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KYB ERNET IK A — VO LUME 5 0 ( 2 0 1 4 ) , NUMBER 2 , PAGES 2 8 4 – 2 9 5

DISCRIMINATING BETWEEN CAUSAL STRUCTURES IN
BAYESIAN NETWORKS GIVEN PARTIAL OBSERVATIONS

Philipp Moritz, Jörg Reichardt and Nihat Ay

Given a fixed dependency graph G that describes a Bayesian network of binary variables
X1, . . . , Xn, our main result is a tight bound on the mutual information Ic(Y1, . . . , Yk) =Pk

j=1 H(Yj)/c − H(Y1, . . . , Yk) of an observed subset Y1, . . . , Yk of the variables X1, . . . , Xn.
Our bound depends on certain quantities that can be computed from the connective structure
of the nodes in G. Thus it allows to discriminate between different dependency graphs for a
probability distribution, as we show from numerical experiments.

Keywords: Bayesian networks, causal Markov condition, information theory, information
inequalities, common ancestors, causal inference

Classification: 60A08, 62B09

1. INTRODUCTION

Since Judea Pearl published his theory of causality [9], much progress has been made
in applying and extending this framework. In its core, his theory is about inference
and reasoning about causal structure specified by directed graphical models [7, 13]. The
framework has for example been applied in

1. the study of genetic data from pedigrees, where causal relations are given by the
inheritance structure [8] and

2. model-based approaches for inferring cellular networks from DNA microarray ex-
periments [5].

One important concept he introduced is the do-calculus, which is a way to describe
interventional experiments mathematically. Even if intervention is not possible, the
causal graph of a distribution can sometimes be determined under additional model
assumptions like additive noise [6]. These assumptions provide information beyond the
independence structure of joint random variables and thus sometimes allow to determine
causes and effects.

Following [12], we ask which assertions about the structure of possible causal graphs
can be made if we have no additional information beyond the joint probability dis-
tribution of the observed variables. Given a system consisting of observable quanti-
ties X1, . . . , Xn, a scientist may construct the causal model G of these observables by
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systematic intervention [9]. If this is too expensive, experimentally not tractable or
ethically questionable, observation alone must be employed to learn about G. Typ-
ically, only a subset Y1, . . . , Yk of the variables X1, . . . , Xn can be observed. From
these observations, it is possible to gain information about G, for example by Reichen-
bach’s common cause principle: If two of the observed nodes are dependent, they
must have a common ancestor in G. A quantitative version of this principle [2, 12]
allows to infer certain aspects of the causal structure using information theoretic quan-
tities. We extend this line of work by deriving a tight upper bound on the quantity
Ic(Y1, . . . , Yk) =

∑k
j=1 H(Yj)/c−H(Y1, . . . , Yk), which is a way to quantify the mutual

information of the observed variables Y1, . . . , Yk. This bound, which is our main contri-
bution, depends on the connective structure of the nodes in G to the root nodes of G
and can thus be used to discriminate between causal models. The result is proved by
inductively clustering the observed nodes in G by their root nodes and then applying
the d-separation criterion to these sets. Compared with other constraints of probability
distributions that arise from a given graphical model (like the implicitization approach
for phylogenetic trees [1]) we only extract one scalar quantity Ic from the probability
distribution. This limits the discriminating power of our method but allows for efficient
computation.

The paper is organized as follows: In Section 2 we introduce the definitions used
in the paper, in Section 3 we summarize existing work on the inference of common
ancestors. Section 4 is the main part of the paper, the derivation of our bound on the
mutual information Ic for fixed graph structure. In Section 5 we show how this bound
can be used to discriminate between causal models.

2. DESCRIBING SYSTEMS WITH BAYESIAN NETWORKS

In this section, we define the terminology relevant for the rest of the paper: Discrete
random variables, entropy and conditional independence. Conditional independence can
conveniently be encoded in directed acyclic graphs using the d-separation criterion that
we will describe.

Random variables. Throughout the paper we deal with a finite set of binary random
variables denoted by upper-case roman characters such as X, Y, Z. Their values are
denoted by lower-case roman characters, e. g. X = x where x ∈ {0, 1}. The tuple of
variables with indices from an index set N = {1, . . . , n} will be denoted by XN . The
probability distribution defined for variables from XN will be denoted by P (XN ), its
marginal distribution for variables from XA, A ⊆ N will be denoted by P (XA). For
A,B disjoint and nonempty, P (XA | XB) will denote the conditional distribution of XA

given XB . To simplify the reading, we write p(x1, . . . , xn) = P (X1 = x1, . . . , Xn = xn).

