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On generalized f-harmonic morphisms

A. MOHAMMED CHERIF, DJAA MUSTAPHA

Abstract. In this paper, we study the characterization of generalized f-harmonic
morphisms between Riemannian manifolds. We prove that a map between Rie-
mannian manifolds is an f-harmonic morphism if and only if it is a horizontally
weakly conformal map satisfying some further conditions. We present new pro-
perties generalizing Fuglede-Ishihara characterization for harmonic morphisms
([Fuglede B., Harmonic morphisms between Riemannian manifolds, Ann. Inst.
Fourier (Grenoble) 28 (1978), 107-144], [Ishihara T., A mapping of Riemann-
ian manifolds which preserves harmonic functions, J. Math. Kyoto Univ. 19
(1979), no. 2, 215-229]).
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1. Introduction

Consider a smooth map ¢ : (M, g) — (N, h) between Riemannian manifolds
and let f : M x N — (0, +00) be a smooth positive function. The map ¢ is said
to be f-harmonic (in a generalized sense) if it is a critical point of the f-energy
functional

(11) Bi(e) =3 [ faole)) e v,

The Euler-Lagrange equation associated to the f-energy functional is

(1.2)  7p(p) = for(p) +dp(grad™ £,) — e(p)(grad™ f) oo =0,

where f, : M — (0, +00) is a smooth positive function defined by

(13) f@(z) :f(z,sﬁ(z)), VLL‘GM,

7(p) = tracey Vdyp is the tension field of ¢, and e(p) = 3|dp[? is the energy
density of . 7(p) is called the f-tension field of ¢ ([4]).

In particular, if ¢ : M — N has no critical points, i.e. |dzp| # 0, then
harmonic maps, p-harmonic maps and F-harmonic maps ([1]) are f-harmonic
maps with f =1, f = |dp[P~2 and f = F’(%) respectively.

Let f1 : M — (0,00) be a smooth function. If f(z,y) = fi(z) for all (z,y) €
M x N, then 74(p) = 7, (¢) = fi7(¢) + dp(grad™ f1). Moreover, o : M — N
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is f-harmonic if and only if it is fi-harmonic in the sense of A. Lichnerowicz [9]
and N. Course [3].

The identity map Id : (R™, (-, -ygm) — (R™, (-, )rm ) is f-harmonic if it satis-
fies the system of differential equation

af 2fmaf70

1.4 . - =

(14) Ozt 2 Oyt ’

for all i = 1,...,m, where f € C®°(R™ x R™) be a smooth positive function.
Let FF € C*(R™) be a smooth positive function, then the function of type
fl@t, o amoyt oy = Fy — 352t y™ — 35m™) satisfies the sys-

tem of differential equation (1.4).

For more details and examples of f-harmonic maps (in a generalized sense),
we can refer to [4] and [5].

2. f-harmonic morphisms

Let o : (M™,g9) — (N™, h) be a smooth mapping between Riemannian mani-
folds. The critical set of ¢ is the set C, = {x € M |dyp = 0}. The map ¢ is said
to be horizontally weakly conformal or semi-conformal if for each € M\C,, the
restriction of d,p to H, is surjective and conformal, where the horizontal space
‘H . is the orthogonal complement of V, = Kerd;p. The horizontal conformality
of ¢ implies that there exists a function A : M\C, — R, such that for all
z e M\Cy, and X,Y € H,

The map ¢ is horizontally weakly conformal at z with dilation A(z) if and only
if in any local coordinates (y*) on a neighbourhood of ¢(z),

(22)  glgrad" ¢*, grad” o) = N (kP og)  (a,8=1,...,n).
Let f: M xR — (0,400), (z,t) — f(z,t) be a smooth function.

