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Abstract. The paper is concerned with a stochastic delay predator-prey model under
regime switching. Sufficient conditions for extinction and non-persistence in the mean
of the system are established. The threshold between persistence and extinction is also
obtained for each population. Some numerical simulations are introduced to support our
main results.
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1. Introduction

The deterministic delay predator-prey model can be expressed as follows:

dx(t)/dt = x(t)[r1(t)− a11(t)x(t) − a12(t)x
θ11(t− τ1)− a13(t)y

θ12(t)],(1)

dy(t)/dt = y(t)[−r2(t) + a21(t)x(t) − a22(t)y(t)− a23(t)y
θ21(t− τ2)],

where x(t) and y(t) are the prey population density and the predator population

density at time t, respectively; r1(t) and r2(t) represent the intrinsic growth rates

of the prey and the predator at time t, respectively; a11(t) and a22(t) denote the

density-dependent coefficients of the prey and the predator, respectively; a12(t) is the

capturing rate of the predator and a21(t) denotes the rate of conversion of nutrients

into the reproduction of the predator; a13(t) provides a measure of intra-specific

interference and a23(t) provides a measure of inter-specific interference; τ1 and τ2 are

two positive constants which stand for the time delays; θ11, θ12, θ21 > 0 and θ11, θ21
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provide nonlinear measures of intra-specific interference, θ21 provides a nonlinear

measure of inter-specific interference; ri(t) and aij(t) are positive continuous bounded

functions on R+ = [0,+∞), i = 1, 2; j = 1, 2, 3.

On the other hand, in the real world, population system is inevitably affected

by the environmental noise (see e.g. [2], [13], [11], [12]). As we all know, there are

various types of environmental noises. First, we shall consider a classical colored

noise, say the telegraph noise. May [10] pointed out that due to the environmental

noise, the birth rate, carrying capacity, competition coefficient and other parameters

involved in the system are often affected by the telegraph noise. Several authors

(see e.g. [9], [7], [14], [4]) have revealed that we can model the telegraph noise by a

continuous-time Markov chain γ(t), t > 0 with a finite-state spaceS = {1, 2, . . . ,m}.
Let γ(t) be generated by Q = (qij), that is,

P{γ(t+∆t) = j|γ(t) = i} =

{
qij∆t+ o(∆t) if j 6= i;

1 + qii∆t+ o(∆t) if j = i,

where qij > 0 for i, j = 1, 2, . . . ,m with j 6= i and
m∑
j=1

qij = 0 for i = 1, 2, . . . ,m.

Then model (1) will become

(2)

dx(t)/dt = x(t)[r1(γ(t))− a11(γ(t))x(t) − a12(γ(t))x
θ11(t− τ1)− a13(γ(t))y

θ12(t)],

dy(t)/dt = y(t)[−r2(γ(t)) + a21(γ(t))x(t) − a22(γ(t))y(t)− a23(γ(t))y
θ21(t− τ2)].

The mechanism of system (2) is explained as follows. Assume that γ(0) = κ ∈ S ,

then (2) satisfies

dx(t)/dt = x(t)[r1(κ)− a11(κ)x(t) − a12(κ)x
θ11(t− τ1)− a13(κ)y

θ12(t)],

dy(t)/dt = y(t)[−r2(κ) + a21(κ)x(t)− a22(κ)y(t)− a23(κ)y
θ21(t− τ2)]

for a random amount of time until γ(t) jumps to another state, say ς ∈ S . Then

the system obeys

dx(t)/dt = x(t)[r1(ς)− a11(ς)x(t) − a12(ς)x
θ11(t− τ1)− a13(ς)y

θ12(t)],

dy(t)/dt = y(t)[−r2(ς) + a21(ς)x(t)− a22(ς)y(t)− a23(ς)y
θ21(t− τ2)]

for a random amount of time until γ(t) jumps to a new state again.

