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Abstract. Let N = Nn(R) be the algebra of all n× n strictly upper triangular matrices
over a unital commutative ring R. A map ϕ on N is called preserving commutativity in
both directions if xy = yx ⇔ ϕ(x)ϕ(y) = ϕ(y)ϕ(x). In this paper, we prove that each
invertible linear map on N preserving commutativity in both directions is exactly a quasi-
automorphism of N , and a quasi-automorphism of N can be decomposed into the product
of several standard maps, which extains the main result of Y. Cao, Z. Chen and C. Huang
(2002) from fields to rings.
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1. Introduction

A lot of attention has been paid to the commutativity preserver problem on asso-

ciative algebras, particularly on matrix algebras. The earliest paper on such problem

dates back to 1976, when Watkins [8] studied commutativity preserving maps on the

full matrix algebra Mn(F ) over a field F . If n > 3, then every invertible linear com-

mutativity preserving map ϕ on Mn(F ) was shown to be one of the two standard

forms: ϕ(x) = ctxt−1 + f(x)e, x ∈ Mn(F ), or ϕ(x) = ctx′t−1 + f(x)e, x ∈ Mn(F ),

where c is a nonzero element in F , t an invertible matrix, and f a linear function

on Mn(F ). In 1999, Marcoux et al. [4] described commutativity preserving maps

on Tn(F ) of all upper triangular matrices, and in 2002, Cao et al. [2] determined

commutativity preserving maps on Nn(F ) of all strictly upper triangular matrices

with F a field. It was Omladič who was the first to considered commutativity pre-
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serving maps on infinite-dimensional algebras. In [5], he considers such maps on

B(X) of all linear operators on an infinite-dimensional Banach space X . In 1993,

Brešar [1] improved Omladič’s result by using a ring theoretic approach called com-

muting mappings. Šemrl [6] turned to study nonlinear maps on Mn(F ) preserving

commutativity, and he found that, without the linear condition, these types of maps

can have wild behavior. Commutativity preserving linear maps on a finite dimen-

sional simple Lie algebra was characterized in [7]. We find that the known results on

the topic of characterizing commutativity preserving maps are all for algebras over

fields, no result concerns commutativity preserving maps on algebras over rings. The

reason why people did not study commutativity preserving maps on matrix algebras

over rings is probably that the technique of dealing with matrices over fields cannot

directly be transferred to matrices over rings.

In this paper, based on the characterization of automorphisms of Nn(R) due

to Cao et al. [3], we characterize the invertible linear maps on N = Nn(R) over

a commutative ring R which preserve commutativity in both directions, thus ex-

tending the main result of [2] from fields to rings. Our main idea is to show that

a commutativity preserving map on N is exactly a quasi-automorphism of N , and

a quasi-automorphism ofN can be decomposed into the product of several standard

maps.

2. Quasi-automorphisms of N

LetR be a commutative ring with identity. We denote byR∗ the set of all invertible

elements in R. By eij we denote the matrix unit which has 1 in the (i, j) position

and 0 elsewhere. The set of all n × n strictly upper triangular matrices over R is

denoted by N . The derived subalgebra [N ,N ] of N is denoted by N1. If n > 3,

the center of N is Re1n, which is denoted by Z. Set

Φ = {(i, j) ; 1 6 i < j 6 n};

Ψ = {(i, j) ∈ Φ; j − i > 2};

Ω = Ψ− {(1, n)}.

One easily sees that all eα, α ∈ Φ, form an R-basis of N , and all eβ , β ∈ Ψ, form an

R-basis of N1. The Lie product of N is defined as [x, y] = xy − yx.

Definition 2.1. Let ϕ : N → N be an invertible linear map.

(i) ϕ is called a (Lie) automorphism of N if ϕ([x, y]) = [ϕ(x), ϕ(y)], for all maps

x, y ∈ N ;

(ii) ϕ is called a (Lie) quasi-automorphism of N if there exists an invertible linear

map ϕ̄ on N1 such that ϕ̄([x, y]) = [ϕ(x), ϕ(y)], for all x, y ∈ N ;
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(iii) ϕ is called preserving commutativity in both directions if

ϕ(x)ϕ(y) = ϕ(y)ϕ(x) ⇔ xy = yx,

or equivalently, [ϕ(x), ϕ(y)] = 0 ⇔ [x, y] = 0.