Entropy. The joint entropy of X1, . . . , Xn is defined as

H(X1, . . . , Xn) = −
∑

x1∈{0,1}

. . .
∑

xn∈{0,1}

p(x1, . . . , xn) log p(x1, . . . , xn).

In the case n = 1 this reduces to the entropy of a single random variable. We have
H(X, Y ) ≤ H(X) + H(Y ) with equality if X and Y are independent.
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Fig. 1. For this example graph G, roots(G) = {0}, the parents of

node 5 are pa(5) = {2, 3} and its descendants are de(5) = {4, 5, 6, 7}.

Conditional Independence. Let N be an index set and A,B, C ⊆ N be nonempty.
We then say XA is conditionally independent of XB given XC , written as XA ⊥⊥ XB |
XC , if P (XA = xA | XB = xB , XC = xC) = P (XA = xA | XC = xC) for all possible
values xA, xB , xC . This is succinctly written as p(xA | xB , xC) = p(xA | xC) if there is
no danger of confusion.

Directed acyclic graphs. A directed graph is a tuple G = (V,E) consisting of nodes
V and edges E ⊆ V × V . An edge (u, v) ∈ E is interpreted as a directed connection
between the nodes u and v, we write u → v if (u, v) ∈ E. A directed path between
two nodes v1 and vn is a sequence v1, v2, . . . , vn of distinct nodes vj with vj → vj+1 for
1 ≤ j < n. We write v1  vn if there exists a directed path from v1 to vn. We also
admit paths of length 0, so v  v for all v ∈ V . An undirected path between v1 and vn is
a sequence v1, v2, . . . , vn of distinct nodes vj with vj → vj+1 or vj ← vj+1 for 1 ≤ j < n.
We call G acyclic, if no path v  v is of length > 0. In addition we introduce the sets of

• parents pa(v) = {u ∈ V : (u, v) ∈ E} of v ∈ V ,
• root nodes roots(G) = {v ∈ V : pa(v) = ∅} of G (nodes without parents),
• descendants de(u) = {v ∈ V : u v} of u ∈ V and
• non-descendants nd(u) = V \ de(u) of u ∈ V , as well as the
• ancestral set an(v) = {u ∈ V : u v} of v ∈ V .

These concepts are illustrated in Figure 1.

The concept of d-separation. Let G = (V,E) be a directed acyclic graph. An
undirected path γ in G is d-separated by a set of nodes C ⊆ V if and only if
• γ contains a chain i→ m→ j or a fork i← m→ j such that the middle node m

is in C, or
• γ contains a collider i→ m← j such that the middle node m is not in C and such

that no descendant of m is in C.
The set C d-separates [9] sets of nodes A ⊆ V and B ⊆ V if and only if every undirected
path between a node in A and a node in B is d-separated by C.
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Bayesian networks. Now we show how conditional independence of random variables
can be described using graph-theoretic concepts. Consider a graph with vertices V =
{1, . . . , n} and edges E ⊆ V × V . We say that the joint distribution of the variables
XV = (Xv : v ∈ V ) for V = {1, . . . , n} factorizes according to the directed acyclic graph
G = (V,E) if

p(xV ) =
n∏

v=1

p(xv | xpa(v)) (1)

for all possible combinations of values. Equivalent to this is the so called local Markov
condition which postulates that Xv ⊥⊥ Xnd(v) | Xpa(v) for all v ∈ V . Another still
equivalent condition is the global Markov condition which postulates that for disjoint
A,B, C ⊆ V , XA is independent of XB given XC whenever C d-separates A and B.
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Fig. 2. Example of a system with n = 6 nodes, of which the k = 3

nodes Y1 = X2, Y2 = X4 and Y3 = X6 are observed.

Partially observed systems. Let X1, . . . , Xn be random variables that factorize
according to the directed acyclic graph G. A subset Y1, . . . , Yk of these variables is
observed. This is defined as follows: Write Y1 = Xπ(1), . . . , Yk = Xπ(k) for an injective
function π : {1, . . . , k} → {1, . . . , n}, then

P (Y1 = y1, . . . , Yk = yk) =
∑

(x1,...,xn)∈Ay

P (X1 = x1, . . . , Xn = xn)

where Ay = {(x1, . . . , xn) ∈ {0, 1}n : xπ(1) = y1, . . . , xπ(k) = yk}. These definitions are
illustrated in Figure 2, in this example we would have

p(x2, x4, x6) =
∑

x1∈{0,1}

∑
x3∈{0,1}

∑
x5∈{0,1}

p(x1, x2, x3, x4, x5, x6).

