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ON THE f - AND h-TRIANGLE OF THE BARYCENTRIC

SUBDIVISION OF A SIMPLICIAL COMPLEX

Sarfraz Ahmad, Lahore
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Abstract. For a simplicial complex ∆ we study the behavior of its f - and h-triangle under
the action of barycentric subdivision. In particular we describe the f - and h-triangle of its
barycentric subdivision sd(∆). The same has been done for f - and h-vector of sd(∆) by
F.Brenti, V.Welker (2008). As a consequence we show that if the entries of the h-triangle
of ∆ are nonnegative, then the entries of the h-triangle of sd(∆) are also nonnegative. We
conclude with a few properties of the h-triangle of sd(∆).
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1. Introduction

Let ∆ be a simplicial complex on the vertex set [n] := {1, . . . , n}, that is, a subset

∆ ⊆ 2[n] of the powerset 2[n] such that A ⊆ B ∈ ∆ implies A ∈ ∆. For an

A ∈ ∆, set dimA = #A − 1 and dim∆ = max
A∈∆

dimA. Elements of ∆ are called

faces and inclusionwise maxima faces are called facets. If a simplicial complex is

generated by a single facet of dimension (d − 1), then it is called (d − 1)-simplex.

For a (d − 1)-dimensional simplicial complex ∆ the f -vector is defined to be f∆ =

(f∆
−1, f

∆
0 , f∆

1 , f∆
2 , . . . , f∆

d−1), where f∆
i is the number of i-dimensional faces of ∆.

The polynomial f∆(t) =
d
∑

i=0

f∆
i−1t

d−i is called the f -polynomial. The f -polynomial

relates to commutative algebra in the following way:

Let S = K[x1, x2, . . . , xn] be a polynomial ring in n variables over the field K.

Recall that a monomial ideal I ⊂ S is an ideal which is generated by the monomials in
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S. By I∆ we denote the monomial ideal generated by (xi1 . . . xir
; {i1, . . . , ir} 6∈ ∆).

The ring K[∆] = S/I∆ is called the Stanley-Reisner ring of ∆. There is a one-

to-one correspondence between the square-free monomial ideals in n variables and

the simplicial complexes over the vertex set of cardinality n. This creates a relation

between commutative algebra and combinatorics. Moreover, if we define the h-vector

h∆ = (h∆
1 , . . . , h∆

d ) by h∆
k =

k
∑

i=0

(−1)k−i
(

d−i
k−i

)

f∆
i−1, then the Hilbert series

Hilb(K[∆], t) =
∑

i>0

dimK(K[∆])it
i

of K[∆] is given by h∆
0 + . . . + h∆

d td/(1 − t)d. Here we denote by (K[∆])i the K-

vector space generated by the images of the monomials of degree i in the ring K[∆].

For details, we refer the reader to [3] and [4].

A simplicial complex is said to be pure if all its facets have equal dimension.

A pure simplicial complex ∆ is shellable if the facets of ∆ can be given a linear

order F1, . . . , Fn such that 〈Fi〉 ∩ 〈F1, . . . , Fi−1〉 is generated by a nonempty set of

maximal proper faces of Fi for i = 1, . . . , n, where 〈. . .〉 denotes the simplicial complex

generated by the face within the brackets. Shellability is a well-known concept in

combinatorics with several useful consequences of algebraic and topological nature.

The h-vector of ∆ can be directly read off from the shelling. To extend this concept

for a non-pure simplicial complex the idea of the f - and h-triangle of a simplicial

complex was introduced in [1]. A formal definition will follow in Section 2.

In this research we study the behavior of the f - and h-triangle of a simplicial

complex under the operations motivated from geometry, namely the barycentric

subdivision. In particular we answer the following questions:

Given a simplicial complex ∆, describe the f - and h-triangle of its barycentric

subdivision. This has been done for the f - and h-vector in [2].

2. Main results

Let A ∈ ∆ be a face of ∆. The degree of A, denoted by δ(A), is defined as follows:

δ(A) = max{|F | : A ⊆ F ∈ ∆}.