We denote by Aut(N ); QAut(N ); Invc(N ); GL(N ), respectively, the set of

all automorphisms of N ; the set of all quasi-automorphisms of N ; the set of

all invertible linear maps on N preserving commutativity in both directions; the

set of all invertible linear maps on N . Observe that for ϕ, ϕ1, ϕ2 ∈ QAut(N ),

ϕ−1, ϕ2ϕ1 ∈ QAut(N ) and ϕ2 · ϕ1 = ϕ̄2 · ϕ̄1, and ϕ−1 = ϕ−1. So QAut(N ) forms

a group. Also, Invc(N ) forms another group. We now construct some standard

quasi-automorphisms for N as follows:

(A) Automorphisms. It is easy to check that every automorphism of N is a quasi-

automorphism of N , and a quasi-automorphism of N preserves commutativity in

both directions. Then we obtain a series of subgroups for GL(N ) as follows:

Aut(N ) 6 QAut(N ) 6 Invc(N ) 6 GL(N ).

(B) Scalar multiplication maps. Let r ∈ R be invertible. Define

ηr : x→ rx, ∀x ∈ N ;

ηr : x→ r2x, ∀x ∈ N1.

Then ηr is a quasi-automorphism of N since

ηr([x, y]) = r2([x, y]) = [rx, ry] = [ηr(x), ηr(y)], ∀x ∈ N .

We call ηr a scalar multiplication map on N . Obviously, ηr is an automorphism if

and only if r = 1.

(C) Central quasi-automorphisms. Suggested by the concept of central auto-

morphisms introduced by [3], we define a related concept, called central quasi-

automorphisms of N . Let n > 4 and let f : N → R be a linear function such

that 1+ f(e1n) is invertible. Define θf : x 7→ x+ f(x)e1n, for all x ∈ N . Then θf is

invertible, its inverse being the mapping defined as x 7→ x− f(x)(1 + f(e1n))
−1e1n,

for all x ∈ N . Set θf to be the identity map on N1. Observe that

θf ([x, y]) = [x, y] = [θf (x), θf (y)], ∀x, y ∈ N .

Thus θf is a quasi-automorphism of N , called a central quasi-automorphism of N .

Obviously, θf is an automorphism if and only if f(x) = 0 for all x ∈ N1 and

θf ∈ Invc(N ).
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(D) Extremal quasi-automorphisms. Let n > 4 and a, b ∈ R. Define

ψa : x = (xij) ∈ N 7→ x+ ax12e3n + ax13e2n;

ψa : x = (xij) ∈ N1 7→ x− ax13e2n;

χb : x = (xij) ∈ N 7→ x+ bxn−1,ne1,n−2 + bxn−2,ne1,n−1;

χb : x = (xij) ∈ N1 7→ x− bxn−2,ne1,n−1.

One easily checks that

ψa([x, y]) = [ψa(x), ψa(y)], ∀x, y ∈ N ,

χb([x, y]) = [χb(x), χb(y)], ∀x, y ∈ N ,

showing that both ψa and χb are quasi-automorphisms of N . We call ψa and χb

extremal quasi-automorphisms of N . They are automorphisms of N if and only if

charF = 2.

The maps introduced above are all quasi-automorphisms of N . Next we will

prove that each quasi-automorphism of N can conversely be decomposed into the

product of these standard quasi-automorphisms when n > 5. Let ϕ : N → N be

a quasi-automorphism of N with an invertible linear map ϕ̄ : N1 → N1 such that

[ϕ(x), ϕ(y)] = ϕ̄([x, y]), ∀x, y ∈ N . We now give some elementary results for ϕ.

Lemma 2.1. Let n > 3. Then ϕ stabilizes the center Z of N .

P r o o f. For any y ∈ N , assume that y = ϕ(x). Since

[ϕ(e1n), y] = ϕ̄([e1n, x]) = 0,

ϕ(e1n) lies in the center Z of N . This implies that ϕ stabilizes Z. �

We now consider the action of ϕ̄ on eβ for β ∈ Ψ.

Lemma 2.2. Let ϕ ∈ QAut(N ) and n > 3. Then ϕ̄ stabilizes Z.

P r o o f. If n = 3, then by ϕ̄(e13) = [ϕ(e12), ϕ(e23)] ∈ N1 = Z, we obtain the

result. Now we consider the case that n > 4. Because all ϕ(eα), α ∈ Φ form an

R-basis of N , we may assume that

ϕ̄(e1n) =
∑

16i<j6n

aijϕ(eij).

For 2 6 k < n, we choose p such that 2 6 p 6 n− 1 and p 6= k. Then by

k−1
∑

i=1

aikϕ̄(ein) =

[

∑

16i<j6n

aijϕ(eij), ϕ(ekn)

]
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= [ϕ̄(e1n), ϕ(ekn)]

= [[ϕ(e1p), ϕ(epn)], ϕ(ekn)]

= [[ϕ(e1p), ϕ(ekn)], ϕ(epn)] + [ϕ(e1p), [ϕ(epn), ϕ(ekn)]]