Further, let us consider the white noise. Recall that r1(i) represents the intrinsic

growth rate in regime i (i ∈ S ). We estimate it by an error term plus an average

332



value. Sometimes, the error term follows a normal distribution. Consequently, we

can replace r1(i) by r1(i) + σ11(i)Ḃ11(t) (see e.g. [7], [14], [4]), where Ḃ11(t) is a

white noise and σ2
11(i) stands for the intensity of the white noise. In the same way,

−a11(i), −a12(i), −a13(i), −r2(i), a21(i), −a22(i) and −a23(i) will become −a11(i)+

σ12(i)Ḃ12(t), −a12(i) + σ13(i)Ḃ13(t), −a13(i) + σ14(i)Ḃ14(t), −r2(i) + σ21(i)Ḃ21(t),

−a21(i)+σ22(i)Ḃ22(t), −a22(i)+σ23(i)Ḃ23(t) and −a23(i)+σ24(i)Ḃ24(t) (see e.g. [8]).

Then we obtain the following stochastic delay predator-prey model under regime

switching:

dx(t) = x(t)[r1(γ(t))− a11(γ(t))x(t) − a12(γ(t))x
θ11(t− τ1)(3)

− a13(γ(t))y
θ12(t)] dt+ σ11(γ(t))x(t) dB11(t) + σ12(γ(t))x

2(t) dB12(t)

+ σ13(γ(t))x(t)x
θ11 (t− τ1) dB13(t) + σ14(γ(t))x(t)y

θ12 (t) dB14(t),

dy(t) = y(t)[−r2(γ(t)) + a21(γ(t))x(t) − a22(γ(t))y(t)− a23(γ(t))y
θ21(t− τ2)] dt

+ σ21(γ(t))y(t) dB21(t) + σ22(γ(t))x(t)y(t) dB22(t)

+ σ23(γ(t))y
2(t) dB23(t) + σ24(γ(t))y(t)y

θ21(t− τ2) dB24(t),

where B(t) =

(
B11(t) B12(t) B13(t) B14(t)

B21(t) B22(t) B23(t) B24(t)

)
is a given 2×4 dimensional Brow-

nian motion defined on a complete probability space (Ω,F ,P) with a filtration

{Ft}t∈R+
satisfying the usual conditions. Suppose that the Markov chain γ(·) is

independent of B(t). As the standing hypothesis, we assume that γ(·) has a unique
stationary distribution π = (π1, π2, . . . , πm) which can be obtained by solving the

linear equation πQ = 0 subject to
m∑
i=1

πi = 1 and πi > 0, i ∈ S . Throughout this

article, we assume that min
i∈S

ajj(i) > 0, min
i∈S

ajk(i) > 0, min
i∈S

r2(i) > 0, min
i∈S

σ2
jl(i) > 0,

j 6= k, j = 1, 2; k = 1, 2, 3; l = 1, 2, 3, 4 and define ν̂ = max
i∈S

ν(i), ν̆ = min
i∈S

ν(i).

To begin with, we give the following useful definition.

Definition 1. 1. The population x(t) is said to go to extinction if lim
t→+∞

x(t) = 0.

2. The population x(t) is said to be nonpersistent in the mean if 〈x(t)〉∗ = 0,

where 〈f(t)〉 =
∫ t

0 f(s) ds/t, f
∗ = lim sup

t→+∞

f(t), f∗ = lim inf
t→+∞

f(t).

The organization of this paper is as follows: In Section 2, we analyze the persistence

and extinction of a stochastic delay predator-prey model under regime switching.

Some simulation figures are provided to illustrate our main results in Section 3.

Finally we give some conclusions and discussion.
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2. Persistence and extinction

Since x(t) and y(t) in system (3) represent population sizes at time t, they should

be nonnegative. For further study, we must first give some conditions under which

system (3) has a unique positive solution.

