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Abstract. Simple modules for restricted Lie superalgebras are studied. The indecom-
posability of baby Kac modules and baby Verma modules is proved in some situation.
In particular, for the classical Lie superalgebra of type A(n|0), the baby Verma modules
Zχ(λ) are proved to be simple for any regular nilpotent p-character χ and typical weight λ.
Moreover, we obtain the dimension formulas for projective covers of simple modules with
p-characters of standard Levi form.
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1. Introduction

The finite-dimensional simple Lie superalgebras over the field of complex numbers

were classified by Kac in the 1970s (cf. [8]). Although until now, the classification

of finite-dimensional simple (restricted) Lie superalgebras over a field of prime char-

acteristic has not yet been completed, there has been increasing interest in modular

representation theory of restricted Lie superalgebras in recent years. W.Wang and

L. Zhao [15], [16] initiated and developed systematically the modular representations

of Lie superalgebras over an algebraically closed field of characteristic p > 2. In [15],

the super version of the celebrated Kac-Weisfeiler Property was shown to hold for the

basic classical Lie superalgebras, which by definition admit an even non-degenerate

supersymmetric bilinear form and whose even subalgebras are reductive. There also

has been increasing interest [1], [2], [3], [4], [9], [11] in modular representation the-

ory of algebraic supergroups in connection with other areas in recent years. Indeed,

The research has been supported by the National Natural Science Foundation of China
(Grant No. 11201293) and the Innovation Program of Shanghai Municipal Education
Commission (Grant No. 13YZ077).
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the modular representation theory of supergroups and Lie superalgebras has found

remarkable applications to classical mathematics (see [11] for references and some

historical remarks). Representations of Cartan type Lie superalgebras of prime char-

acteristic were studied in [12], [13], [14], [17], [18], [19].

The modular representations of restricted Lie algebras of prime characteristic have

been developed over the years (see [7] for a review). The corresponding question for

restricted Lie superalgebras naturally arises. The present work has been largely

motivated by the representation theory of modular Lie algebras (cf. [5], [7]). Let

(g, [p]) be a finite-dimensional restricted Lie superalgebra over an algebraically closed

field F of characteristic p > 2. It is obvious that for each x ∈ g0, the element

xp − x[p] is even and central in the universal enveloping superalgebra U(g). Let

Z denote the central subalgebra of U(g) generated by all the elements xp − x[p]

with x ∈ g0, which is the so-called p-center. Since each irreducible g-module is

finite-dimensional (cf. [15], [20]), the Lie superalgebra version of Schur’s Lemma [8],

§1.1.6, implies that the p-center Z acts by scalars on any irreducible g-module M .

Then there exists a unique χ ∈ g∗
0
such that xp · v − x[p] · v = χ(x)pv, for all

x ∈ g0, v ∈ M . Therefore, M is a module for the finite-dimensional superalgebra

Uχ(g) = U(g)/(xp − x[p] − χ(x)p|x ∈ g0), where (x
p − x[p] − χ(x)p|x ∈ g0) denotes

the ideal of U(g) generated by all the elements xp − x[p] − χ(x)p with x ∈ g0. The

superalgebra Uχ(g) is called the χ-reduced enveloping superalgebra. More generally,

a g-module M is said to have a p-character χ provided that xp · v− x[p] · v = χ(x)pv,

for all x ∈ g0, v ∈ M , or equivalently, it is a Uχ(g)-module.

This paper is structured as follows. In Section 2, we recall some basic notation

and properties for restricted Lie superalgebras. Section 3 is devoted to studying

representations of restricted Lie superalgebras with an admissible Z-grading of depth
one. The baby Kac modules are proved to be indecomposable and have simple

socle. In the final section, we study representations of the classical Lie superalgebra

sl(n + 1|1) with p-character of standard Levi form. The baby Verma modules are

proved to be indecomposable. When χ is regular nilpotent and λ is typical, the baby

Verma module Zχ(λ) is simple. Moreover, we obtain the dimension formulas for

projective covers of simple modules with p-characters of standard Levi form.

2. Preliminaries

Throughout this paper, F is assumed to be an algebraically closed field of prime
characteristic p > 2. All modules (vector spaces) are over F and finite-dimensional.