= [ϕ̄([e1p, ekn]), ϕ(epn)] + [ϕ(e1p), ϕ̄([epn, ekn])] = 0

we have that aik = 0 for 1 6 i < k < n. Similarly, by considering [ϕ(e1k), ϕ̄(e1n)]

we can show that akj = 0 for 1 < k < j 6 n. Thus ϕ̄(e1n) = a1nϕ(e1n) ∈ Z (using

Lemma 2.1). So ϕ̄ stabilizes Z. �

Lemma 2.3. Let n > 4 and let ϕ ∈ QAut(N ). Then

(i) ϕ̄(e1n) = a1nϕ(e1n);

(ii) ϕ̄(e1k) ≡ a1kϕ(e1k) (mod Z) for k = 4, 5, . . . , n− 1;

(iii) ϕ̄(e13) ≡ a13ϕ(e13) + aϕ(e2n) (mod Z);

where a1k, a ∈ R.

P r o o f. (i) has been shown in Lemma 2.2. Assume that

ϕ̄(e1k) =
∑

16i<j6n

a
(1k)
ij ϕ(eij) for k = 3, 4, . . . , n− 1.

To complete the proof of (ii) and (iii) we need to verify several assertions.

Assertion 1. a(1k)1l = 0 if l 6= k and l 6= n.

We consider [ϕ̄(e1k), ϕ(eln)]. Applying Jacobi’s identity and Lemma 2.2, we have

that

[ϕ̄(e1k), ϕ(eln)] = [[ϕ(e12), ϕ(e2k)], ϕ(eln)]

= [[ϕ(e12), ϕ(eln)], ϕ(e2k)] + [ϕ(e12), [ϕ(e2k), ϕ(eln)]]

= [ϕ̄([e12, eln]), ϕ(e2k)] + [ϕ(e12), ϕ̄([e2k, eln])]

= δ2,l[ϕ̄(e1n), ϕ(e2k)] = 0.

Here δ2,l denotes the Kronecker symbol, i.e., δ2,l = 1 if l = 2; δ2,l = 0 otherwise.

Thus,

0 = [ϕ̄(e1k), ϕ(eln)] =

[

∑

16i<j6n

a
(1k)
ij ϕ(eij), ϕ(eln)

]

=

l−1
∑

i=1

a
(1k)
il ϕ̄(ein).

This equality implies that a(1k)1l = 0 provides that l 6= k and l 6= n.
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Assertion 2. a(1k)ml = 0 for 3 6 m < l 6 n.

For this assertion we consider [ϕ(e1m), ϕ̄(e1k)]. Applying Jacobi’s identity we have

[ϕ(e1m), ϕ̄(e1k)] = [ϕ(e1m), [ϕ(e12), ϕ(e2k)]]

= [[ϕ(e1m), ϕ(e12)], ϕ(e2k)] + [ϕ(e12), [ϕ(e1m), ϕ(e2k)]]

= [ϕ̄([e1m, e12]), ϕ(e2k)]] + [ϕ(e12), ϕ̄([e1m, e2k])] = 0.

Thus we have

0 = [ϕ(e1m), ϕ̄(e1k)] =

[

ϕ(e1m),
∑

16i<j6n

a
(1k)
ij ϕ(eij)

]

=

n
∑

j=m+1

a
(1k)
mj ϕ̄(e1j).

This implies that a(1k)ml = 0 for 3 6 m < l 6 n.

Assertion 3. a(1k)2l = 0 for 3 6 l 6 n− 1.

For this case we also consider [ϕ̄(e1k), ϕ(eln)]. On the one hand,

[ϕ̄(e1k), ϕ(eln)] = [[ϕ(e12), ϕ(e2k)], ϕ(eln)]

= [[ϕ(e12), ϕ(eln)], ϕ(e2k)] + [ϕ(e12), [ϕ(e2k), ϕ(eln)]]

= [ϕ̄([e12, eln]), ϕ(e2k)] + [ϕ(e12), ϕ̄([e2k, eln])]

= δk,l[ϕ(e12), ϕ̄(e2n)].

Assume ϕ̄(e2n) =
∑

16i<j6n

a
(2n)
ij ϕ(eij). Then we further have

[ϕ̄(e1k), ϕ(eln)] = δk,l

[

ϕ(e12),
∑

16i<j6n

a
(2n)
ij ϕ(eij)

]

= δk,l

n
∑

j=3

a
(2n)
2j ϕ̄(e1j).

On the other hand, we have

[ϕ̄(e1k), ϕ(eln)] =

l−1
∑

i=1

a
(1k)
il ϕ̄(ein).

By

δk,l

n
∑

j=3

a
(2n)
2j ϕ̄(e1j) =

l−1
∑

i=1

a
(1k)
il ϕ̄(ein),

we have a(1k)2l = 0 for 3 6 l 6 n− 1.
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Assertion 4. a(1k)2n = 0 for 4 6 k 6 n− 1.