Theorem 2.1. Consider system (3). For any given positive initial value

(x(t), y(t)) = (ξ(t), η(t)) on [−τ, 0] and (γ1(0), γ2(0)), there is a unique positive

solution (x(t), y(t)) on t > −τ and the solution will remain in R2
+ with probability 1,

where R
2
+ = {x ∈ R

2 ; xi > 0, i = 1, 2} and τ = max{τ1, τ2}. In addition, the
solution satisfies

(4) lim sup
t→+∞

lnx(t)/t 6 0, lim sup
t→+∞

ln y(t)/t 6 0.

P r o o f. As the proof is similar to Cheng [1] we omit it here. �

Now we are in the position to give our main results.

Theorem 2.2. (A) For the prey population x modeled by (3), let b1(γ(t)) =

r1(γ(t))− 0.5σ2
11(γ(t)). Then:

(I) If 〈b1(γ(t))〉∗ =
m∑
i=1

πib(i) < 0, then the population x goes to extinction almost

surely.

(II) If 〈b1(γ(t))〉∗ = 0, then the population x is nonpersistent in the mean a.s.

(B) For the predator population y represented by (3), let b2(γ(t)) = r2(γ(t)) +

0.5σ2
21(γ(t)). Then:

(i) If (a11(γ(t)))∗〈−b2(γ(t))〉∗ + (a21(γ(t)))
∗〈b1(γ(t))〉∗ < 0, then the population y

goes to extinction a.s.

(ii) If (a11(γ(t)))∗〈−b2(γ(t))〉∗ + (a21(γ(t)))
∗〈b1(γ(t))〉∗ = 0, then the population y

is nonpersistent in the mean a.s.

P r o o f. The proof is motivated by the methods of Liu and Wang [5], [6].

(A). Case (I). Making use of the generalized Itô’s formula to the first equation of

system (3) leads to

d lnx = dx/x− (dx)2/2x2 = [b1(γ(t))− a11(γ(t))x(t) − a12(γ(t))x
θ11 (t− τ1)

− a13(γ(t))y
θ12(t)− 0.5σ2

12(γ(t))x
2(t)− 0.5σ2

13(γ(t))x
2θ11 (t− τ1)

− 0.5σ2
14(γ(t))y

2θ12(t)] dt+ σ11(γ(t)) dB11(t) + σ12(γ(t))x(t) dB12(t)

+ σ13(γ(t))x
θ11(t− τ1) dB13(t) + σ14(γ(t))y

θ12(t) dB14(t).
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Then we obtain that

lnx(t) − lnx(0) =

∫ t

0

[b1(γ(s))− a11(γ(s))x(s) − a12(γ(s))x
θ11(s− τ1)(5)

− a13(γ(s))y
θ12(s)− 0.5σ2

12(γ(s))x
2(s)

− 0.5σ2
13(γ(s))x

2θ11 (s− τ1)− 0.5σ2
14(γ(s))y

2θ12(s)] ds

+M1(t) +M2(t) +M3(t) +M4(t),

where

M1(t) =

∫ t

0

σ11(γ(s)) dB11(s), M2(t) =

∫ t

0

σ12(γ(s))x(s) dB12(s),

M3(t) =

∫ t

0

σ13(γ(s))x
θ11 (s− τ1) dB13(s), M4(t) =

∫ t

0

σ14(γ(s))y
θ12(s) dB14(s).

In the same manner, we can show that

ln y(t)− ln y(0) =

∫ t

0

[−b2(γ(s)) + a21(γ(s))x(s) − a22(γ(s))y(s)(6)

− a23(γ(s))y
θ21(s− τ2)− 0.5σ2

22(γ(s))x
2(s)

− 0.5σ2
23(γ(s))y

2(s)− 0.5σ2
24(γ(s))y

2θ21(s− τ2)] ds+M5(t)

+M6(t) +M7(t) +M8(t),

where

M5(t) =

∫ t

0

σ21(γ(s)) dB21(s), M6(t) =

∫ t

0

σ22(γ(s))x(s) dB22(s),

M7(t) =

∫ t

0

σ23(γ(s))y(s) dB23(s), M8(t) =

∫ t

0

σ24(γ(s))y
θ21(s− τ2) dB24(s).

