prominent if the assembly of covariate histories may be prohibitively expensive on the
entire cohort members or the disease of interest occurs infrequently.

The statistical inference method for analyzing the case-cohort data has been well
studied by many authors. Prentice [18] proposed a “pseudolikelihood” procedure for the
relative risk model, and later some asymptotic results for this approach were established
by Self and Prentice [19]. Under the additive hazards (AH) model, Kulich and Lin [8]
constructed an estimating equation and showed that their estimator was consistent and
asymptotically normal. Recently, Lu and Tsiatis [14] and Kong et al. [6] studied the
transformation model, Nan et al. [16] and Kong and Cai [7] studied the accelerated
failure time model. Note that all of these methods mentioned above are developed to
tackle right censored case-cohort data. To the best knowledge of ours, there are few
studies focusing on interval censored case-cohort data. Gilbert et al. [3] directly approx-
imated the interval censored case-cohort data by the right censored version and then the
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existing approaches for analyzing right censored case-cohort data can be employed. Ma
[15] investigated the AH model with case-cohort sampled current status data. Under
the Cox model, Li et al. [9] considered the interval censoring mechanism in case-cohort
studies, but presumed that the inspection time intervals are fixed. Recently, Li and
Nan [10] addressed the relative risk regression for current status data in the case-cohort
design.

In this paper, we consider the additive hazards model with case-cohort sampled cur-
rent status data. Current status data, also called the “case 1” interval censored data,
arise in studies in which the time of occurrence of some event is of interest, but we only
know whether the event has occurred or not at the time the sample is collected. For
a detailed discussion, see Groeneboom and Wellner [4], and Sun [20]. As said before,
the additive hazards model for the current status data in the case-cohort design has
been studied by Ma [15], where partly motivated by the work of Chen and Lo [2], he
proposed a class of estimating equations for estimating the regression parameters. It
should be specially pointed out that his estimating functions cannot be calculated in
general, because they involve some unobservable covariates, as presented in the next
section. Therefore, it is necessary to develop a feasible approach to make inference for
parameters in the AH model.

Motivated by the construction of estimating equations in Kulich and Lin [8] for ana-
lyzing the right censored case-cohort data, we propose in Section 2 an estimating function
for estimating regression parameters in the additive hazards model with current status
data under the simple random sampling without replacement. In Section 3, we conduct
simulations to assess the finite sample performance of the proposed estimator. A data
from the ED01 experiment is analyzed to illustrate our proposed method in Section 4.
A brief discussion concludes this paper.

2. ESTIMATION

Let T and C denote the failure time and censoring time, and Z(·) be the d-vector of
possibly time-dependent covariates. Suppose that the failure time T follows the additive
hazards model (Lin and Ying [8], Lin et al. [11]) which assumes that the hazard function
of T at time t associated with the history of Z(·) up to t is given by

λ(t | Z(·)) = λ0(t) + β′0Z(t), (1)

where λ0(t) is an unspecified baseline hazard function and β0 is an unknown d-vector
of regression parameter. The additive hazards model is a useful alternative to the Cox
model, and convenient when the absolute effects of covariates on the hazard function
are of interest. We assume that C is independent of T and Z(·), which is also adopted
in Ma [15].

For current status data, the exact value of T is never observed, rather one only
can observe O = (C, δ, Z(·)), where δ = I(C ≤ T ) is the censoring indicator. Let
(Ti, Ci, Zi(·)) (i = 1, . . . , n) be independent copies of (T,C,Z(·)). Then the observed
data consist of (Ci, δi, Zi(·)), which are i.i.d. copies of O. Under the case-cohort design,
covariate histories are available only on cases, i. e., those with δi = 0 (Ma [15, p. 598]),
and a random subset of the entire cohort, i. e., the subcohort. Let ξi be the subcohort
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indicator, taking value 1 if the ith subject is in the subcohort and 0 otherwise. Suppose
that we select the subcohort of size ñ by simply random sampling without replacement
from the entire cohort. Denote pn = ñ/n as the subcohort proportion, which converges
to p ∈ (0, 1) as n →∞.