For this case we consider [ϕ(e12), ϕ̄(e1k)]. Applying Jacobi’s identity we have that

[ϕ(e12), ϕ̄(e1k)] = [ϕ(e12), [ϕ(e13), ϕ(e3k)]]

= [[ϕ(e12), ϕ(e13)], ϕ(e3k)] + [ϕ(e13), [ϕ(e12), ϕ(e3k)]]

= [ϕ̄([e12, e13], ϕ(e3k)]] + [ϕ(e13), ϕ̄([e12, e3k])] = 0.

Thus

n
∑

j=3

a
(1k)
2j ϕ̄(e1j) =

[

ϕ(e12),
∑

16i<j6n

a
(1k)
ij ϕ(eij)

]

= [ϕ(e12), ϕ̄(e1k)] = 0.

This implies that a(1k)2n = 0 for 4 6 k 6 n− 1.

For brevity we denote a(1k)1k by a1k, and denote a
(13)
2n by a, then the result follows.

�

Lemma 2.4. Let n > 4 and let ϕ ∈ QAut(N ). Then

(i) ϕ̄(ein) ≡ ainϕ(ein) (mod Z) for i = 2, 3, . . . , n− 3;

(ii) ϕ̄(en−2,n) ≡ an−2,nϕ(en−2,n) + bϕ(e1,n−1) (mod Z),

where ain, b ∈ R.

P r o o f. Let w = e1n+e2,n−1+. . .+ei,n−i+1+. . .+en1 and define ω : N → N by

x 7→ −wx′w. Then it is easy to check that ω is an automorphism of N , and it sends

eij to −en−j+1,n−i+1. Denote ϕ ◦ ω by ϕ1. Then we have ϕ(ein) = −ϕ1(e1,n−i+1),

and ϕ(ein) = −ϕ1(e1,n−i+1). By Lemma 2.3, we may assume that

ϕ1(e1,n−i+1) ≡ ainϕ1(e1,n−i+1) (mod Z), i = 2, 3, . . . , n− 3;

ϕ1(e13) ≡ an−2,nϕ1(e13) + bϕ1(e2n) (mod Z).

Thus
ϕ(ein) ≡ ainϕ(ein) (mod Z), i = 2, 3, . . . , n− 3;

ϕ(en−2,n) ≡ an−2,nϕ(en−2,n) + bϕ(e1,n−1) (mod Z).

�

Lemma 2.5. Let n > 4 and let ϕ ∈ QAut(N ). If 2 6 i < j − 1 < j 6 n − 1,

then ϕ̄(eij) ≡ aijϕ(eij) (mod Z), where aij ∈ R.

P r o o f. Assume that

ϕ̄(eij) =
∑

16k<l6n

a
(ij)
kl ϕ(ekl).
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We need to show that a(ij)kl = 0 for (kl) /∈ {(ij), (1n)}. First, we prove that a(ij)kl =

0 for the case that 2 6 k < l 6 n and (kl) 6= (ij). For this case we consider

[ϕ(e1k), ϕ̄(eij)]. On the one hand,

[ϕ(e1k), ϕ̄(eij)] = [ϕ(e1k), [ϕ(ei,i+1), ϕ(ei+1,j)]]

= [δk,iϕ̄(e1,i+1), ϕ(ei+1,j)] + [ϕ(ei,i+1), δk,i+1ϕ̄(e1j)].

By Lemma 2.3, we may assume that ϕ̄(e1k) ≡ a1kϕ(e1k) (mod Z) for 4 6 k 6 n− 1.

Thus, we have [ϕ(ei,i+1), δk,i+1ϕ̄(e1j)] = 0. Hence

[ϕ(e1k), ϕ̄(eij)] = δk,ia1,i+1[ϕ(e1,i+1), ϕ(ei+1,j)] = δk,ia1,i+1ϕ̄(e1j).

On the other hand,

[ϕ(e1k), ϕ̄(eij)] =

[

ϕ(e1k),
∑

16k<l6n

a
(ij)
st ϕ(est)

]

=

n
∑

t=k+1

a
(ij)
kt ϕ̄(e1t).

By

δk,ia1,i+1ϕ̄(e1j) =

n
∑

t=k+1

a
(ij)
kt ϕ̄(e1t),

we have that a(ij)kt = 0 provides (k, t) 6= (i, j).

Similarly, by considering [ϕ̄(eij), ϕ(eln)] we can prove that a
(ij)
kl = 0 for the case

that 1 6 k < l 6 n− 1 and (k, l) 6= (i, j). The verification is left to the reader.

Thus a(ij)kl = 0 for (k, l) /∈ {(i, j), (1, n)}. �

For brevity, we denote a(ij)ij by aij . Then the result follows.

Lemma 2.6. All aij (as in Lemmas 2.3–2.5) for (i, j) ∈ Ω are consistent.