The following notion of restricted Lie superalgebras is a generalization of the one

for restricted Lie algebras (see [6]).
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Definition 2.1 (cf. [10]). A Lie superalgebra g = g0 ⊕ g1 is called a restricted

Lie superalgebra if there is a so-called p-mapping [p] on g0 satisfying the following

conditions:

(i) (adx)py = ad(x[p])y, for all x ∈ g0 and y ∈ g,

(ii) (kx)[p] = kpx[p], for all k ∈ F, x ∈ g0,

(iii) (x+ y)[p] = x[p] + y[p] +
p−1
∑

i=1

si(x, y), for all x, y ∈ g0,

where isi(x, y) is the coefficient of λ
i−1 in ad(λx+y)p−1(x) and λ is an indeterminate.

Remarks 2.2.

(1) The condition (iii) in Definition 2.1 is equivalent to the following condition.

(iii′) The following relation in the universal enveloping superalgebra U(g) holds:

(x+ y)p − xp − yp = (x+ y)[p] − x[p] − y[p], ∀x, y ∈ g0.

(2) In short, a restricted Lie superalgebra is a Lie superalgebra whose even subal-

gebra is a restricted Lie algebra and the odd part is a restricted module over

the even subalgebra by the adjoint action.

Examples 2.3.

(1) LetA = A0⊕A1 be any associative F-superalgebra. Then A admits the structure
of a Lie superalgebra by defining the bracket operation as [x, y] = xy−(−1)xyyx

for any homogeneous elements x, y ∈ A, where x, y denote the parity of x and y,

respectively. Furthermore, A becomes a restricted Lie superalgebra with the p-

mapping given by x[p] = xp for any x ∈ A0, i.e., the p-mapping is just taken as

the p-th power in the superalgebra A.

(2) The Lie superalgebra of an algebraic supergroup is a restricted Lie superalgebra

(see [11]).

Let (g, [p]) be a restricted Lie superalgebra and χ ∈ g∗
0
. A g-module M is said to

be χ-reduced if xp · v − x[p] · v = χ(x)pv for all x ∈ g0, v ∈ M . In particular, it is

called a restricted module if χ = 0. As in the case of restricted Lie algebras, one can

define the so-called χ-reduced enveloping superalgebra Uχ(g) to be the quotient of the

universal enveloping superalgebra U(g) by the ideal generated by {xp−x[p]−χ(x)p ;

x ∈ g0}, i.e., Uχ(g) = U(g)/(xp − x[p] − χ(x)p|x ∈ g0). If χ = 0, the superalgebra

U0(g) is called the restricted enveloping superalgebra and denoted by u(g) for brevity.

All the χ-reduced or restricted g-modules constitute a full subcategory of the g-

module category, which coincides with the Uχ(g) or the u(g)-module category. Each

simple g-module is a Uχ(g)-module for a unique χ ∈ g∗
0
(cf. [15], [20]).
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3. Representations of restricted Lie superalgebras with

an admissible Z-grading of depth one

In this section, we always assume that g = g0 ⊕ g1 is a restricted Lie superalgebra

with an admissible Z-grading of depth one, i.e., g = g−1 ⊕ g0 ⊕ g1 so that g0 = g0,

g1 = g−1 ⊕ g1 and [gi, gj ] ⊆ gi+j , for all i, j ∈ {−1, 0, 1} where we make the

convention that gk = 0 for k /∈ {−1, 0, 1}. Set g+ = g0 ⊕ g1 which is a restricted

subalgebra of g. We have the following easy observation.

Lemma 3.1. Any irreducible g0-module can be regarded as an irreducible

g+-module with trivial g1-action. Moreover, any irreducible g
+-module is an irre-

ducible g0-module with trivial g1-action.

P r o o f. The first statement is obvious, since g1 is an ideal in g+.

To prove the second statement, let M be any irreducible g+-module. Note that

x2 = [x, x]/2 = 0 holds in U(g) for any x ∈ g1. Then the superspace M
g1 := {v ∈

M ; xv = 0, ∀x ∈ g1} 6= 0 by [21], Proposition 2.1, Chapter 3. It is easy to check

that Mg1 is a g+-submodule of M . Hence Mg1 = M by the simplicity of M as

a g+-module, i.e., g1 acts trivially on M . The proof is completed. �

By Lemma 3.1, any irreducible g0-module can be viewed as an irreducible

g+-module with trivial g1-action.