2.1. Ma [15] method

In a full cohort study, Lin et al. [11] proposed to estimate β0 in model (1) with randomly
sampled current status data by solving U(β) = 0, denote the solution by β̂, where

U(β) =
n∑

i=1

∫ ∞

0

{
Z∗

i (t)− S1(β, t)
S0(β, t)

}
dNi(t), (2)

where Z∗
i (t) =

∫ t

0
Zi(s) ds, Sk(β, t) = 1/n

∑n
j=1 Yj(t) exp(−β′Z∗

j (t))Z∗
j (t)⊗k(k = 0, 1),

a⊗0 = 1, a⊗1 = a, and Yi(t) = I(Ci ≥ t), Ni(t) = δiI(Ci ≤ t).
Before introducing Ma [15] method, we first give some notations needed herein. Define

R̃1
t and R0

t as the index sets of subjects still at risk at time t in the subcohort with δi = 1
and in the entire cohort with δi = 0, respectively. Due to the fact that the covariate
histories Zi(t)’s are not available for each subject, calculation of Sk(β, t) in (2) becomes
impossible. Note that S1(β, t)/S0(β, t) is a consistent estimator of

E[Z∗(t) | C = t, δ = 1] =

qE[Y (t) exp(−β′Z∗(t))Z∗(t) | δ = 1] + (1− q)E[Y (t) exp(−β′Z∗(t))Z∗(t) | δ = 0]
qE[Y (t) exp(−β′Z∗(t)) | δ = 1] + (1− q)E[Y (t) exp(−β′Z∗(t)) | δ = 0]

,

where q = P (δ = 1) and 1 − q is the prevalence ratio in the cohort. Based on several
estimators q̂ of q, and following the approach of Chen and Lo [2], Ma [15] suggested a
class of estimating functions as follows,

UM (β) =
n∑

i=1

∫ ∞

0

{
Z∗

i (t)− S̃1(β, t)
S̃0(β, t)

}
dNi(t), (3)

where S̃k(β, t) = [q̂/ns
1

∑
j∈R̃1

t
+(1− q̂)/ns

1

∑
j∈R0

t
] exp(−β′Z∗

j (t))Z∗
j (t)⊗k (k = 0, 1), n1

and ns
1 are the numbers of subjects with δi = 1 in the entire cohort and the subcohort,

respectively. Here q̂ can be ns
1/ñ or n1/n and so on (Ma [15]). In fact, the expression

in (3) can be rewritten as

UM (β) =
n∑

i=1

δi{Z∗
i (Ci)−

S̃1(β, Ci)
S̃0(β, Ci)

}. (4)

It should be specially pointed out that computation of (4) needs all the covariate in-
formation of subjects with δi = 1. However, under the case-cohort design, it is usually
impractical to do so, since it is possible that only part of subjects with δi = 1 are selected
into the subcohort. Therefore, other estimation procedures need to be developed. In
our opinion, (4) can be modified as

UM (β) =
n∑

i=1

δiξi

{
Z∗

i (Ci)−
S̃1(β, Ci)
S̃0(β, Ci)

}
.
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However, we will not discuss it explicitly here.

2.2. The proposed method

When dealing with case-cohort data, one common technique is to choose a desired case-
cohort weight to modify the initial estimating function based on the entire cohort data.
Here we denote hi = (1 − δi) + δiξi/pn, which is also used in analyzing right censored
case-cohort data under the additive hazards model (Kulich and Lin [9]) and accelerated
failure time model (Kong and Cai [7]). Explicitly, the proposed estimating function has
the form

UN (β) =
n∑

i=1

∫ ∞

0

hi

{
Z∗

i (t)− S1
h(β, t)

S0
h(β, t)

}
dNi(t), (5)

where Sk
h(β, t) = 1/n

∑n
j=1 hjYj(t) exp(−β′Z∗

j (t))Z∗
j (t)⊗k(k = 0, 1). The resulting es-

timator of β0 is defined to be solution to UN (β) = 0, denoted by β̂N . After some
manipulation, (5) can be rewritten as

UN (β) =
n∑

i=1

δiξi

pn
{Z∗

i (Ci)−
S1

h(β, Ci)
S0

h(β, Ci)
}. (6)

Unlike Equation (4), the expressions (5) and (6) can be straightforwardly computed
without involving possibly unobserved quantities. If the exact subcohort proportion p
is known, we can substitute pn in hi of (5) by p, and obtain a analogous estimating
equation to (5). Denote its solution by β̃N , which is used to compare with β̂N in the
following simulation studies.