A common cause or common ancestor of the observed nodes Y1, . . . , Yk is a node Xj

with
Xj ∈

⋂
1≤i≤k

an(Yi).

In the example of Figure 2, X2 is a common ancestor of X2, X4 and X6.
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3. INFERENCE OF COMMON ANCESTORS

In this section we briefly summarize the existing common cause principles and explain
how they can be used to discriminate between partially observed Bayesian networks.

Reichenbach’s principle of common cause. Reichenbach formulates this most el-
ementary common cause principle in [10]: “If an improbable coincidence has occured,
there must exist a common cause”. For example if all electrical devices and lights in the
room suddenly go out, this coincidence can be explained by a common cause, namely
the breakdown of the power supply. A more formal version of the principle states that if
we observe the dependence of two jointly distributed random variables X and Y , one of
the following must be true: X causes Y or Y causes X or there is a common cause of X
and Y . In our framework, this can be understood in the following way: If X and Y are
part of a larger system, modeled by a dependency graph G and they are stochastically
dependent, then their ancestral sets must be overlapping. Otherwise they would be
d-separated by the empty set (which means X ⊥⊥ Y | ∅) and thus be independent [12].

The extended common cause principle. We will now turn to a quantitative ex-
tension of the common cause principle, initially studied in [2] and later extended in [12].
Assume that we have a Bayesian network with variables X1, . . . , Xn of which a subset
Y1, . . . , Yk is observed. On these, we define the mutual information Ic as

Ic(Y1, . . . , Yk) =
1
c

k∑
j=1

H(Yj)−H(Y1, . . . , Yk), where c > 0. (2)

In the case c = 1, this is the regular definition of the mutual information from [4].
The quantity Ic is a measure of correlation of the Y1, . . . , Yk and allows the following
quantitative extension of Reichenbach’s principle of common cause, proven in [12].

Theorem 3.1. (Extended Common Cause Principle) Let X1, . . . , Xn be a system with
observed variables Y1, . . . , Yk. If Ic(Y1, . . . , Yk) > 0 then in any system containing the
Y1, . . . , Yk, there exists a common ancestor of strictly more than c variables out of the
Y1, . . . , Yk.

This extended common cause principle allows the discrimination between different
causal models for a system by observation alone, even when Reichenbach’s common
cause principle would fail. In Figure 3 we show two systems from [12] where this is
the case. The Reichenbach principle cannot distinguish between (a) and (b), because
in both models the observed variables Y1, Y2 and Y3 are not necessarily independent.
If we however have I2(Y1, Y2, Y3) > 0, then model (b) can be refused on grounds of the
extended common cause principle, because it does not contain a common ancestor of 3
nodes.
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(b) three common ancestors
of two varibles each

Fig. 3. Two possible Bayesian networks for observed variables Y1, Y2

and Y3 (observed nodes are thick, unobserved ones thin). The

Reichenbach principle of common cause cannot discriminate these.
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(a) One root node
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(b) Two root nodes

Fig. 4. Example graphs for the maximization of Ic.

4. A BOUND ON THE MUTUAL INFORMATION IC

In this section, we derive an upper bound on Ic(Y1, . . . , Yk) over all probability distri-
butions of X1, . . . , Xn factorizing according to the dependency graph G.

Before we state the result, we want to illuminate the problem with two example
networks. Both examples in Figure 4 refer to the fully observed case. For Figure 4 (a),
the maximum I2 = (3/2) · log 2 is achieved with

P (X0 = 1) = 1/2, X1 = X2 = X3 = X4 = X0

as Theorem 4.3 will show. This can be achieved by setting p(xj = 1 | x0 = 1) = 1,
p(xj = 1 | x0 = 0) = 0 for 1 ≤ j ≤ 3 and p(x4 = 1 | x1 = x2 = x3 = 1) = 1,
p(x4 = 1 | x1 = x2 = x3 = 0) = 0. For the example in Figure 4 (b), Theorem 4.3 yields
the maximum I2 = log 2 with

P (X0 = 1) = 1/2, P (X1 = 1) = 0, X2 = X3 = X4 = X0.