Note that M1(t) and M5(t) are local martingales, whose quadratic variations are

〈M1(t),M1(t)〉 =
∫ t

0 σ
2
11(γ(s)) ds 6 σ̂2

11t and 〈M5(t),M5(t)〉 =
∫ t

0 σ
2
21(γ(s)) ds 6

σ̂2
21t. Applying the strong law of large numbers for local martingales (see e.g. [9] on

p. 16) leads to

(7) lim
t→+∞

M1(t)/t = 0, lim
t→+∞

M5(t)/t = 0 a.s.

On the other hand, we have

〈M2(t),M2(t)〉 =
∫ t

0

σ2
12(γ(s))x

2(s) ds,

〈M3(t),M3(t)〉 =
∫ t

0

σ2
13(γ(s))x

2θ11(s− τ1) ds,

〈M4(t),M4(t)〉 =
∫ t

0

σ2
14(γ(s))y

2θ12(s) ds,
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〈M6(t),M6(t)〉 =
∫ t

0

σ2
22(γ(s))x

2(s) ds,

〈M7(t),M7(t)〉 =
∫ t

0

σ2
23(γ(s))y

2(s) ds,

〈M8(t),M8(t)〉 =
∫ t

0

σ2
24(γ(s))y

2θ21(s− τ2) ds.

By virtue of the exponential martingale inequality (see e.g. [9] on p. 74), for any

positive constants T, α and β, we get

(8) P

{
sup

06t6T
[Mi(t)− 0.5α〈Mi(t),Mi(t)〉] > β

}
6 e−αβ , i = 2, 3, 4, 6, 7, 8.

Choosing T = k, α = 1, β = 2 ln k, we have

P

{
sup

06t6k
[Mi(t)− 0.5〈Mi(t),Mi(t)〉] > 2 ln k

}
6 1/k2, i = 2, 3, 4, 6, 7, 8.

Applying the Borel-Cantelli Lemma (see e.g. [9], p. 10) yields that for almost all

ω ∈ Ω there exists a random integer k0 = k0(ω) such that for k > k0, sup
06t6k

[Mi(t)−
0.5〈Mi(t),Mi(t)〉] 6 2 lnk, which means that

M2(t) 6 2 lnk + 0.5〈M2(t),M2(t)〉 = 2 lnk + 0.5

∫ t

0

σ2
12(γ(s))x

2(s) ds,

M3(t) 6 2 lnk + 0.5〈M3(t),M3(t)〉 = 2 lnk + 0.5

∫ t

0

σ2
13(γ(s))x

2θ11 (s− τ1) ds,

M4(t) 6 2 lnk + 0.5〈M4(t),M4(t)〉 = 2 lnk + 0.5

∫ t

0

σ2
14(γ(s))y

2θ12(s) ds,

M6(t) 6 2 lnk + 0.5〈M6(t),M6(t)〉 = 2 lnk + 0.5

∫ t

0

σ2
22(γ(s))x

2(s) ds,

M7(t) 6 2 lnk + 0.5〈M7(t),M7(t)〉 = 2 lnk + 0.5

∫ t

0

σ2
23(γ(s))y

2(s) ds,

M8(t) 6 2 lnk + 0.5〈M8(t),M8(t)〉 = 2 lnk + 0.5

∫ t

0

σ2
24(γ(s))y

2θ21(s− τ2) ds

for all 0 6 t 6 k, k > k0 a.s. Substituting the above inequalities into (5) yields

lnx(t) − lnx(0) 6

∫ t

0

b1(γ(s)) ds−
∫ t

0

a11(γ(s))x(s) ds−
∫ t

0

a12(γ(s))x
θ11(9)