P r o o f. For 3 6 k 6 n− 1, by

a1kϕ̄(e1n) = [a1kϕ(e1k), ϕ(ekn)]

= [ϕ̄(e1k), ϕ(ekn)]

= [[ϕ(e12), ϕ(e2k)], ϕ(ekn)]

= [[ϕ(e12), ϕ(ekn)], ϕ(e2k)] + [ϕ(e12), [ϕ(e2k), ϕ(ekn)]]

= [ϕ(e12), ϕ̄(e2n)]

= a2n[ϕ(e12), ϕ(e2n)]

= a2nϕ̄(e1n)

342



we have that a1k = a2n for k = 3, 4, . . . , n − 1. A similar discussion shows that

ain = a1,n−1 for i = 2, 3, . . . , n − 2 (we omit the analogous argument). Now we

consider aij for the case that 2 6 i < j − 1 < j 6 n− 1. By

aijϕ̄(ein) = [aijϕ(eij), ϕ(ejn)]

= [ϕ̄(eij), ϕ(ejn)]

= [[ϕ(ei,i+1), ϕ(ei+1,j)], ϕ(ejn)]

= [[ϕ(ei,i+1), ϕ(ejn)], ϕ(ei+1,j)] + [ϕ(ei,i+1), [ϕ(ei+1,j), ϕ(ejn)]]

= [ϕ(ei,i+1), ϕ̄(ei+1,n)]

= ai+1,n[ϕ(ei,i+1), ϕ(ei+1,n)]

= ai+1,nϕ̄(ein)

we have that aij = ai+1,n. So all aij are consistent. �

By Lemma 2.6, we may assume that

ϕ̄(e13) ≡ rϕ(e13) + aϕ(e2n) (mod Z);(2.1)

ϕ̄(en−2,n) ≡ rϕ(en−2,n) + bϕ(e1,n−1) (mod Z);(2.2)

ϕ̄(eij) ≡ rϕ(eij) (mod Z) for (i, j) ∈ Ω− {(1, 3), (n− 2, n)}.(2.3)

Lemma 2.7. Let ϕ be a quasi-automorphism of N . Then ϕ(N1) = N1.

P r o o f. The equations (2.1)–(2.3), together with Lemmas 2.1 and 2.2, show that

(ϕ−1 ◦ ϕ̄)(eij) ∈ N1 for all (i, j) ∈ Ψ. Furthermore, we have (ϕ−1 ◦ ϕ̄)(N1) ⊆ N1,

and N1 = ϕ̄(N1) ⊆ ϕ(N1). A similar discussion on ϕ−1 leads to N1 ⊆ ϕ−1(N1).

That is ϕ(N1) ⊆ N1. Thus the required result follows. �

Theorem 2.8.

(i) If n = 2, then every invertible linear map onN is a quasi-automorphism ofN .

(ii) If n = 3, then each quasi-automorphism of N can be decomposed into the

product of a scalar multiplication map and an automorphism.

(iii) If n > 5 and 2 ∈ R∗, then each quasi-automorphism of N can be decomposed

into the product of a scalar multiplication map, an automorphism, a central

quasi-automorphism and two extremal quasi-automorphisms.

P r o o f. Let ϕ ∈ QAut(N ) with ϕ̄ such that [ϕ(x), ϕ(y)] = ϕ̄([x, y]), for all

x, y ∈ N . (i) is obvious. When n = 3, we may assume (by Lemmas 2.1–2.2) that

ϕ̄(e13) = rϕ(e13), ϕ−1(e13) = sϕ−1(e13).

343



Thus rs = 1, showing that r is invertible. Let ϕ = ηr−1 ◦ ϕ. Then we have

ϕ̄(e13) = ηr−1 ◦ ϕ̄(e13) = r−2rϕ(e13) = r−1ϕ(e13) = ϕ(e13).

For any x = (xij), y = (yij) ∈ N , [x, y] = (x12y23 − y12x23)e13. Then

ϕ([x, y]) = (x12y23 − y12x23)ϕ(e13)

= (x12y23 − y12x23)ϕ(e13)

= (x12y23 − y12x23)[ϕ(e12), ϕ(e23)]

= [ϕ(x), ϕ(y)].

This implies that ϕ is an automorphism of N . So ϕ = ηr ◦ ϕ, as desired.

Now we consider the case that n > 5. Assume as before that ϕ(e13) ≡

rϕ(e13) + aϕ(e2n) (mod Z). First, we prove that r is invertible. The equation (2.1)

shows that (ϕ−1 ◦ ϕ)(e13) ≡ re13 + ae2n (mod Z). By Lemma 2.7, we have

(ϕ−1 ◦ ϕ)(N1) = ϕ−1(N1) = N1. So there exists an element z in N1, written

as z =
∑

j−i>2 aijeij , such that (ϕ
−1 ◦ ϕ)(z) = e13. Applying (2.1)–(2.3), we have

rz + a13ae2n + an−2,nbe1,n−1 ≡ e13 (mod Z). This implies that ra13 = 1, and r is

invertible.