We will now study the general case. The important concepts that are needed in the
following theorem are summarized in Figure 5.
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Fig. 5. The nodes X1, X2, X3 and X4 are the roots, the descendants

of X1 are contained in the dotted circle on the left, the descendants of

X2 in the one on the right. The node X9 is descendant of both X1

and X2. Observed nodes Y1, . . . , Yk are thick, unobserved ones thin.
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Fig. 6. The set A1 = {X7, X8, X9, X16} contains the largest number

of observed variables. Then A2 \A1 = {X3, X13} contains only 2

variables and A3 \ (A1 ∪A2) = {X1} only one. The ordering is not

unique, we could also interchange the names of A2 and A3.
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Definition 4.1. (Redundancy r and number a of essential nodes) Let G be the de-
pendency graph of a Bayesian network with nodes X1, . . . , Xn such that {Y1, . . . , Yk} ⊆
{X1, . . . , Xn} are observed, X1, . . . , Xs are the roots and c > 0 a fixed integer. The
redundancy r and the number of essential nodes a are obtained by the following proce-
dure.

• Let the set Aj = de(Xj) ∩ {Y1, . . . , Yk} ⊆ {X1, . . . , Xn} for 1 ≤ j ≤ s contain the
observed nodes from de(Xj) (the sets Aj can be overlapping)

• Relabel the first s indices such that |A1| ≥ |A2 \A1| ≥ |A3 \ (A1 ∪A2)| ≥ . . .

• The redundancy r is the number of sets with |Aj \ (A1 ∪ · · · ∪Aj−1)| ≥ c.

• The number of essential nodes is a = |A1 ∪ · · · ∪Ar|

That is, Ar+1 is the first set in the above order with |Ar+1 \ (A1 ∪ · · · ∪ Ar)| < c (if
r < s). Note that the numbers a and r depend on c and may not be unique. The names
‘redundancy’ and ’number of essential nodes’ are inspired by the networks that achieve
the upper bound on Ic: The observed descendants of root nodes Xj with H(Xj) 6= 0 in
our construction are the ‘essential nodes’. The more root nodes with nonzero marginal
entropy, the more failure tolerant the network would be against setting the marginal
entropy of root nodes to zero, thus the name ‘redundancy’.

In the example of Figure 5, one possible choice for the Aj would be A1 = {X1, X6, X9},
A2 = {X9, X10, X12}, A3 = {X4} and A4 = ∅, thus for c = 3 we have r = 1. In Figure 6

we could choose A1 = {X7, X8, X9, X16}, A2\A1 = {X3, X13} and A3\(A1∪A2) = {X1},
thus for c = 2 we have r = 2.

The following Lemma gives a preliminary bound on Ic for binary random variables
without constraints.

Lemma 4.2. For any binary random variables X1, . . . , Xn we have the bound

Ic(X1, . . . , Xn) ≤
(n

c
− 1

)
· log 2 if n ≥ c > 0. (3)

P r o o f . Without restriction assume H(X1) ≥ H(X2),H(X3), . . . . The chain rule
yields H(X1, . . . , Xn) =

∑n
k=1 H(Xk | X1, . . . , Xk−1) ≥ H(X1) and thus

Ic(X1, . . . , Xn) ≤
(

1
c
− 1

)
·H(X1) +

H(X2) + · · ·+ H(Xn)
c

.

The bound H(Xk) ≤ log 2 for 1 ≤ k ≤ n then proves the result. �

We now have prepared all the necessary tools for our main theorem, which relates
the structure of G with the maximum of Ic.

Theorem 4.3. Let S be the set of all probability distributions on binary random vari-
ables X1, . . . , Xn that factorize according to the dependency graph G, so

S =
{

p : {0, 1}n → [0, 1] | p(x1, . . . , xn) =
∏

1≤j≤n p(xj | xpa(Xj))
}

.
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(i) For any subset Y1, . . . , Yk of observed nodes we have

sup
p∈S

Ic(Y1, . . . , Yk) =
(a

c
− r

)
· log 2 (4)

where c > 0 and r, a are from Definition 4.1.
(ii) Certain deterministic networks factoring w. r. t. G, with H(Xj | pa(Xj))=0 for all

non-root nodes Xj and a specific probability distribution of the root nodes, attain
this supremum.

P r o o f . The nodes are ordered as in Definition 4.1. First of all we construct a proba-
bility distribution to show (ii).

Set P (Xj = 0) = 1/2 for 1 ≤ j ≤ r, where r is the redundancy, and for all non-root
descendents of these Xj , choose the probability distribution such that they copy the
value of Xj deterministically (if a node is descendent of two roots, choose one to copy
from). For all the remaining nodes set P (Xj = 0 | pa(Xj)) = 1. The joint probability
distribution P (X1, . . . , Xn) consists of 2r equiprobable events, these are the events for
(X1, . . . , Xr) ∈ {0, 1}r. Because in each Aj for 1 ≤ j ≤ r there is at least one observed
node, the marginalized distribution P (Y1, . . . , Yk) also consists of 2r equiprobable events,
so we have

H(Y1, . . . , Yk) = −
2r∑

j=1

1
2r

log
1
2r

= r log 2.