Björner and Wachs [1] introduce the f - and h-triangles in the following way:

Definition 2.1. For a (d − 1)-complex ∆, let

(1) f∆
i,j denote number of faces of degree i and cardinality j,
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(2) h∆
i,j =

j
∑

k=0

(−1)j−k
(

i−k
j−k

)

f∆
i,k,

(3) the triangular integer arrays f∆ = (f∆
i,j)06j6i6d and h∆ = (h∆

i,j)06j6i6d be

called the f -triangle and h-triangle of ∆, respectively.

For example, f∆ has following representation:

f0,0

f1,0 f1,1

...
. . .

fd,0 fd,1 . . . fd,d

Note that the indexing of the f -triangle is by the cardinality and that of the f -vector

is by the dimension of faces of ∆.

To give an idea about the barycentric subdivision of a (d−1)-dimensional simplicial

complex ∆, let (f0, . . . , fd−1) be the f -vector of ∆ and χ =
d−1
∑

i=0

fi. We take each face

of∆d−1\∅ as a vertex and label the set of vertices by v1, . . . , vχ. Now a j-dimensional

face of the barycentric subdivision of ∆ is a chain of vertices vi1 , . . . , vij
such that

vi1 ⊂ . . . ⊂ vij
. The collection of ∅, all vertices and all such chains forms a simplicial

complex called the barycentric subdivision of ∆ and is denoted by sd(∆). It is well

known that ∆ and sd(∆) are homeomorphic, that is, both define the cellulations and

triangulations of the same space.

The f -triangle of sd(∆) is described as follows:

Lemma 2.2. Let ∆ be a (d − 1)-dimensional simplicial complex. Then,

f
sd(∆)
i,j =

i
∑

k=0

j! S(k, j)f∆
i,k,

for 0 6 j 6 i 6 d, where S(k, j) is the Stirling number of the second kind.

P r o o f. An (i, j)-face of the barycentric subdivision sd(∆) of ∆ is given by

a subset {F1, . . . , Fj} of j faces of ∆ \ {∅} such that

F1 ⊂ F2 ⊂ . . . ⊂ Fj ,

with δ(Fj) = i. For a face F 6= ∅ of ∆ of cardinality greater or equel to j, we can

identify a chain F1 ⊂ . . . ⊂ Fj = F in the barycentric subdivision with the ordered

set partition F1 | F2 \ F1 | . . . | Fj \ Fj−1 of F = Fj .
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If F has degree i, then this gives a bijection between the faces of cardinality j

and degree i of the barycentric subdivision with top element F and the ordered

set of partitions of F into j nonempty blocks. An ordered partition of a set with j

elements into j nonempty blocks is counted by the formula j!S(k, j), where k denotes

the cardinality of F = Fj .

We have f△
i,k such faces, so we multiply it with j!S(k, j) to get the result for our

case. Now by summing over all faces, that is, from k = 0 to i, we have the required

formula. �

The following example will demonstrate the above lemma:

Example 2.3. Let ∆ be the simplicial complex given in Figure 1 (a) and its

barycentric subdivision sd(∆) in Figure 1 (b). By Lemma 2.2, the f -triangle of ∆

and sd(∆) is obtained as follows:

0

0 0

0 1 1

1 3 3 1

→

0

0 0

0 2 2

1 7 12 6

In [2], Brenti and Welker define the number A(d, i, j) in the following way: let σ ∈ Sd

be a permutation of the symmetric group Sd and let D(σ) be the set of descents of σ,

i.e., D(σ) = {i ∈ [d−1] : σ(i) > σ(i+1)}. Set des(σ) = #D(σ). For 1 6 d, 1 6 j 6 d

and 0 6 i 6 d − 1, A(d, i, j) denotes the number of permutations σ ∈ Sd such that

σ(1) = j and des(σ) = i.

1 2

3

4

(a)

1 212

3

4

34

13 23

123

(b)

Figure 1.

