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On generalized f-harmonic morphisms

A. Mohammed Cherif, Djaa Mustapha

Abstract. In this paper, we study the characterization of generalized f -harmonic
morphisms between Riemannian manifolds. We prove that a map between Rie-
mannian manifolds is an f -harmonic morphism if and only if it is a horizontally
weakly conformal map satisfying some further conditions. We present new pro-
perties generalizing Fuglede-Ishihara characterization for harmonic morphisms
([Fuglede B., Harmonic morphisms between Riemannian manifolds, Ann. Inst.
Fourier (Grenoble) 28 (1978), 107–144], [Ishihara T., A mapping of Riemann-

ian manifolds which preserves harmonic functions, J. Math. Kyoto Univ. 19

(1979), no. 2, 215–229]).
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Classification: 53C43, 58E20

1. Introduction

Consider a smooth map ϕ : (M, g) −→ (N, h) between Riemannian manifolds
and let f :M ×N −→ (0,+∞) be a smooth positive function. The map ϕ is said
to be f -harmonic (in a generalized sense) if it is a critical point of the f -energy
functional

(1.1) Ef (ϕ) =
1

2

∫

M

f(x, ϕ(x)) |dϕ|2 vg,

The Euler-Lagrange equation associated to the f -energy functional is

τf (ϕ) ≡ fϕτ(ϕ) + dϕ(gradM fϕ)− e(ϕ)(gradN f) ◦ ϕ = 0,(1.2)

where fϕ :M −→ (0,+∞) is a smooth positive function defined by

(1.3) fϕ(x) = f(x, ϕ(x)), ∀x ∈M,

τ(ϕ) = traceg∇dϕ is the tension field of ϕ, and e(ϕ) = 1
2 |dϕ|

2 is the energy
density of ϕ. τf (ϕ) is called the f -tension field of ϕ ([4]).

In particular, if ϕ : M −→ N has no critical points, i.e. |dxϕ| 6= 0, then
harmonic maps, p-harmonic maps and F -harmonic maps ([1]) are f -harmonic

maps with f = 1, f = |dϕ|p−2 and f = F ′( |dϕ|
2

2 ) respectively.
Let f1 : M −→ (0,∞) be a smooth function. If f(x, y) = f1(x) for all (x, y) ∈

M ×N , then τf (ϕ) = τf1(ϕ) = f1τ(ϕ) + dϕ(gradM f1). Moreover, ϕ : M −→ N
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is f -harmonic if and only if it is f1-harmonic in the sense of A. Lichnerowicz [9]
and N. Course [3].

The identity map Id : (Rm, 〈·, ·〉Rm) −→ (Rm, 〈·, ·〉Rm) is f -harmonic if it satis-
fies the system of differential equation

(1.4)
∂f

∂xi
+

2−m

2

∂f

∂yi
= 0,

for all i = 1, . . . ,m, where f ∈ C∞(Rm × R
m) be a smooth positive function.

Let F ∈ C∞(Rm) be a smooth positive function, then the function of type
f(x1, . . . , xm, y1, . . . , ym) = F (y1 − 2−m

2 x1, . . . , ym − 2−m
2 xm) satisfies the sys-

tem of differential equation (1.4).

For more details and examples of f -harmonic maps (in a generalized sense),
we can refer to [4] and [5].

2. f-harmonic morphisms

Let ϕ : (Mm, g) −→ (Nn, h) be a smooth mapping between Riemannian mani-
folds. The critical set of ϕ is the set Cϕ = {x ∈M | dxϕ = 0}. The map ϕ is said
to be horizontally weakly conformal or semi-conformal if for each x ∈M\Cϕ, the
restriction of dxϕ to Hx is surjective and conformal, where the horizontal space
Hx is the orthogonal complement of Vx = Ker dxϕ. The horizontal conformality
of ϕ implies that there exists a function λ : M\Cϕ −→ R+ such that for all
x ∈M\Cϕ and X,Y ∈ Hx

(2.1) h(dxϕ(X), dxϕ(Y )) = λ(x)2g(X,Y ).

The map ϕ is horizontally weakly conformal at x with dilation λ(x) if and only
if in any local coordinates (yα) on a neighbourhood of ϕ(x),

(2.2) g(gradM ϕα, gradM ϕβ) = λ2(hαβ ◦ ϕ) (α, β = 1, . . . , n).

Let f :M × R −→ (0,+∞), (x, t) 7−→ f(x, t) be a smooth function.