Denote ηr−1 ◦ ϕ by ϕ1. Then for (i, j) ∈ Ω− {(1, 3), (n− 2, n)},

ϕ1(eij) = ηr−1 ◦ ϕ̄(eij)

≡ ηr−1(rϕ(eij)) (mod Z)

≡ r−2rϕ(eij) (mod Z)

≡ r−1ϕ(eij) (mod Z)

≡ ϕ1(eij) (mod Z).

A similar discussion shows that

ϕ1(e13) ≡ ϕ1(e13) + r−1aϕ1(e2n) (mod Z);

ϕ1(en−2,n) ≡ ϕ1(en−2,n) + r−1bϕ1(e1,n−1) (mod Z).

Denote ϕ1 ◦ ψa/(2r) ◦ χb/(2r) by ϕ2. Then we have

ϕ2(e13) = ϕ1

(

e13 −
a

2r
e2n

)

≡ ϕ1(e13) + r−1aϕ1(e2n)−
a

2r
ϕ1(e2n) (mod Z)

≡ ϕ1(e13) +
a

2r
ϕ1(e2n) (mod Z)

≡ ϕ2(e13) (mod Z).
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Similarly, we have

ϕ2(en−2,n) ≡ ϕ2(en−2,n) (mod Z).

Now we have

ϕ2(eij) ≡ ϕ2(eij) (mod Z) for (i, j) ∈ Ω.

Since Z can be spanned by ϕ2(e1n) (recalling Lemma 2.1), we may assume that

ϕ2(eij) = ϕ2(eij) + sijϕ2(e1n) for (i, j) ∈ Ψ.

Now (ϕ−1
2 ◦ϕ2)(e1n) = (1+s1n)e1n. Since (ϕ

−1
2 ◦ϕ2)(Z) = Z we may suppose (ϕ−1

2 ◦

ϕ2)(te1n) = e1n. Then we obtain t(1 + s1n) = 1, showing that 1 + s1n is invertible.

Let f be the linear function defined in the way f : x = (xij) ∈ N 7→
∑

(i,j)∈Ψ xijsij .

Then 1 + f(e1n) = 1 + s1n is invertible, and ϕ2(x) = ϕ2(x) + f(x)ϕ2(e1n). Using f

we define the central quasi-automorphism θf . Let ϕ = ϕ2 ◦ θf . Then we have that

ϕ(x) = ϕ2(x) + f(x)ϕ2(e1n) = ϕ(x), ∀x ∈ N1.

This implies that the restriction of ϕ to N1 is consistent to ϕ. So

ϕ([x, y]) = ϕ([x, y]) = [ϕ(x), ϕ(y)].

This means that ϕ is an automorphism of N . Finally, we have that

ϕ = ηr ◦ ϕ ◦ θ−f ◦ χ−b/(2r) ◦ ψ−a/(2r).

�

3. Commutativity preserving maps on N

Based on the characterization of quasi-automorphisms of N , we can now describe

the commutativity preserving maps on N .

Lemma 3.1. An invertible linear map σ on N preserves commutativity in both

directions if and only if σ is a quasi-automorphism ofN , i.e., Invc(N ) = QAut(N ).

P r o o f. Obviously, QAut(N ) is a subgroup of Invc(N ). Let ϕ be an invertible

linear map on N preserving commutativity in both directions. To show that ϕ is

a quasi-automorphism it is necessary to find an invertible linear map ϕ̄ : N1 → N1

such that

ϕ̄([x, y]) = [ϕ(x), ϕ(y)], ∀x, y ∈ N .
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If n = 2 we can take ϕ̄ to be the identity map on N1. Now we consider the case

when n > 3. Naturally, we define ϕ̄ on eij , for (i, j) ∈ Ψ, by

ϕ̄(eij) = [ϕ(ei,i+1), ϕ(ei+1,j)] for (i, j) ∈ Ψ,

and extend it linearly to the whole N1. More definitely,

ϕ̄

(

∑

(i,j)∈Ψ

aijeij

)

=
∑

(i,j)∈Ψ

aij [ϕ(ei,i+1), ϕ(ei+1,j)].

We now verify the following assertions.

Assertion 1. ϕ̄([eij , ekl]) = [ϕ(eij), ϕ(ekl)] for (i, j), (k, l) ∈ Φ.

If [eij , ekl] = 0, the assertion obviously holds. Otherwise, if j = k, then by the

definition of ϕ̄,

ϕ̄([eij , ekl]) = ϕ̄(eil) = [ϕ(ei,i+1), ϕ(ei+1,l)].