Definition 3.2. Let g = g0⊕ g1 be a restricted Lie superalgebra with an admis-

sible Z-grading g = g−1 ⊕ g0 ⊕ g1. Let χ ∈ g∗
0
and let M be an irreducible Uχ(g0)-

module. Set Kχ(M) = Uχ(g) ⊗Uχ(g+) M , where M is viewed as a Uχ(g
+)-module

with trivial g1-action. The induced g-module Kχ(M) is called a baby Kac module

associated with M .

Proposition 3.3. Let g = g0 ⊕ g1 be a restricted Lie superalgebra with an ad-

missible Z-grading g = g−1⊕g0⊕g1. Let χ ∈ g∗
0
and letM be an irreducible Uχ(g0)-

module. Then the baby Kac module Kχ(M) is an indecomposable Uχ(g)-module.

Moreover,Kχ(M) has a simple socle. For any irreducible Uχ(g0)-modulesM and N ,

we haveKχ(M) ∼= Kχ(N) as Uχ(g)-modules if and only ifM ∼= N as Uχ(g0)-modules.

P r o o f. Fix an ordered basis {x1, . . . , xn} of g−1. For a subset I = {i1 <

i2 < . . . < is} ⊆ {1, . . . , n}, let xI denote xi1 . . . xis in Uχ(g). Then as a vec-

tor space, Kχ(M) has a basis {xI ⊗ vi ; I ⊆ {1, . . . , n}, i = 1, . . . , dimM}, where

{vi ; i = 1, . . . , dimM} is a basis of M .

SupposeM is a nonzero submodule of Kχ(M). Let 0 6= v =
∑

I,i aI,ixI ⊗ vi ∈ M

where aI,i ∈ F. We can apply some action of xi on v, so that we get x1 . . . xn⊗w ∈ M ,
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where 0 6= w ∈ M . Note that M is a simple Uχ(g0)-module, hence Uχ(g0)w = M .

It is a routine to check that x1 . . . xn ⊗ M = Uχ(g0)x1 . . . xn ⊗ w ∈ M , i.e., any

submodule of Kχ(M) contains the subspace x1 . . . xn ⊗ M which is isomorphic to

Mσ as a g0-module, where Mσ is a twist of M with the same underlining space

and the module structure given by x ◦ v = xv + tr(adx|g
−1
)v for x ∈ g0, v ∈ Mσ.

Therefore Kχ(M) is an indecomposable Uχ(g)-module.

By the discussion above, Kχ(M) has a unique irreducible submodule Uχ(g)x1 . . .

xn ⊗M , i.e., Kχ(M) has a simple socle Uχ(g)x1 . . . xn ⊗M .

LetM and N be two simple Uχ(g0)-modules. SupposeKχ(M) ∼= Kχ(N) as Uχ(g)-

modules. Let ϕ : Kχ(M) −→ Kχ(N) be the isomorphism. Note that 0 = ϕ(xi ·

x1 . . . xn⊗w) = xiϕ(x1 . . . xn⊗w) for any i = 1, . . . , n, w ∈ M . We have ϕ(x1 . . . xn⊗

M) ⊆ x1 . . . xn ⊗ N . Similarly, we have ϕ−1(x1 . . . xn ⊗ N) ⊆ x1 . . . xn ⊗ M .

Consequently, ϕ(x1 . . . xn ⊗ M) = x1 . . . xn ⊗ N . Since x1 . . . xn ⊗ M ∼= Mσ and

x1 . . . xn ⊗N ∼= Nσ as g0-modules, it follows that M
∼= N as g0-modules.

We completed the proof. �

The following result asserts that any simple Uχ(g)-module is a homomorphic image

of a baby Kac module Kχ(M) for some simple Uχ(g0)-module M .

Proposition 3.4. Let g = g0 ⊕ g1 be a restricted Lie superalgebra with an

admissible Z-grading g = g−1 ⊕ g0 ⊕ g1. Let χ ∈ g∗
0
. Then any simple Uχ(g)-

module is a homomorphic image of a baby Kac module Kχ(M) for some simple

Uχ(g0)-module M .