−
∫ t

0

a13(γ(s))y
θ12(s) ds+M1(t) + 6 ln k

6

∫ t

0

b1(γ(s)) ds+M1(t) + 6 lnk.
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In the same way, we can also show

ln y(t)− ln y(0)(10)

6 −
∫ t

0

b2(γ(s)) ds+

∫ t

0

a21(γ(s))x(s) ds−
∫ t

0

a22(γ(s))y(s) ds

−
∫ t

0

a23(γ(s))y
θ21(s− τ2) ds+M5(t) + 6 ln k

6 −
∫ t

0

b2(γ(s)) ds+

∫ t

0

a21(γ(s))x(s) ds+M5(t) + 6 lnk

for all 0 6 t 6 k, k > k0 a.s. In other words, we have proved that for 0 < k − 1 6

t 6 k,

t−1[lnx(t) − lnx(0)] 6 t−1

∫ t

0

b1(γ(s)) ds+ 6 lnk/t+M1(t)/t

6 t−1

∫ t

0

b1(γ(s)) ds+ 6 lnk/(k − 1) +M1(t)/t.

In view of (7) and the ergodicity of γ(·), we get

lim sup
t→+∞

t−1 lnx(t) 6 lim sup
t→+∞

t−1

∫ t

0

b1(γ(s)) ds = 〈b1(γ(t))〉∗ =

m∑

i=1

πib(i).

Namely, if 〈b1(γ(t))〉∗ =
m∑
i=1

πib(i) < 0, then lim
t→+∞

x(t) = 0.

Case (II). For any given ε > 0, there is a constant T1 = T1(ε) such that

t−1

∫ t

0

b1(γ(s)) ds 6 lim sup
t→+∞

t−1

∫ t

0

b1(γ(s)) ds+ ε/2

= 〈b1(γ(t))〉∗ + ε/2 = ε/2, t > T1.

Substituting the above inequality into (9), one can derive

lnx(t) − lnx(0) 6

∫ t

0

b1(γ(s)) ds−
∫ t

0

a11(γ(s))x(s) ds+ 6 lnk +M1(t)

6 εt/2− ă11

∫ t

0

x(s) ds+ 6 lnk +M1(t)

for all T1 6 t 6 k, k > k0 almost surely. Notice that there is a T > T1 such that for

all T 6 k − 1 6 t 6 k and k > k0, we have that 6 lnk/t 6 ε/4 and M1(t)/t 6 ε/4

hold outside a P-null set. In other words, we have shown that lnx(t) − lnx(0) 6
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εt − ă11
∫ t

0
x(s) ds holds outside a P-null set for sufficiently large t > T . Set h(t) =∫ t

0 x(s) ds, then we get

ln(dh/dt) 6 εt− ă11h(t) + lnx(0), t > T, a.s.

That is, ă−1
11 [e

ă11h(t) − eă11h(T )] 6 x(0)ε−1[eεt − eεT ] a.s. Rewriting the inequality,

we have

eă11h(t) 6 eă11h(T ) + x(0)ă11ε
−1[eεt − eεT ] a.s.

Taking logarithm on both sides yields

h(t) 6 ă−1
11 ln{x(0)ă11ε−1eεt + eă11h(T ) − x(0)ă11ε

−1eεT } a.s.

In other words, we obtain

lim sup
t→+∞

t−1

∫ t

0

x(s) ds 6 ă−1
11 lim sup

t→+∞

t−1 ln[x(0)ă11ε
−1eεt+eă11h(T )−x(0)ă11ε

−1eεT ].

Applying L’Hospital’s rule, one can see that

lim sup
t→+∞

t−1

∫ t

0

x(s) ds 6 ă−1
11 lim sup

t→+∞

t−1 ln[x(0)ă11ε
−1eεt] = ε/ă11 a.s.