As [ei,i+1 − eij , ei+1,l + ejl] = 0 we have

[ϕ(ei,i+1)− ϕ(eij), ϕ(ei+1,l) + ϕ(ejl)] = 0.

Since [ϕ(ei,i+1), ϕ(ejl)] = [ϕ(eij), ϕ(ei+1,l)] = 0, we have

[ϕ(ei,i+1), ϕ(ei+1,l)] = [ϕ(eij), ϕ(ejl)].

Thus the assertion follows. If i = l, by using the result just obtained, we have

ϕ̄([eij , eki]) = −ϕ̄([eki, eij ] = −[ϕ(eki), ϕ(eij)] = [ϕ(eij), ϕ(eki)].

The assertion also holds.

Assertion 2. ϕ̄([x, y]) = [ϕ(x), ϕ(y)], for x, y ∈ N .

Express x, y ∈ N as x =
∑

16i<j6n

xijeij , y =
∑

16k<l6n

yklekl. Then

ϕ̄([x, y]) =
∑

16i<j6n

∑

16k<l6n

xijyklϕ̄([eij , ekl])

=
∑

16i<j6n

∑

16k<l6n

xijykl[ϕ(eij), ϕ(ekl)]

= [ϕ(x), ϕ(y)].

Hence, ϕ is a quasi-automorphism of N . �

Applying Lemma 3.1 and Theorem 2.7 we immediately obtain the main result of

this paper as follows.
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Theorem 3.2.

(i) If n = 2, then every invertible linear map on N preserves commutativity in

both directions.

(ii) If n = 3, then each invertible linear map on N preserving commutativity in

both directions can be decomposed into the product of a scalar multiplication

map and an automorphism.

(iii) If n > 5 and 2 ∈ R∗, then each invertible linear map on N preserving com-

mutativity in both directions can be decomposed into the product of a scalar

multiplication map, an automorphism, a central quasi-automorphism and two

extremal quasi-automorphisms.

Remark. Note that the automorphisms ofN have been completely characterized

by Cao et al. in [3]. So the commutativity preserving maps on N are completely

characterized provides that n 6= 4.

In Theorem 3.2 the case that n = 4 is left unsolved. For this special case, we shall

directly characterize the mapping ϕ ∈ Invc(N ), without using quasi-automorphisms.

In the sequel, n = 4 is always assumed. First, we introduce some standard mappings

on N .

(i) Let x be an invertible upper triangular matrix overR. The map σx : y 7→ xyx−1

is verified to be an automorphism of N . Thus σx ∈ Invc(N ).

(ii) For s, t ∈ R, we define ̺s,t on N by ̺s,t : x = (xij) 7→ x+ sx12e24 + tx34e13.

Then it is easy to verify that ̺s,t is an automorphism of N . Thus, ̺s,t ∈ Invc(N ).

(iii) Let r ∈ R∗. We define τr on N by τr : x = (xij) 7→ x + (r − 1)(x13e13 +

x24e24). It is verified that τr ∈ Invc(N ) with the inverse τr−1 . Obviously, τr is an

automorphism if and only if r = 1.

(iv) Let
(

a b

c d

)

be an invertible 2× 2 matrix over R and let
(

a1 b1
c1 d1

)

be its inverse.

Define λa,b,c,d on N by









0 x12 x13 x14
0 0 x23 x24

0 0 0 x34
0 0 0 0









7→









0 ax12 + cx34 ax13 + cx24 x14
0 0 x23 dx24 + bx13

0 0 0 dx34 + bx12
0 0 0 0









.

Then it is not difficult to check that λa,b,c,d ∈ Invc(N ) with the inverse λa1,b1,c1,d1
.

Theorem 3.3. Let n = 4, and let ϕ be an invertible linear map on N preserving

commutativity in both directions. Then

ϕ = λa,b,c,d ◦ σz ◦ ̺s,t ◦ τr ◦ θf ,
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where
(

a b

c d

)

is an invertible matrix over R, λa,b,c,d, σz , ̺s,t and τr are maps defined

in (iv), (i), (ii) and (iii) above, respectively, and θf is a central quasi-automorphism

(as defined in Section 2).

P r o o f. By Lemma 3.1, ϕ is a quasi-automorphism of N . Lemma 2.7 says that

ϕ(N1) = N1. Assume that

ϕ(e13) ≡ ae13 + be24 (mod Z), ϕ(e24) ≡ de24 + ce13 (mod Z);

ϕ−1(e13) ≡ a1e13 + b1e24 (mod Z), ϕ−1(e24) ≡ d1e24 + c1e13 (mod Z).

It follows from (ϕ−1 ◦ ϕ)(e13) = e13 and (ϕ−1 ◦ ϕ)(e24) = e24 that

(

a b

c d

)(

a1 b1

c1 d1

)

=

(

1 0

0 1

)

.