P r o o f. Let M be any simple Uχ(g)-module. Take a simple Uχ(g
+)-submodule

M in M . We then have the canonical Uχ(g)-module homomorphism

Ψ: Kχ(M) = Uχ(g)⊗Uχ(g+) M −→ M

induced from the inclusion M →֒ M .

Since M is a simple Uχ(g)-module, Ψ is epimorphism. Therefore,M ∼= Kχ(M)/

kerΨ. �

In the following, we assume that g0 is an algebraic Lie algebra, hence g0 has

a triangular decomposition g0 = n− ⊕ h ⊕ n. Set b = h ⊕ n and B = b ⊕ g1. Let

χ ∈ g∗
0
, then under the coadjoint action of the automorphism group Aut(g0) of g0,

the character χ can be conjugated to another character χ′ ∈ g∗
0
such that χ′(n) = 0,

i.e., there exists a σ ∈ Aut(g0) such that (σ · χ)(n) = 0. Since Uχ(g) ∼= Uσ·χ(g),

the representation theory of Uχ(g) is equivalent to that of Uσ·χ(g). Therefore, in the

sequel we always assume χ ∈ g∗
0
with χ(n) = 0. Set Λχ = {λ ∈ h∗ ; λ(h)p −λ(h[p]) =

χ(h)p}. For any λ ∈ Λχ, one can define a one-dimensional b-module Fλ with a basis
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vλ such that h · vλ = λ(h)vλ for any h ∈ h, and n · vλ = 0. It is easy to check that Fλ

is a Uχ(b)-module. Moreover, any Uχ(b)-module is of the form Fλ for some λ ∈ Λχ.

We have the following easy observation, the proof of which is straightforward and

similar to that of Lemma 3.1.

Lemma 3.5. Any irreducible b-module can be regarded as an irreducible

B-module with trivial g1-action. Moreover, any irreducible B-module is an ir-

reducible b-module with trivial g1-action.

By Lemma 3.5, any irreducible Uχ(b)-module Fλ with λ ∈ Λχ can be viewed as

an irreducible B-module with trivial g1-action.

Definition 3.6. Let g = g0 ⊕ g1 be a restricted Lie superalgebra with an ad-

missible Z-grading g = g−1 ⊕ g0 ⊕ g1, where g0 is an algebraic Lie algebra with

a triangular decomposition g0 = n− ⊕ h⊕ n. Let χ ∈ g∗
0
with χ(n) = 0 and λ ∈ Λχ.

Set Zχ(λ) = Uχ(g)⊗Uχ(B) Fλ. We call Zχ(λ) a baby Verma module.

Proposition 3.7. Any baby Kac module Kχ(M) is a quotient of some baby

Verma module Zχ(λ) for λ ∈ Λχ.

P r o o f. Any simple Uχ(g0)-moduleM is a quotient of some baby Verma Uχ(g0)-

module Uχ(g0)⊗Uχ(b) Fλ for λ ∈ Λχ. Note that

Zχ(λ) = Uχ(g)⊗Uχ(B) Fλ = Uχ(g)⊗Uχ(g+) (Uχ(g
+)⊗Uχ(B) Fλ),

and Uχ(g
+)⊗Uχ(B) Fλ is isomorphic to Uχ(g0)⊗Uχ(b) Fλ as a Uχ(g0)-module, so we

then have the epimorphism of Uχ(g0)-modules

Uχ(g
+)⊗Uχ(B) Fλ ։ M,

which induces the epimorphism of Uχ(g)-modules

Zχ(λ) = Uχ(g)⊗Uχ(g+) (Uχ(g
+)⊗Uχ(B) Fλ) ։ Uχ(g)⊗Uχ(g+) M = Kχ(M).