On the other hand, H(X) = log 2 for X ∈ de(X1) ∪ · · · ∪ de(Xr), all other nodes have
zero entropy by construction. So we conclude

k∑
j=1

H(Yj) = a · log 2,

and Ic(Y1, . . . , Yk) from (4) is achieved.
For (i), we use induction on the number of roots. For a single root, the bound follows

from Lemma 4.2. The induction step then proceeds as follows. The nodes in A1, A2, . . .
are partitioned as in Figure 7, so by the chain rule

H(YA, YB , YR) = H(YA, YR) + H(YB | YA, YR) ≥ H(YA, YR),

and because XA and XR are independent and then also YA and YR, it follows that
H(YA, YB , YR) ≥ H(YA)+H(YR). By our induction hypothesis and Lemma 4.2 we then
have

Ic(Y1, . . . , Yk) ≤
∑
j∈B

H(Yj)
c

+
∑
j∈A

H(Yj)
c
−H(YA) +

∑
j∈R

H(Yj)
c
−H(YR)

≤ |B|
c
· log 2 +

(
|A|
c
− 1

)
︸ ︷︷ ︸

≥0

· log 2 + Ic(YR) ≤
(a

c
− r

)
· log 2,

which is the claimed bound. �
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Fig. 7. For Rj = de(Xj), that means Aj ⊆ Rj (Aj contains only the

observed nodes from Rj), the set R1 ∪R2 ∪ · · · is partitioned into

A = R1 \ (R2 ∪R3 ∪ · · · ), B = R1 ∩ (R2 ∪R3 ∪ · · · ) and the rest

R = (R2 ∪R3 ∪ · · · ) \R1. Note that XA and XR are independent

because they are d-separated by the empty set, namely XA ⊥⊥ XR | ∅
(the thick arrows are all pointing in).

5. DISCRIMINATING BAYESIAN NETWORKS

Now we describe how this theorem can be used to discriminate between two causal
hypotheses. Take the Bayesian networks from Figure 8 (a) and (b) as an example.
In both cases, there are common ancestors of at most two observed variables. Thus
with a straightforward application of the extended common cause principle we cannot
distinguish them. However, from Definition 4.1 for c = 1 we get r = 2 and a = 4 for (a)
and r = 3 and a = 4 for (b). Thus I1 ≤ 2 log 2 for (a) and I1 ≤ log 2 for (b) and we can
reject hypothesis (b) on the grounds of Theorem 4.3 if I1 is in the range from log 2 to
2 log 2.

How effective is this procedure? We elucidate this with the following toy numerical
experiment: Generate random pairs of directed Erdös–Rényi graphs Gn,p [3] and remove
cycles by considering only edges (u, v) with u < v. Then test if the two hypotheses could
be distinguished by the extended common cause principle from Theorem 3.1 or the result
from Theorem 4.3 with the above method. The results are shown in Table 1. For graphs
Gn,p with p = 0.15 and n = 10, the second method is significantly more powerful than
the method that employs the extended common cause principle. In this case we have
np = 1.5. It is conjectured that for random Boolean networks, np = 2 (the critical
regime) is of greatest interest for real biological systems [11]. In this regime, the method
from Theorem 4.3 yields the largest improvement over the result from Theorem 3.1.
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Fig. 8. Two Bayesian networks for the observations

X2, X3, X7, X8, X9.

Graph Theorem 4.3 Theorem 3.1
G10,0.05 4143± 47 4110± 52
G10,0.10 5787± 51 5645± 54
G10,0.15 6445± 51 6207± 50
G10,0.20 6671± 41 6421± 33
G10,0.25 6713± 42 6567± 61
G10,0.30 6673± 35 6713± 61

Tab. 1. For each Gn,p we sampled 10000 pairs of graphs and counted

the number of pairs that could in principle be distinguished by the

method described in section 5. The standard deviation was

determined from 10 independent runs for each entry.

6. CONCLUSION

We derived a tight upper bound on the mutual information Ic in a partially observed
Bayesian network factoring according to a dependence graph G. Our inequality and
proof give insight in how the ancestral structure of a Bayesian network is related to the
possible degree of correlation between the nodes of the network. We furthermore showed
how this inequality can be used for discrimination between different causal hypotheses
underlying a system and to what degree our method surpasses the extended common
cause principle in this respect.
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