Definition 2.1. A C2-function u : U −→ R defined on an open subset U of M
is called f -harmonic if

(2.3) ∆M
f u ≡ fu∆

Mu+ du(gradM fu)− e(u) (f ′)u = 0,

where fu : M −→ (0,+∞) is a smooth function defined by

(2.4) fu(x) = f(x, u(x)), x ∈ U,

(f ′)u :M −→ (0,+∞) is a smooth function defined by

(2.5) (f ′)u(x) =
∂f

∂t
(x, u(x)), x ∈ U.
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Definition 2.2. The map ϕ : (M, g) −→ (N, h) is called a f -harmonic morphism
if, for every harmonic function v : V −→ R defined on an open subset V of N
with ϕ−1(V ) non-empty, the composition v ◦ ϕ is f -harmonic on ϕ−1(V ).

Theorem 2.1. Let ϕ : (Mm, g) −→ (Nn, h) be a smooth map. Let f : M×R −→
(0,+∞) be a smooth function. Then, the following are equivalent:

(1) ϕ is an f -harmonic morphism;

(2) ϕ is a horizontally weakly conformal with dilation λ satisfying

(2.6) fϕα τ(ϕ)α + g(gradM fϕα , gradM ϕα)−
1

2
λ2(f ′)ϕα(hαα ◦ ϕ) = 0,

for all α = 1, . . . , n and in any local coordinates (yα) on N ;

(3) there exists a smooth positive function λ on M such that

∆M
f (v ◦ ϕ) = fv◦ϕ λ

2 (∆Nv) ◦ ϕ,

for every smooth function v : V −→ R defined on an open subset V of N .

We will need the following lemma to prove the theorem.

Lemma 2.1 ([8]). Let y0 be a point in Nn, let (yγ) be normal coordinates

on N centered at y0 and let {cγ , cαβ}
n
α,β,γ=1 be constants with cαβ = cβα and

∑

α cαα = 0. Then there exists a neighborhood V of y0 in N and a harmonic

function v : V −→ R such that

(2.7)
∂v

∂yα
(y0) = cα,

∂2v

∂yα∂yβ
(y0) = cαβ ,

for all α, β, γ = 1, . . . , n.

Proof of Theorem 2.1: Suppose ϕ : (Mm, g) −→ (Nn, h) is a f -harmonic
morphism. If x0 ∈M , consider systems of local coordinates (xi) and (yα) around
x0, y0 = ϕ(x0), respectively, where we assume that (yα) are normal, centered
at y0. To prove the horizontal conformality of ϕ, we apply Lemma 2.1, that is,
we may for every sequence (cαβ)

n
α,β=1 with cαβ = cβα and

∑

α cαα = 0 choose a
harmonic function v such that

(2.8)
∂v

∂yα
(y0) = 0,

∂2v

∂yα∂yβ
(y0) = cαβ ,

for all α, β = 1, . . . , n. By assumption, the function v ◦ ϕ is f -harmonic in a
neighbourhood of x0, so by Definition 2.1

(2.9)
0 =∆M

f (v ◦ ϕ)

=fv◦ϕ∆
M (v ◦ ϕ) + dv(dϕ(gradM fv◦ϕ))− e(v ◦ ϕ) (f ′)v◦ϕ.

In particular, since at x0 we have

(2.10) dv(dϕ(gradM fv◦ϕ)) = 0,
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we get

(2.11) e(v ◦ ϕ) = 0.

By (2.9), (2.10) and (2.11) we have

(2.12)

0 = ∆M (v ◦ ϕ)

= dv(τ(ϕ)) + traceg∇dv(dϕ, dϕ)

= traceg∇dv(dϕ, dϕ).

Since at x0 we have

(2.13) ∇dv =
∑

α,β

∂2v

∂yα∂yβ
dyα ⊗ dyβ =

∑

α,β

cαβdy
α ⊗ dyβ,

by (2.8), (2.12) and (2.13), we obtain

(2.14)

0 =
∑

α,β

g(gradM ϕα, gradM ϕβ)cαβ

=
∑

α

g(gradM ϕα, gradM ϕα)cαα +
∑

α6=β

g(gradM ϕα, gradM ϕβ)cαβ .

We subtract

(2.15) 0 =
∑

α

g(gradM ϕ1, gradM ϕ1)cαα.

By (2.14) and (2.15), we obtain

(2.16)

0 =
∑

α

[

g(gradM ϕα, gradM ϕα)− g(gradM ϕ1, gradM ϕ1)
]

cαα

+
∑

α6=β

g(gradM ϕα, gradM ϕβ)cαβ .

Let α0 6= 1 and let

cαβ =



















1, if α = β = 1;

−1, if α = β = α0;

0, if α = β 6= 1, α0;

0, if α 6= β.