The proof is completed. �
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4. Representations of the classical Lie superalgebra of

type A(n|0) with p-characters of standard Levi form

In this section, we assume that g = sl(n+ 1|1) is the classical Lie superalgebra of

type A(n|0). Then g has a Z-grading g = g−1 ⊕ g0 ⊕ g1 with

g−1 = spanF{en+2,1, . . . , en+2,n+1}, g1 = spanF{e1,n+2, . . . , en+1,n+2}

and

g0 = spanF{ei,j, ek,k + en+2,n+2 ; 1 6 i, j, k 6 n+ 1, i 6= j} ∼= gln+1,

where ei,j stands for the (n+2)×(n+2)matrix with 1 appearing in the i-th row and

j-th column, and 0 in the other positions. The even part g0 of g coincides with g0,

while the odd part is g1 = g−1 ⊕ g1. We have a canonical triangular decomposition

g0 = n− ⊕ h ⊕ n with n− = spanF{ei,j ; 1 6 j < i 6 n + 1}, h = spanF{hk =

ek,k + en+2,n+2 ; k = 1, . . . , n + 1}, n = spanF{ei,j ; 1 6 i < j 6 n + 1}. Set

b = h ⊕ n, which is a Borel subalgebra of g0. Set B = b ⊕ g1, which is a Borel

subalgebra of g+ = g0 ⊕ g1.

Definition 4.1. A p-character χ ∈ g∗
0
is said to have standard Levi form if

χ(h ⊕ n) = 0 and there exists a subset I ⊆ {2, . . . , n + 1} such that χ(el,l−1) 6= 0

for all l ∈ I and χ(ek,k−1) = 0 for all k ∈ {2, . . . , n + 1} \ I, while χ(ei,j) = 0 for

i, j ∈ {1, . . . , n + 1} with i − j > 2. In particular, when I = {2, . . . , n + 1}, the

p-character χ is called regular nilpotent.

Proposition 4.2. Let g = sl(n + 1|1) be the classical Lie superalgebra of type

A(n|0). Let χ ∈ g∗
0
have standard Levi form, λ ∈ Λχ. Then the baby Verma module

Zχ(λ) is indecomposable and has a unique maximal submodule.

P r o o f. Set N− = n−⊕g−1, which is a restricted subalgebra of g. Note that x
2 =

[x, x]/2 = 0 for any x ∈ g−1, and g−1 is an ideal in N
−, hence any simple N−-module

is a simple n−-module with trivial g−1-action by [21], Proposition 2.1, Chapter 3.

Since the p-character χ has standard Levi form, χ([n−, n−]) = 0 and χ(x[p]) = 0

for any x ∈ n−. Then the p-character χ defines a one-dimensional n−-module Fχ

which is indeed a Uχ(n
−)-module. More precisely, Fχ has a basis vχ such that

x · vχ = χ(x)vχ for any x ∈ n−. Moreover, Fχ is the unique simple Uχ(n
−)-module.

Therefore, Fχ is also the unique simple Uχ(N
−)-module. The projective cover of

Fχ in the Uχ(N
−)-module category is just Uχ(N

−). Then Uχ(N
−) is an inde-

composable Uχ(N
−)-module and has a maximal submodule M $ Uχ(N

−). Since

Zχ(λ) ∼= Uχ(N
−) as a Uχ(N

−)-module, it is an indecomposable Uχ(g)-module and

has a unique maximal submodule contained in M. �
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For a given p-character χ ∈ g∗
0
of standard Levi form and λ ∈ Λχ, let Lχ(λ) denote

the simple quotient of Zχ(λ).

Proposition 4.3. Let g = sl(n + 1|1) be the classical Lie superalgebra of type

A(n|0). Let χ ∈ g∗
0
have standard Levi form. Then any simple Uχ(g)-module is of

the form Lχ(λ) for some λ ∈ Λχ.

P r o o f. Let M be any simple Uχ(g)-module. Take a simple Uχ(B) submodule

W in M . Then W is one-dimensional and spanned by a basis w of weight λ ∈ Λχ.

We have the homomorphism

Zχ(λ) = Uχ(g)⊗Uχ(B) Fλ −→ M

u⊗ vλ 7−→ u · w,

which is surjective by the simplicity of M as a Uχ(g)-module. Consequently, M ∼=

Lχ(λ). �

Remark 4.4. If χ ∈ g∗
0
is regular nilpotent and λ ∈ Λχ, then Uχ(g0) ⊗Uχ(b) Fλ

is a simple Uχ(g0)-module (cf. [5]). Moreover, it is also a simple Uχ(g
+)-module.