Definition 2.1. A C?-function « : U — R defined on an open subset U of M
is called f-harmonic if

(2.3) Ayu = fu AMy 4+ du(gradM fu) —e(u) (fl)u =0,

where f,, : M — (0, 400) is a smooth function defined by

(2'4) fU(x) = f(x,u(x)), rel,
(f)u : M — (0,+00) is a smooth function defined by
(2. () = Do ute)), weU
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Definition 2.2. The map ¢ : (M, g) — (N, h) is called a f-harmonic morphism
if, for every harmonic function v : V. — R defined on an open subset V of N
with ¢ ~!(V) non-empty, the composition v o ¢ is f-harmonic on ¢~*(V).
Theorem 2.1. Let ¢ : (M™, g) — (N™, h) be a smooth map. Let f : M xR —
(0,4+00) be a smooth function. Then, the following are equivalent:

(1) ¢ is an f-harmonic morphism;

(2) ¢ is a horizontally weakly conformal with dilation \ satisfying

1
(2.6) foo T(0)* + g(grad™ fe, grad™ ¢*) — SN (fen (h 0 0) = 0,

for allaw =1,...,n and in any local coordinates (y*) on N;
(3) there exists a smooth positive function A on M such that

AF (V0 9) = fuap A (ANw) 0 ¢,
for every smooth function v : V.— R defined on an open subset V of N.

We will need the following lemma to prove the theorem.

Lemma 2.1 ([8]). Let yo be a point in N™, let (y”) be normal coordinates
on N centered at yo and let {cy,caply 5.,-1 be constants with cap = cga and
Za Caa = 0. Then there exists a neighborhood V of yg in N and a harmonic
function v : V. — R such that

Ov 8%v

2. . =Cay F an B

(yO) = Cap,

for all o, B,y =1,...,n.

PROOF OF THEOREM 2.1: Suppose ¢ : (M™,g9) — (N™ h) is a f-harmonic
morphism. If zo € M, consider systems of local coordinates (%) and (y®) around
Zo, Yo = @(x0), respectively, where we assume that (y®) are normal, centered
at yo. To prove the horizontal conformality of ¢, we apply Lemma 2.1, that is,
we may for every sequence (Caﬁ)Zﬁ:l with cap = cga and ) caq = 0 choose a
harmonic function v such that

v 0%
2.8 — =0, —— = Cap,
(2.8) By (yo0) =0, 957057 (Yo) = cap
for all a,8 = 1,...,n. By assumption, the function v o ¢ is f-harmonic in a

neighbourhood of zg, so by Definition 2.1
0 :Ay (voy)
= Foop AM (v 0 @) + dv(dp(grad™ fuop)) = e(v o @) (f)uog-

In particular, since at xg we have

(2.9)

(2.10) dv(dgp(grad™ fue,)) =0,

19
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we get
(2.11) e(vop)=0.
By (2.9), (2.10) and (2.11) we have

0=AM (o)
(2.12) = dv(1(p)) + tracey Vdu(de, dyp)
= tracey Vdv(dep, dp).

Since at xg we have

82
(2.13) Vdv=Y" ngﬁdya ©dy’ =3 capdy® © dy”,
B B

by (2.8), (2.12) and (2.13), we obtain

0= Z g(grad™ o, grad™ ¢P)cas

(2.14) o
= Z g(grad™ o, grad™ ©*)can + Z g(grad™ o, grad™ ¢P)cas.
o arB
We subtract
(2.15) 0= Zg(gradM o, grad™ ol)caa.

(e

By (2.14) and (2.15), we obtain

0= [glgrad™ ¢*, grad o) — g(grad o', grad™ o) caa

(e

+ Z g(grad™ ¢, grad™ ©?)c,p.
arf

Let cvg # 1 and let

(2.16)

1, ifa=p=1;
-1, ifa= L= ag;

Cag = .
0) 1foz:ﬁ7él,a0;
0, ifap.
Then by (2.16), we have
(2.17) g(grad™ ¢, grad" ) = g(grad™ ', grad™ ).