Due to the arbitrariness of ε, we have lim sup
t→+∞

t−1
∫ t

0 x(s) ds 6 0 a.s.

(B). Case (i). If 〈b1(γ(t))〉∗ 6 0, then from (A) we see that 〈x(t)〉∗ = 0. On the

other hand, according to the specific property of the limit superior, we have that for

arbitrarily given and sufficiently small ε > 0, there is a T > 0 such that 〈−b2(γ(t))〉 <
〈−b2(γ(t))〉∗ + ε for all t > T . Let ε be small enough so that 〈−b2(γ(t))〉∗ + ε < 0.

Applying (10) results in

[t−1 ln y(t)]∗ 6 〈−b2(γ(t))〉∗ + ε+ â21〈x(t)〉∗ + lim
t→+∞

M5(t)/t+ lim
t→+∞

6 ln k/t

= 〈−b2(γ(t))〉∗ + ε < 0 a.s.

That is, lim
t→+∞

y(t) = 0. Now if 〈b1(γ(t))〉∗ > 0, it follows from (5) that

t−1 ln[x(t)/x(0)] 6 〈b1(γ(t))〉∗ + ε/2− [(a11(γ(t)))∗ − ε]〈x(t)〉 + ε/2 a.s.

Making use of the same method as in (A) and of the arbitrariness of ε, we have

(11) 〈x(t)〉∗ 6 〈b1(γ(t))〉∗/(a11(γ(t)))∗.
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By the above inequality, we have

[t−1 ln y(t)]∗ 6 〈−b2(γ(t))〉∗ + 〈a21(γ(t))x(t)〉∗ + lim
t→+∞

M5(t)/t+ lim
t→+∞

6 lnk/t

6 [(a11(γ(t)))∗〈−b2(γ(t))〉∗ + ((a21(γ(t)))
∗ + ε)〈b1(γ(t))〉∗]/(a11)∗ < 0,

from which we derive the desired statement.

Case (ii). In Case (i), we have proved that if 〈b1(γ(t))〉∗ 6 0, then lim
t→+∞

y(t) = 0,

that is to say, 〈y(t)〉∗ = 0. Now assume that 〈b1(γ(t))〉∗ > 0; we shall verify Case (ii)

by contradiction. If 〈y(t)〉∗ > 0, then by (4) we see that [t−1 ln y(t)]∗ = 0. Then in

view of (6) one can obtain that

0 = [t−1 ln y(t)]∗ 6 〈−b2(γ(t))〉∗+ 〈a21(γ(t))x(t)〉∗ 6 〈−b2(γ(t))〉∗+(a21(γ))
∗〈x(t)〉∗.

On the other hand, for any fixed ε > 0 there is a T > 0 such that

〈−b2(γ(t))〉 < 〈−b2(γ(t))〉∗ + ε/4, 〈a21(γ(t))x(t)〉 < (a21(γ(t)))
∗〈x(t)〉∗ + ε/4,

6 lnk/t < ε/4, M5(t)/t < ε/4

for all t > T . Substituting these inequalities into (10) results in

ln(y(t)/y(0))/t 6 〈−b2(γ(t))〉∗ + (a21(γ(t)))
∗〈x(t)〉∗ + ε− (a22(γ(t)))∗〈y(t)〉.

Then in the same way as in (A), we obtain

〈y(t)〉∗ 6
〈−b2(γ(t))〉∗ + (a21(γ(t)))

∗〈x(t)〉∗ + ε

(a22(γ(t)))∗
,

which shows that 〈y(t)〉∗ 6 〈−b2(γ(t))〉∗ + (a21(γ(t)))
∗〈x(t)〉∗/(a22(γ(t)))∗. By (14),

we get that

〈y(t)〉∗ 6
(a11(γ(t)))∗〈−b2(γ(t))〉∗ + (a21(γ(t)))

∗〈b1(γ(t))〉∗
(a11(γ(t)))∗(a22(γ(t)))∗

= 0,

which leads to a contradiction. Thus 〈y(t)〉∗ = 0 a.s. �
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3. Example and numerical simulations

In this section we will introduce an example and some figures to demonstrate our

main results. In the following discussion, we first give the stationary distribution

π = (π1, . . . , πm) of the Markov chain γ(t) directly because π can be derived by

solving the linear equations

πQ = 0,

m∑

i=1

πi = 1,

where Q is the generator of the Markov chain γ(t).