Therefore, the baby Verma module

Zχ(λ) = Uχ(g)⊗Uχ(B) Fλ

= Uχ(g)⊗Uχ(g+)

(

Uχ(g
+)⊗Uχ(B) Fλ

)

= Uχ(g)⊗Uχ(g+)

(

Uχ(g0̄)⊗Uχ(b) Fλ

)

is also a baby Kac module. The converse is also true, since any simple Uχ(g0)-module

is of the form Uχ(g0)⊗Uχ(b) Fλ for some λ ∈ Λχ.

Theorem 4.5. Let g = sl(n+1|1) be the classical Lie superalgebra of type A(n|0).

Let χ ∈ g∗
0
be regular nilpotent and λ, µ ∈ Λχ. Then Zχ(λ) ∼= Zχ(µ) if and only if

λ = w · µ for some w ∈ W , where W is the Weyl group of g0
∼= gln+1.

P r o o f. According to Remark 4.4,

Zχ(λ) ∼= Kχ(Uχ(g0)⊗Uχ(b) Fλ) and Zχ(µ) ∼= Kχ(Uχ(g0)⊗Uχ(b) Fµ),

where Uχ(g0) ⊗Uχ(b) Fλ and Uχ(g0) ⊗Uχ(b) Fµ are simple Uχ(g0)-modules. Hence

Zχ(λ) ∼= Zχ(µ) as Uχ(g)-modules if and only if Uχ(g0)⊗Uχ(b) Fλ
∼= Uχ(g0)⊗Uχ(b) Fµ

as Uχ(g0)-modules by Proposition 3.3. On the other hand, since g0
∼= gln+1, it

follows from [7], Proposition 10.5, that Uχ(g0)⊗Uχ(b) Fλ
∼= Uχ(g0) ⊗Uχ(b) Fµ if and

only if λ = w · µ for some w ∈ W . The conclusion follows. �
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Definition 4.6. Let χ ∈ g∗
0
and λ ∈ Λχ. LetM be a Uχ(g

+)-module. A nonzero

vector v ∈ M is called a maximal vector of weight λ if h · v = λ(h)v and x · v = 0 for

any h ∈ h and x ∈ n⊕ g1.

Remark 4.7. If χ(n) = 0, then any Uχ(g)-moduleM contains at least a maximal

vector. Indeed, any simple Uχ(B)-submodule ofM is generated by a maximal vector.

Definition 4.8. Let χ ∈ g∗
0
and λ ∈ Λχ. We call λ a typical weight if λ(hi) 6=

i− n− 1 for i = 1, . . . , n+ 1.

Remark 4.9. Let χ ∈ g∗
0
with χ(hi) 6= 0 for i = 1, . . . , n+ 1. Then any λ ∈ Λχ

is typical.

Theorem 4.10. Let g = sl(n + 1|1) be the classical Lie superalgebra of type

A(n|0). Let χ ∈ g∗
0
be regular nilpotent and λ ∈ Λχ be typical. Then the baby

Verma module Zχ(λ) is a simple Uχ(g)-module. Moreover, the baby Verma module

Zχ(w · λ) is also a simple Uχ(g)-module and Zχ(w · λ) ∼= Zχ(λ) for any w ∈ W .

P r o o f. According to Remark 4.4, the baby Verma module Zχ(λ) is also a baby

Kac module Kχ(M), where M = Uχ(g0) ⊗Uχ(b) Fλ is a simple Uχ(g0)-module re-

garded as a simple Uχ(g
+)-module with trivial g1-action. Assume that Fλ = Fvλ

where vλ is indeed a maximal vector of weight λ.

Let M be any nonzero submodule of Zχ(λ). According to the proof of Proposi-

tion 3.3,M contains en+2,1 . . . en+2,n+1⊗ vλ. Since λ is typical, λ(hi) 6= i−n− 1 for

i = 1, . . . , n+ 1. We have the following computation:

e1,n+2 · (en+2,1 . . . en+2,n+1 ⊗ vλ)

= h1en+2,2 . . . en+2,n+1 ⊗ vλ − en+2,1e1,n+2en+2,2 . . . en+2,n+1 ⊗ vλ

= en+2,2 . . . en+2,n+1 ⊗ h1 · vλ + [h1, en+2,2 . . . en+2,n+1]⊗ vλ

+ en+2,1en+2,2e1,n+2en+2,3 . . . en+2,n+1 ⊗ vλ

− en+2,1e12en+2,3 . . . en+2,n+1 ⊗ vλ

= (λ(h1) + n)en+2,2 . . . en+2,n+1 ⊗ vλ.