Then

(2.18) g(gradM 0%, gradM %) = g(gradM o, gradM gol),
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for all a =1,...,n. Let ag # By and let

1, if a =« and g = Po;
Cap =40, if a# ag or B # Po;

0, ifa=2.
Then by (2.16), we have
(2.19) g(grad™ o, grad™ o) = 0.
So we have
(2.20) g(grad™ ¢, grad ¢”) =0,

for all « # g =1,...,n. It follows from (2.18) and (2.20) that the f-harmonic
morphism ¢ is horizontally weakly conformal map

(2.21) g(grad™ o, grad™ %) = \2 5,4,

for all a, 3 = 1,...,n. For every C?-function v : V. — R defined on an open
subset V of N, we have

AY (00 @) = fuop AM (v 0 9) + du(dp(grad™ frop)) — (v o )(f )uop
(2.22) = foopdv(T(¢)) + fuop tracey Vdu(dy, dyp)
+ d’U(d(p(gradM fvov)) - e(U o (P)(fl)vocp-

Since ¢ is horizontally weakly conformal map, we obtain

AV (009) = foopdv(1(9)) + frop N (ANV) 0 0

2.23
( : + dU(d(p(gradM fvocp)) - e(U o) (fl)vow

By choosing v to be a harmonic function and since ¢ is an f-harmonic morphism,
we conclude that

fvocde(T((P)) + d’U(d(p(gradM fvosa)) - e(U o (P)(f/)vocp =0,

i.e. in any local coordinates (y*) on N, we have

1
foo T(@)* + g(gradM fw,gradM ) — 5)\2(f’)¢a (h** 0 ) =0,

foralla=1,...,n.

Thus, we obtain the implication (1) = (2). Furthermore, the implication
(2) = (3) follows from the formula (2.23). The implication (3) = (1) is
trivial. (]

21
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Example 2.1. The identity map Id : (R™, (-, )gm) — (R™, (-, )gm) is f-
harmonic morphism if f satisfies the system of differential equation

of 10f
2.24 -+ —— =0
(2:24) ox? * 2 Ot ’
for all ¢ = 1,...,m, where f € C°(R™ x R) is a smooth positive function.
Let F e C °°( R™) be a smooth positive function, then the function of the type
[zt 1) = F(t — a',...,t — a™), satisfies the system of differential

equatlon (2 24)

If f(z,t) = 1 for all (x,t) € M x R, the condition (2.6) is equivalent to the
condition 7(¢) = 0 i.e. ¢ is harmonic. We arrive at the following corollary.

Corollary 2.1 ([6], [8]). A smooth map ¢ : M — N between Riemannian
manifolds is a harmonic morphism if and only if ¢ : M — N is both harmonic
and horizontally weakly conformal.

If f(z,t) = fi(x) for all (z,t) € M x R, where f; € C>®°(M) is a smooth
positive function, the condition (2.6) is equivalent to the condition fi7(p) +
dcp(gradM f1) =01ie. pis fi-harmonic. We arrive at the following corollary.

Corollary 2.2 ([10]). A smooth map ¢ : M — N between Riemannian mani-
folds is a fi-harmonic morphism if and only if ¢ : M — N is both fi-harmonic
and horizontally weakly conformal with f; € C*°(M) being a smooth positive
function.

Let f: M xR — (0,400), (z,t) — f(z,t) be a smooth function.

Corollary 2.3. Let ¢ : M — N be an f-harmonic morphism between Riemann-
ian manifolds with dilation A1 and ¢ : N — P a harmonic morphism between
Riemannian manifolds with dilation Ao. Then the composition pop : M — P
is an f-harmonic morphism with dilation A1(Ag o ¢).

Proor: This follows from the fact that
A (Vo 9) = frop AT (AN0) 0,
for every smooth function v : V' — R defined on an open subset V of N, and
Muoy) = X3 (ATu) oy,
for every smooth function u : U — R defined on an open subset U of P. So that

A}VI(UO’I/)OSD) = fuowoap)‘l ( (Uow))
= fuopopM] (A2 0 9)*(A U) othop.