E x am p l e 3.1. Consider the system

(12)

dx(t) = x(t)[r1(γ(t))− a11(γ(t))x(t) − a12(γ(t))x
0.5(t− τ1)

− a13(γ(t))y
0.5(t)] dt+ σ11(γ(t))x(t) dB11(t) + σ12(γ(t))x

2(t) dB12(t)

+ σ13(γ(t))x(t)x
0.5(t− τ1) dB13(t) + σ14(γ(t))x(t)y

0.5(t) dB14(t),

dy(t) = y(t)[−r2(γ(t)) + a21(γ(t))x(t) − a22(γ(t))y(t) − a23(γ(t))y
0.5(t− τ2)] dt

+ σ21(γ(t))y(t) dB21(t) + σ22(γ(t))x(t)y(t) dB22(t)

+ σ23(γ(t))y
2(t) dB23(t) + σ24(γ(t))y(t)y

0.5(t− τ2) dB24(t),

where γ = γ(t) is a Markov chain with state space S = {1, 2}.

Let r1(1) = 0.2, r1(2) = 0.1, a11(γ(t)) = a12(γ(t)) = a13(γ(t)) ≡ 0.2, τ1 = 1,

σ2
11(γ(t)) ≡ 0.24, σ12(γ(t)) = σ13(γ(t)) = σ14(γ(t)) ≡ 5. That is to say, b1(1) =

r1(1)− 0.5σ2
11(1) = 0.08, b1(2) = r1(2)− 0.5σ2

11(2) = −0.02. Solving the equations

π11 + π12 = 1,

0.08π11 − 0.02π12 = 0

yields π11 = 0.2, π12 = 0.8.

Now, let r2(1) = 0.4, r2(2) = 0.2, a21(γ(t)) = a22(γ(t)) = a23(γ(t)) ≡ 0.4, τ2 = 2,

σ2
21(γ(t)) ≡ 0.48, σ22(γ(t)) = σ23(γ(t)) = σ24(γ(t)) ≡ 8. By a simple calculation, we

obtain π21 = 0.2, π22 = 0.8.

Let us simulate the above example. In the following simulations, for the sake of

convenience, set ξ(t) = 0.32e0.5t, η(t) = 0.16e0.5t, t ∈ [−τ, 0]. There are two kinds

of random processes in Eq. (12). One is the Markov switching; the other is the

Brownian motion. As for the Brownian motion, we will use the Milstein method (see
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e.g. [3]). Namely, if the state of the Markov chain γ(t) is i(i ∈ S ), we will consider

the following discretization equations:

xk+1 = xk + xk[r1(i)− a11(i)xk − a12(i)x
0.5
k−τ1/∆t − a13(i)y

0.5
k ]∆t

+ σ11(i)xk

√
∆tξ11k + 0.5σ2

11(i)x
2
k[(ξ11k)

2 − 1]
√
∆t+ σ12(i)x

2
k

√
∆tξ12k

+ 0.5σ2
12(i)x

4
k[(ξ12k)

2 − 1]
√
∆t+ σ13(i)xkx

0.5
k−τ1/∆t

√
∆tξ13k

+ 0.5σ2
13(i)x

2
kxk−τ1/∆t[(ξ13k)

2 − 1]
√
∆t+ σ14(i)xky

0.5
k

√
∆tξ14k

+ 0.5σ2
14(i)x

2
kyk[(ξ14k)