Then by (2.16), we have

(2.17) g(gradM ϕα0 , gradM ϕα0) = g(gradM ϕ1, gradM ϕ1).

Then

(2.18) g(gradM ϕα, gradM ϕα) = g(gradM ϕ1, gradM ϕ1),
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for all α = 1, . . . , n. Let α0 6= β0 and let

cαβ =











1, if α = α0 and β = β0;

0, if α 6= α0 or β 6= β0;

0, if α = β.

Then by (2.16), we have

(2.19) g(gradM ϕα0 , gradM ϕβ0) = 0.

So we have

(2.20) g(gradM ϕα, gradM ϕβ) = 0,

for all α 6= β = 1, . . . , n. It follows from (2.18) and (2.20) that the f -harmonic
morphism ϕ is horizontally weakly conformal map

(2.21) g(gradM ϕα, gradM ϕβ) = λ2 δαβ,

for all α, β = 1, . . . , n. For every C2-function v : V −→ R defined on an open
subset V of N , we have

(2.22)

∆M
f (v ◦ ϕ) = fv◦ϕ∆

M (v ◦ ϕ) + dv(dϕ(gradM fv◦ϕ))− e(v ◦ ϕ)(f ′)v◦ϕ

= fv◦ϕdv(τ(ϕ)) + fv◦ϕ traceg∇dv(dϕ, dϕ)

+ dv(dϕ(gradM fv◦ϕ))− e(v ◦ ϕ)(f ′)v◦ϕ.

Since ϕ is horizontally weakly conformal map, we obtain

(2.23)
∆M
f (v ◦ ϕ) = fv◦ϕdv(τ(ϕ)) + fv◦ϕλ

2(∆Nv) ◦ ϕ

+ dv(dϕ(gradM fv◦ϕ))− e(v ◦ ϕ)(f ′)v◦ϕ.

By choosing v to be a harmonic function and since ϕ is an f -harmonic morphism,
we conclude that

fv◦ϕdv(τ(ϕ)) + dv(dϕ(gradM fv◦ϕ))− e(v ◦ ϕ)(f ′)v◦ϕ = 0,

i.e. in any local coordinates (yα) on N , we have

fϕα τ(ϕ)α + g(gradM fϕα , gradM ϕα)−
1

2
λ2(f ′)ϕα(hαα ◦ ϕ) = 0,

for all α = 1, . . . , n.
Thus, we obtain the implication (1) =⇒ (2). Furthermore, the implication

(2) =⇒ (3) follows from the formula (2.23). The implication (3) =⇒ (1) is
trivial. �
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Example 2.1. The identity map Id : (Rm, 〈·, ·〉Rm) −→ (Rm, 〈·, ·〉Rm) is f -
harmonic morphism if f satisfies the system of differential equation

(2.24)
∂f

∂xi
+

1

2

∂f

∂t
= 0,

for all i = 1, . . . ,m, where f ∈ C∞(Rm × R) is a smooth positive function.
Let F ∈ C∞(Rm) be a smooth positive function, then the function of the type
f(x1, . . . , xm, t) = F (t − 1

2x
1, . . . , t − 1

2x
m), satisfies the system of differential

equation (2.24).

If f(x, t) = 1 for all (x, t) ∈ M × R, the condition (2.6) is equivalent to the
condition τ(ϕ) = 0 i.e. ϕ is harmonic. We arrive at the following corollary.

Corollary 2.1 ([6], [8]). A smooth map ϕ : M −→ N between Riemannian

manifolds is a harmonic morphism if and only if ϕ : M −→ N is both harmonic

and horizontally weakly conformal.

If f(x, t) = f1(x) for all (x, t) ∈ M × R, where f1 ∈ C∞(M) is a smooth
positive function, the condition (2.6) is equivalent to the condition f1 τ(ϕ) +

dϕ(gradM f1) = 0 i.e. ϕ is f1-harmonic. We arrive at the following corollary.

Corollary 2.2 ([10]). A smooth map ϕ : M −→ N between Riemannian mani-

folds is a f1-harmonic morphism if and only if ϕ :M −→ N is both f1-harmonic

and horizontally weakly conformal with f1 ∈ C∞(M) being a smooth positive

function.

Let f :M × R −→ (0,+∞), (x, t) 7−→ f(x, t) be a smooth function.

Corollary 2.3. Let ϕ :M −→ N be an f -harmonic morphism between Riemann-

ian manifolds with dilation λ1 and ψ : N −→ P a harmonic morphism between

Riemannian manifolds with dilation λ2. Then the composition ψ ◦ ϕ : M −→ P

is an f -harmonic morphism with dilation λ1(λ2 ◦ ϕ).