To establish the the asymptotic properties of β̂N , following arguments in Kulich and
Lin [8, p. 76] and those in Self and Prentice [19], we can decompose n1/2UN (β) in (5) into
three parts: the first part is just the equation in (2) up to the multiple constant

√
n; the

third part is oP (1); and the second part is n1/2
∑n

i=1(1−δi)( ξi

pn
−1){S1(β, Ci)/S0(β, Ci)}.

For the first and second parts, following similar arguments in appendix of Ma [15] and
those in Self and Prentice [19], it can be shown that they are asymptotically uncorrelated
and normally distributed; furthermore, β̂N is

√
n-consistent and asymptotically normal,

where the limiting covariance matrix, denoted by Σ, consists of sum of two terms as
occurred in other statistical inference problems for case-cohort data.

Due to the complex structure of Σ, we suggest one resampling method as follows. Let
ηi, i = 1, . . . , n, be i.i.d. positive random variables with E[ηi] = Var(ηi) = 1. Define

ŨN (β) =
n∑

i=1

δiξiηi

pn

{
Z∗

i (Ci)−
S1

h(β, Ci)
S0

h(β, Ci)

}
. (7)

One similar technique has been adopted by Jin et al. [5]. For a realization of ηi’s, the
solution of (7) provides one draw of β̂N from its limiting distribution. Then through
repeating this process a large number M0 times, we can estimate the variance matrix
Σ of β̂N directly by the sampling variance matrix of the bootstrap sample of β̂N . In
applications, we set M0 = 100, which behaves well from our experience.
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3. SIMULATION STUDIES

To investigate the performance of the proposed estimator for sample size commonly
encountered in practice, simulation studies are conducted. Failure time T was generated
from model (1) with

λ(t | Z) = 0.5 + β0Z,

where Z ∼ Uniform (0, 121/2), β0 = 0.5 or 1, respectively. The censoring times are
generated independently of T and Z, and have exponential distribution with varying
rates to make the overall proportion of cases, i. e., the expected prevalence rate P (δ = 1)
close to 0.1. The subcohort was selected by independent Bernoulli sampling with the
subcohort proportion was 0.4 and 0.2, respectively. Simulation results based on cohort
sizes 3000 and 5000 replications are obtained by R software and shown in Tables 1 and 2.

As shown in Tables 1 and 2, the proposed estimator of the regression parameter
are approximately unbiased for all the scenarios, in terms of small biases and sample
standard deviations. Both Bias and SD decrease as the size of cohort increases. What’s
more, the performance of proposed estimator β̂N is very close to that of the full cohort
estimator β̂. Although there exists a difference, the difference between them is small and
acceptable, rather the cost of collecting covariate histories is greatly reduced compared
with the full cohort situation. The relative efficiency of the case-cohort estimator is
defined as

RE =
MSE(β̂)

MSE(β̂N )
.=

∑
(β̂ − β0)2∑

(β̂N − β0)2
,

where the summation is over the 1000 replications. For the β0 = 0.5 case, RE of β̂N

(and β̃N ) under the 40% and 20% of the cohort size n = 3000 varies from 0.6767(0.6750)
to 0.4686(0.4671). Under the situation n = 5000, RE varies from 0.7008(0.7008) to
0.4836(0.4836). Similar trend also can be found for the β0 = 1 case. It seems that
the estimator based on the estimator of proportion of the subcohort is compared with
that based on the exact value of that proportion. Moreover, the relative efficiency
increases as the size of cohort increases, which may be caused by the increased number
of observations of covariates and in agree with our expectation.