2 − 1]
√
∆t,

yk+1 = yk + yk[−r2(i) + a21(i)xk − a22(i)yk − a23(i)y
0.5
k−τ2/∆t]∆t

+ σ21(i)yk
√
∆tξ21k + 0.5σ2

21(i)y
2
k[(ξ21k)

2 − 1]
√
∆t+ σ22(i)xkyk

√
∆tξ22k

+ 0.5σ2
22(i)x

2
ky

2
k[(ξ22k)

2 − 1]
√
∆t+ σ23(i)y

2
k

√
∆tξ23k

+ 0.5σ2
23(i)y

4
k[(ξ23k)

2 − 1]
√
∆t+ σ24(i)yky

0.5
k−τ2/∆t

√
∆tξ24k

+ 0.5σ2
24(i)y

2
kyk−τ2/∆t[(ξ24k)

2 − 1]
√
∆t,

where ξjlk(j = 1, 2; l = 1, 2, 3, 4; k = 1, 2, . . . , n) is the Gaussian random variable

which follows N(0, 1).

In Fig. 1, we choose r1(1) = 0.2, r1(2) = 0.1, r2(1) = 0.4, r2(2) = 0.2, a11(γ(t)) =

a12(γ(t)) = a13(γ(t)) ≡ 0.2, a21(γ(t)) = a22(γ(t)) = a23(γ(t)) ≡ 0.4, θ11 = θ12 =

θ21 = 0.5, τ1 = 1, τ2 = 2, σ2
11(γ(t)) ≡ 0.24, σ12(γ(t)) = σ13(γ(t)) = σ14(γ(t)) ≡ 5,

σ2
21(γ(t)) ≡ 0.48, σ22(γ(t)) = σ23(γ(t)) = σ24(γ(t)) ≡ 8. The only distinction

between conditions of Fig. 1(A)–(B) is that the values of π11 and π21 are different.

In Fig. 1(A), we choose π11 = 0.18 and π21 = 0.15. By virtue of Theorem 2.2,

we see that both the prey population x and the predator population y represented

by (12) will go to extinction. In Fig. 1(B), we choose π11 = π21 = 0.2. In view

of Theorem 2.2, one can obtain that both the prey population x and the predator

population y will be nonpersistent in the mean.

4. Conclusions and discussion

In this paper, we investigate a stochastic delay predator-prey model under regime

switching. Sufficient criteria for extinction and non-persistence in the mean of each

population are established. Furthermore, we obtain the critical value between per-

sistence and extinction of each population in many cases. These results are useful,

because the persistence-extinction thresholds are very important for assessing the

risk of extinction of populations in models.

Some interesting topics deserve further investigation. One may propose some

more realistic models, such as considering the effects of impulsive perturbations on
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Fig. 1. Solutions of system (12) for r1(1) = 0.2, r1(2) = 0.1, r2(1) = 0.4, r2(2) = 0.2,
a11(γ(t)) = a12(γ(t)) = a13(γ(t)) ≡ 0.2, a21(γ(t)) = a22(γ(t)) = a23(γ(t)) ≡ 0.4,
θ11 = θ12 = θ21 = 0.5, τ1 = 1, τ2 = 2, σ

2

11(γ(t)) ≡ 0.24, σ12(γ(t)) = σ13(γ(t)) =
σ14(γ(t)) ≡ 5, σ221(γ(t)) ≡ 0.48, σ22(γ(t)) = σ23(γ(t)) = σ24(γ(t)) ≡ 8, ξ(t) ≡

0.32e0.5t, η(t) ≡ 0.16e0.5t, t ∈ [−τ, 0], step size ∆t = 0.05. (A) is with π11 = 0.18,
π21 = 0.15; (B) is with π11 = π21 = 0.2.

the systems. It is also interesting to investigate the systems with distributed delays.

We will consider these problems in our future work.
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