This implies that
(

a1 b1
c1 d1

)

is invertible. Using this matrix we define the mapping

λa1,b1,c1,d1
, and denote λa1,b1,c1,d1

◦ ϕ by ϕ1. Then

ϕ1(e13) ≡ e13 (mod Z) and ϕ1(e24) ≡ e24 (mod Z).

Now we consider the action of ϕ1 on ei,i+1 for i = 1, 2, 3. Suppose that

ϕ1(ei,i+1) ≡

3
∑

k=1

a
(i)
k,k+1ek,k+1 (mod N1).

Since

[ϕ1(e12), ϕ1(e13)] = [ϕ1(e34), ϕ1(e24)] = [ϕ1(e23), ϕ1(e13)] = [ϕ1(e23), ϕ1(e24)] = 0,

we have

a
(1)
34 = a

(3)
12 = a

(2)
34 = a

(2)
12 = 0.

Now, since ϕ1 is invertible, one can easily find that a
(2)
23 is invertible. Now suppose

that ϕ−1
1 (e12) ≡ c

(1)
12 e12 + c

(1)
23 e23 (mod N ) and ϕ−1

1 (e23) ≡ c
(2)
23 e23 (mod N ). By

(ϕ−1
1 ◦ ϕ1)(e12) = e12 we have a

(1)
12 c

(1)
12 = 1, which implies that a(1)12 is invertible.

Similarly, a(3)34 is invertible. Now following from [ϕ1(e12), ϕ1(e34)] = 0, we have

a
(1)
12 a

(3)
23 = a

(3)
34 a

(1)
23 = 0, which further leads to

a
(3)
23 = a

(1)
23 = 0.

348



Take x = diag(1, a(1)12 , a
(1)
12 a

(2)
23 , a

(1)
12 a

(2)
23 a

(3)
34 ), then

(σx ◦ ϕ1)(ei,i+1) ≡ ei,i+1 (mod N1) for i = 1, 2, 3.

Now one must note that

(σx ◦ ϕ1)(e13) ≡ (a
(1)
12 a

(2)
23 )

−1e13 (mod Z)

and

(σx ◦ ϕ1)(e24) ≡ (a
(2)
23 a

(3)
34 )

−1e24 (mod Z).

Denote σx ◦ ϕ1 by ϕ2, and assume

ϕ2(ei,i+1) ≡ ei,i+1 + b
(i)
13 e13 + b

(i)
24 e24 (mod Z) for i = 1, 2, 3, . . . .

By [ϕ2(e12), ϕ2(e34)] = 0 we obtain b(3)24 = −b
(1)
13 . Taking

y =









1 −b
(2)
13 0 0

0 1 b
(1)
13 0

0 0 1 b
(2)
24

0 0 0 1









,

we have that

(σy ◦ ϕ2)(e12) ≡ e12 + b
(1)
24 e24 (mod Z); (σy ◦ ϕ2)(e23) ≡ e23 (mod Z);

(σy ◦ ϕ2)(e34) ≡ e34 + b
(3)
13 e13 (mod Z).

Further, we find that

(̺−s,−t ◦ σy ◦ ϕ2) ≡ ei,i+1 (mod Z) for i = 1, 2, 3, . . . ,

where s = b
(1)
24 , t = b

(3)
13 . Denote ̺−s,−t ◦σy ◦ϕ2 by ϕ3. Now, it has been proved that

ϕ3(ei,i+1) ≡ ei,i+1 (mod Z) for i = 1, 2, 3, . . . .

One should note that

ϕ3(e13) ≡ re13 (mod Z) and ϕ3(e24) ≡ qe24 (mod Z),

where r = (a
(1)
12 a

(2)
23 )

−1, q = (a
(2)
23 a

(3)
34 )

−1. By [e13 + e12, e34 − e24] = 0 we have that

[ϕ3(e13) + ϕ3(e12), ϕ3(e34) − ϕ3(e24)] = 0, which leads to r = q. Denote τr−1 ◦ ϕ3
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by ϕ4. Then we have ϕ4(eij) ≡ eij (mod Z) for all (i, j) ∈ Φ − {(1, n)}. Assume

that

ϕ4(eij) = eij + rije1n ∀ (i, j) ∈ Φ.

A similar discussion (as in the proof of Lemma 2.8) shows that 1 + r1n is invertible.

Let f be the linear function defined by f : x = (xij) ∈ N 7→
∑

(i,j)∈Φ xijrij . Then

1 + f(e1n) = 1 + r1n is invertible, and ϕ4(x) = x+ f(x)e1n for x ∈ N . This implies

that ϕ4 is exactly the central quasi-automorphism θf of N . Finally, we have that

ϕ = λa,b,c,d ◦ σz ◦ ̺s,t ◦ τr ◦ θf , where z = x−1y−1.

�
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