On generalized f-harmonic morphisms

Corollary 2.4. Let ¢ : (M,g9) — (N, h) be a smooth map of two Riemannian
manifolds. If f(x,t) = fi(x) f2(t) for all (z,t) € M x R, where f; € C*(M) is a
smooth positive function and fa € C*°(R) is a smooth positive function. Then,
the following are equivalent:

(1) ¢ is an f-harmonic morphism;
(2) ¢ is a horizontally weakly conformal with dilation \ satisfying

1
(2:25) (f200™) T (9)* + 5N f1(f3 0 97) (R 0 ) =0,
for alla = 1,...,n and in any local coordinates (y®) on N.

ProOF: By Theorem 2.1, the map ¢ : (M, g) — (N, h) is f-harmonic morphism
if and only if ¢ : (M, g) — (I, h) is a horizontally weakly conformal with dilation
A satisfying the condition

1
For (@) + glgrad™ foo, grad™ %) — SX*(f)ge (R 0 0) =0,
for all « = 1,...,n, and in any local coordinates (y*) on N, i.e.
fi(f209™) ()™ + frg(grad™ (f2 0 %), grad™ o)
(226) (e M M « 1 2 / [l aq
+(f209%)g(grad™ fi, grad™ %) — SATfi(f2 0 9%)(h** 0 0) =0,

because foo = f1(f2 0 @%).
Let 71, (¢) = f17() + dp(grad™ f1) be the fi-tension field of ¢, then one has

(2.27) 71 () = fir(p)® + g(grad™ fi, grad™ o).
By (2.26) and (2.27), we obtain

(f209%) 7 (0)* + frg(grad™ (f2 0 ), grad™ ¢*)
(2.28) 1
— 5)\2f1(fé 0 *)(h** 0 ) =0,

the second term on the left-hand side of (2.28) is
frg(grad™ (fz 0 o), grad™ ©*) = f1(f} o ¢®)g(grad™ o, grad™ o)
N fi(f3 0 0")(h* 0 ).
(I

In the case where fo = 1, we recover the result obtained by Y.L. Ou [10] of
fi-harmonic morphisms (in the sense of A. Lichnerowicz [9] and N. Course [3]).

Proposition 2.1. Let (M, g) be a Riemannian manifold. A smooth map

P (M,g) — (Rn7<'7'>R")7 T — (‘Pl('r)v"-a‘pn('r))

23
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is an f-harmonic morphism if and only if its components p® are f-harmonic
functions whose gradients are orthogonal and of the same norm at each point.

PROOF: Let us notice that the condition (2.6) of Theorem 2.1 becomes

Foo AM@® + g(grad™ foa, grad™ o) — e(0®)(f)pe =0,
for all « =1,...,n, i.e. the functions ¢ are f-harmonic. (I

Proposition 2.2. Let ¢ : (M,g9) — (R™,(-,-)rn) be a harmonic morphism
of two Riemannian manifolds. Then ¢ : (M,g) — (R, (:,-)rn) is f-harmonic
morphism with f(x,t) = fi(z)e'*¢ for all (z,t) € M xR and f; € C*°(M) being
a smooth positive function defined by the components of ¢ as follows

1o g™
fi=e (7t )7

where c € Ry.

PROOF: The map ¢ : (M, g) — (R", (-, -)gn) where ¢ = (', ..., ¢") is harmonic
morphism if and only if it is harmonic horizontally and weakly conformal with
dilation \. Let f; = e~ 3 ++¢") g0 that

Tr(9)* = fi7(9)* + g(grad™ f1, grad™ o) = g(grad™ f1, grad" o),
because ¢ is harmonic. One has

1
gradl\/[ fi = —56 — (Pt )(gradl\/[(p + - —l—gradM ")

1
= —§f1 (gradM ot 4+ gradM ).