4. DATA ANALYSIS

In this section, we illustrate the proposed method using the data summarized by month
in Tables 1 and 2 of Lindsey and Ryan [13], which is a subset of data from the ED01

study. The ED01 experiment was conducted at the National Center for Toxicological
Research and involved 24,000 female mice which were randomly assigned to enter a con-
trol group or one of seven dose levels of the known carcinogen 2-acetylaminofluorene(24).
There were eight interim sacrifice times, and a terminal sacrifice at 33 months. The data
analyzed here involves 671 mice with bladder and lung tumors from one room consid-
ering control and high-dose groups only, where the control group and high-dose groups
contained 387 and 284 mice, respectively, and we just studied the onset of bladder tu-
mors. As to the onset of bladder tumors, a total of 124 mice were left-censored (δ = 0),
among which 13 mice were of the control group and 111 were of the high-dose group.
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n β0 = 0.5 β0 = 1
3000 Bias SD MSE Bias SD MSE

β̂ 0.0142 0.2320 0.0538 0.0191 0.3519 0.1237
β̂N 0.0153 0.2817 0.0795 0.0222 0.4389 0.1929
β̃N 0.0150 0.2820 0.0797 0.0213 0.4396 0.1935

5000 Bias SD MSE Bias SD MSE
β̂ 0.0100 0.1796 0.0328 0.0153 0.2747 0.0756
β̂N 0.0147 0.2160 0.0468 0.0251 0.3342 0.1122
β̃N 0.0149 0.2160 0.0468 0.0255 0.3344 0.1123

Tab. 1. Simulation study. Subcohort sizes are equal to 40% of the

cohort size n. β̂ is the full cohort estimator. β̂N and β̃N are the

case-cohort estimators using pn and p in subsection 2.2, respectively.

SD: standard deviation. MSE: mean squared error.

n β0 = 0.5 β0 = 1
3000 Bias SD MSE Bias SD MSE

β̂ -0.0105 0.2443 0.0597 -0.0106 0.3745 0.1402
β̂N 0.0270 0.3571 0.1274 0.0326 0.5695 0.3245
β̃N 0.0275 0.3577 0.1278 0.0340 0.5707 0.3259

5000 Bias SD MSE Bias SD MSE
β̂ 0.0005 0.1840 0.0338 0.0008 0.2706 0.0731
β̂N 0.0061 0.2631 0.0699 0.0219 0.4172 0.1749
β̃N 0.0062 0.2631 0.0699 0.0221 0.4175 0.1753

Tab. 2. Simulation study. Subcohort sizes are equal to 20% of the

cohort size n. β̂ is the full cohort estimator. β̂N and β̃N are the

case-cohort estimators using pn and p in subsection 2.2, respectively.

SD: standard deviation. MSE: mean squared error.

Like that in Chen et al. [1], we consider only the univariate Zi, taking value 1 for
the high-dose group and 0 for the control group. For the full cohort data, we fit the
the model (1) and obtain β̂ = 0.0225 with an estimated standard error 0.0081, which
implies that the hazard of the mice in the high-dose group is significantly higher than
that of the control group. The similar finding has also been observed by Lindsey and
Ryan [13] and Chen et al. [1] in other modeling settings. To make a comparison between
it and our method for the case-cohort data, we selected the subcohort by independent
Bernoulli sampling and the resultant subcohort proportion is about 0.27. For such set
of case-cohort data, the estimate β̂N = 0.0409 with a estimated standard error 0.0177,
indicating that the mice in the high-dose group also have a statistically significantly
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higher hazard than those in the control group. This is in accordance with the findings
mentioned above.

5. CONCLUSION AND DISCUSSION

In this paper, we developed a weighted estimating equation to fit the current status data
from case-cohort studies with an additive hazards model. We also sketched that the
proposed estimator was consistent and asymptotically normally distributed. Compared
with the full cohort estimator, the efficiency loss of the case-cohort estimator in our
simulation studies remained acceptable compared to the sample size reduction.

In our study, we focus on the case-cohort design with simple random sampling without
replacement, which is one example of the general two-phase sampling schemes introduced
by Neyman [17]. From the construction of our estimating equation, it is straightforward
to extend our method to other schemes under which one subcohort is selected. One pos-
sible difficulty may be the derivation of theoretical properties of the resultant estimators.
Moreover, other procedures that will improve the relative efficiency are still desirable
and will be pursued in the future. As argued by Lin et al. [11], the assumption that the
censoring time is independent of covariates is stringent in some applications. Therefore,
to develop procedures for case-cohort sampled current status data allowing dependence
of censoring time on covariates under the additive hazards model is of interest and we
are studying this issue.

(Received September 11, 2014)
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