We modify the number A(d, i, j) in the following way: we denote by B(d, i, j) the

number of permutations σ ∈ Sd such that des(σ) = i and σ(d) = j. The h-triangle

of the barycentric subdivision is then given by:
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Theorem 2.4. Let ∆ be a (d − 1)-dimensional simplicial complex. Then

h
sd(∆)
i,j =

i
∑

r=0

B(i + 1, j, i + 1 − r)h∆
i,r,

for 0 6 j 6 i 6 d.

P r o o f. By applying the definition of the h-triangle of the barycentric subdivi-

sion, we have

h
sd(∆)
i,j =

j
∑

k=0

(−1)j−k

(

i − k

j − k

)

f
sd(∆)
i,k .

By substituting the value of fi,k from Lemma 2.2, we get

h
sd(∆)
i,j =

j
∑

k=0

(−1)j−k

(

i − k

j − k

) i
∑

t=0

k!S(t, k)f
sd(∆)
i,t

h
sd(∆)
i,j =

j
∑

k=0

i
∑

t=0

(−1)j−k

(

i − k

j − k

)

k!S(t, k)f
sd(∆)
i,t .

Now applying the reverse relation of f
sd(∆)
i,t , we get

h
sd(∆)
i,j =

j
∑

k=0

i
∑

t=0

(−1)j−k

(

i − k

j − k

)

k! S(t, k)

t
∑

r=0

(

i − r

i − t

)

h∆
i,r(2.1)

=
i

∑

r=0

( i
∑

t=0

j
∑

k=0

(−1)j−k

(

i − k

j − k

)(

i − r

i − t

)

k! S(t, k)

)

h∆
i,r.

By [2], we have

i
∑

t=0

j
∑

k=0

(−1)j−k

(

i − k

j − k

)(

i − r

i − t

)

k!S(t, k)

=
∑

{T⊆[i],#T=j}

#{σ ∈ Pi ; D(σ) = j, σ(i) = i + 1 − r}

= #{σ ∈ Pi+1 ; des(σ) = j, σ(i + 1) = i + 1 − r},

which describes the number B(i + 1, j, i + 1 − r), hence Equation 2.1 implies:

h
sd(∆)
i,j =

i
∑

r=0

B(i + 1, j, i + 1 − r)h∆
i,r.

�

It is easy to see that Theorem 2.4 verifies the following elementary properties of

hsd(∆) given in (Lemma 3.3, [1]):
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Corollary 2.5.

(i) h
sd(∆)
d,0 = 1 and hsd

s,0 = 0 for 0 6 s < d.

(ii)
s

∑

j=0

h
sd(∆)
s,j equals the number of (s − 1)-dimensional facets of sd(∆).

P r o o f. (i) h
sd(∆)
d,0 =

d
∑

r=0
B(d + 1, 0, i + 1 − r)h∆

d,r = h∆
d,0 = 1, hd,i = 0 for i > 0.

Analogously hsd
s,0 =

s
∑

r=0
B(s + 1, 0, i + 1 − r)h∆

d,r = 0.

(ii) It follows from Theorem 2.4. �

We conclude with the following important result:

Corollary 2.6. If h∆
i,j > 0, then the following holds:

(i) h
sd(∆)
i,j > 0,

(ii) h
sd(∆)
i,j > h

hi,j

i,j ,

for all 0 6 j 6 i 6 d.

P r o o f. (i) By definition, the number B(d, i, j) is nonnegative, so by Theo-

rem 2.4 the result holds.

(ii) By hypothesis and again by Theorem 2.4, h
sd(∆)
i,j > B(i + 1, j, i + 1 − j)h∆

i,j .

Thus if B(i + 1, j, i + 1− j) > 1, then we are done, i.e., there is at least one element

σ ∈ Si+1 such that σ(i + 1) = i + 1 − j with des(σ) = j. But σ(l) = i + 2 − l for

1 6 l 6 j and σ(l) = l − j for j + 1 6 l 6 i + 1 is the required element. �
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