It follows that en+2,2 . . . en+2,n+1 ⊗ vλ ∈ M.

Letting e2,n+2, . . . en+1,n+2 consecutively act on en+2,2 . . . en+2,n+1⊗vλ, we finally

get 1⊗ vλ ∈ M. Hence M = Zχ(λ) by the simplicity of M as a Uχ(g0)-module.

The second statement follows from Theorem 4.5. �

Let χ ∈ g∗
0
be of standard Levi form and λ ∈ Λχ. Let Qχ(λ) denote the projective

cover of Lχ(λ) in the Uχ(g)-module category. Let [M : L] denote the multiplicity

of a simple Uχ(g)-module L as a composition factor of a Uχ(g)-module M . We
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have the following dimension formula for the projective cover Qχ(λ) of the simple

Uχ(g)-module Lχ(λ).

Theorem 4.11. Let g = sl(n + 1|1) be the classical Lie superalgebra of type

A(n|0). Let χ ∈ g∗
0
be of standard Levi form and λ ∈ Λχ. Then

(4.1) dimQχ(λ) = 2n+1pn(n+1)/2
∑

µ∈Λχ

[Zχ(µ) : Lχ(λ)].

P r o o f. Set N = n+ g1. Since Qχ(λ) is a projective Uχ(g)-module and Uχ(g) is

free as a Uχ(N)-module, Qχ(λ) is a projective Uχ(N)-module. Note that χ(N) = 0

and N is a nilpotent subalgebra, hence Uχ(N) is a local superalgebra. Hence, projec-

tive Uχ(N)-modules are free Uχ(N)-modules. In particular, Qχ(λ) is a free Uχ(N)-

module. Then

(4.2) dimQχ(λ) = dimUχ(N) · dimQχ(λ)
N = 2n+1pn(n+1)/2 dimQχ(λ)

N.

We have the natural isomorphism

(4.3) Qχ(λ)
N ∼= HomN(F, Qχ(λ))

where F denotes the trivial N-module. On the other hand, by Frobenius reciprocity,
we have

(4.4) HomN(F, Qχ(λ)) ∼= HomB(Uχ(B)⊗Uχ(N) F, Qχ(λ)).

Note that N is an ideal in B, so it acts on the induced module Uχ(B) ⊗Uχ(N) F
trivially. Regard Uχ(B) ⊗Uχ(N) F as an Uχ(h)-module; it is isomorphic to Uχ(h).

Hence it can be decomposed as the direct sum of its one-dimensional Uχ(h)-modules

Fµ with µ ∈ Λχ, i.e., we have

(4.5) HomB(Uχ(B) ⊗Uχ(N) F, Qχ(λ)) ∼=
⊕

µ∈Λχ

HomB(Fµ, Qχ(λ)).

By Frobenius reciprocity again, we have

(4.6) HomB(Fµ, Qχ(λ)) ∼= Homg(Zχ(µ), Qχ(λ)).

Since g is a simple Lie superalgebra, Uχ(g) is a symmetric superalgebra by [15],

Proposition 2.7. Then the projective cover Qχ(λ) of Lχ(λ) coincides with the injec-

tive hull of Lχ(λ). Therefore, we have

(4.7) dimHomg(Zχ(µ), Qχ(λ)) = [Zχ(µ) : Lχ(λ)].
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By (4.2)–(4.7), we finally get the dimension formula

dimQχ(λ) = 2n+1pn(n+1)/2
∑

µ∈Λχ

[Zχ(µ) : Lχ(λ)].

�

Example 4.12. Let g = sl(2|1) and let χ ∈ g∗
0
be regular nilpotent with

χ(h1)χ(h2) 6= 0 and χ(h1) 6= χ(h2). Then there is only one nonzero summand

on the right hand side of (4.1) and dimQχ(λ) = 4p for any λ ∈ Λχ.
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