So we get

1
Th(9)* = —5h (g(gradM o', grad™ o) + - + g(grad" ¢, grad™ sﬂ“))

Since ¢ is horizontally and weakly conformal with dilation A, we obtain

(2.29) 710" = 5N fal( w0 =~ X2 fr

Let f(z,t) = fi(z)e'™e for all (x,t) € M x R, where ¢ € R;. Then the condition
(2.25) is equivalent to (2.29). Finally, by Corollary 2.4 the map ¢ is f-harmonic
morphism. ([l

Example 2.2. Let (M, g) be a Riemannian manifold, v : M — (0,00) be a
smooth function and let M x.2 R™ be the warped product equipped with the
Riemannian metric G, = g + 2 (-, -)g». The natural projection

o - (M X2 RnaG’Y) — (Rna <'a '>]R")’
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is harmonic morphism ([2]). According to Proposition 2.2 the natural projection
o is f-harmonic morphism with

f(l‘ayh"wynyt) :eié(yl+m+yn)+t+c, c E RJ,_

for all (x,y1,...,Yn,t) € M x R™ x R.
Example 2.3. Let H™ = (R™! x R, L%(, ygm ). The projection

Tt H™ — (Rm_l, <', '>]Rm—1), (l‘l, A ,l‘mfl,l‘m) — a(zl, e ,l‘mfl),

where a € R\{0} is harmonic morphism ([2]). According to Proposition 2.2 the
projection 71 is f-harmonic morphism with

f(zla sy Tm—1, zmat) = 67§(I1+...+mm71)+t+c, c e R+

for all (x1,...,Tm-1,Tm,t) € H™ X R.
Example 2.4. (1) Let ¢ : (R®\{0}, (-, )g2) — (R?\{0}, (-, -)r2) be defined by

P = (a my e

Then ¢ is a horizontally and weakly conformal map with dilation A(x,y) =
and ¢ is f-harmonic morphism with

1
22 4y2

xr+y )

f(@,y,t) =F<2t—m

where F': R — (0, 00) is a smooth function. Indeed, we have

for(z,y) = F(ﬁ)

T

_ 2 =
x2+y27 (10 (‘r7y)

1 . Y
@(l‘ay)_ z2+y2’

y—{L‘ 2 2
folwy) = F(5—5), AFpl=a® g —,

ZL‘2 + y2
2 2
2 yc—x 2xy
rad® ol = ( — )
g ¥ @2+ y2)2° (@2 +y2)2 /)
2 2zy 2 — g2
d]R 2 = ( - ) )7
grad ¢ (22 +y2)2 " (22 1 y2)?

x—y )(—x2+y2+2xy x2—y2+2xy)

2
dr _ F’( —
grad™ fo1 22+ 42 (22 + y2)2 (22 1 y2)?

y—z )(azQ—yQ—%cy xQ—y2+2xy)
Y

d]R2 — F/(
grad™ fg2 22 1 42 22 +y2)2 (22 + y2)2

25
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F/ r—y
R 1 R2 z24-y?
(grad™ ¢ grad™ forhes = Ty
2 2 ity
(grad” ¢? grad” foe)pe = (@ +y?)?
1 -y YL
1 2 / ! ! '
e (e (). - (222)
6(90 ) €(S0 ) 2($2+y2)2 (f )SD z2+y2 (f )4,0 :]C2+y2

By (2.3) the functions ¢! and ? are f-harmonic and by Proposition 2.1 the map
@ is f-harmonic morphism. With the same method we find that:

(2) Let ¢ : (R3\{0}, (-, )rs) —> (R3\{0}, (-, -)rs) be defined by

Y(x,y,2) = (ac2+y2+22’x2+y2+22’x2+y2+22

Then v is f-harmonic morphism with

F(Qtf M)

22 4y?+22
QL‘Q +y2 +22

f(z,y,z,t) =

?

where F' : R — (0, 00) is a smooth function. Here ¢ is a horizontally and weakly

conformal map with dilation A\(z,y, z) =

1
24y?+22°

Remark 2.1. Using Proposition 2.1, we can construct many examples for f-
harmonic morphisms (in a generalized sense).

Proposition 2.2 remains true for the map ¢ : (M, g) — (N, h), where N is an
open subsets of R and h = e*®) (-, -)gn is a metric conformally equivalent to the
standard inner product on R".
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