Proof: This follows from the fact that

∆M
f (v ◦ ϕ) = fv◦ϕ λ

2
1 (∆

Nv) ◦ ϕ,

for every smooth function v : V −→ R defined on an open subset V of N , and

∆N (u ◦ ψ) = λ22 (∆
Pu) ◦ ψ,

for every smooth function u : U −→ R defined on an open subset U of P . So that

∆M
f (u ◦ ψ ◦ ϕ) = fu◦ψ◦ϕλ

2
1 (∆

N (u ◦ ψ)) ◦ ϕ

= fu◦ψ◦ϕλ
2
1 (λ2 ◦ ϕ)

2(∆Pu) ◦ ψ ◦ ϕ.

�
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Corollary 2.4. Let ϕ : (M, g) −→ (N, h) be a smooth map of two Riemannian

manifolds. If f(x, t) = f1(x) f2(t) for all (x, t) ∈M × R, where f1 ∈ C∞(M) is a
smooth positive function and f2 ∈ C∞(R) is a smooth positive function. Then,

the following are equivalent:

(1) ϕ is an f -harmonic morphism;

(2) ϕ is a horizontally weakly conformal with dilation λ satisfying

(2.25) (f2 ◦ ϕ
α) τf1 (ϕ)

α +
1

2
λ2f1(f

′
2 ◦ ϕ

α)(hαα ◦ ϕ) = 0,

for all α = 1, . . . , n and in any local coordinates (yα) on N .

Proof: By Theorem 2.1, the map ϕ : (M, g) −→ (N, h) is f -harmonic morphism
if and only if ϕ : (M, g) −→ (N, h) is a horizontally weakly conformal with dilation
λ satisfying the condition

fϕα τ(ϕ)α + g(gradM fϕα , gradM ϕα)−
1

2
λ2(f ′)ϕα(hαα ◦ ϕ) = 0,

for all α = 1, . . . , n, and in any local coordinates (yα) on N , i.e.

(2.26)
f1(f2 ◦ ϕ

α) τ(ϕ)α + f1g(grad
M (f2 ◦ ϕ

α), gradM ϕα)

+ (f2 ◦ ϕ
α)g(gradM f1, grad

M ϕα)−
1

2
λ2f1(f

′
2 ◦ ϕ

α)(hαα ◦ ϕ) = 0,

because fϕα = f1(f2 ◦ ϕ
α).

Let τf1 (ϕ) = f1 τ(ϕ) + dϕ(gradM f1) be the f1-tension field of ϕ, then one has

(2.27) τf1(ϕ)
α = f1τ(ϕ)

α + g(gradM f1, grad
M ϕα).

By (2.26) and (2.27), we obtain

(2.28)
(f2 ◦ ϕ

α) τf1(ϕ)
α + f1g(grad

M (f2 ◦ ϕ
α), gradM ϕα)

−
1

2
λ2f1(f

′
2 ◦ ϕ

α)(hαα ◦ ϕ) = 0,

the second term on the left-hand side of (2.28) is

f1g(grad
M (f2 ◦ ϕ

α), gradM ϕα) = f1(f
′
2 ◦ ϕ

α)g(gradM ϕα, gradM ϕα)

= λ2f1(f
′
2 ◦ ϕ

α)(hαα ◦ ϕ).

�

In the case where f2 = 1, we recover the result obtained by Y.L. Ou [10] of
f1-harmonic morphisms (in the sense of A. Lichnerowicz [9] and N. Course [3]).

Proposition 2.1. Let (M, g) be a Riemannian manifold. A smooth map

ϕ : (M, g) −→ (Rn, 〈·, ·〉Rn), x 7−→ (ϕ1(x), . . . , ϕn(x))
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is an f -harmonic morphism if and only if its components ϕα are f -harmonic

functions whose gradients are orthogonal and of the same norm at each point.

Proof: Let us notice that the condition (2.6) of Theorem 2.1 becomes

fϕα ∆Mϕα + g(gradM fϕα , gradM ϕα)− e(ϕα)(f ′)ϕα = 0,

for all α = 1, . . . , n, i.e. the functions ϕα are f -harmonic. �

Proposition 2.2. Let ϕ : (M, g) −→ (Rn, 〈·, ·〉Rn) be a harmonic morphism

of two Riemannian manifolds. Then ϕ : (M, g) −→ (Rn, 〈·, ·〉Rn) is f -harmonic

morphism with f(x, t) = f1(x) e
t+c for all (x, t) ∈M ×R and f1 ∈ C∞(M) being

a smooth positive function defined by the components of ϕ as follows

f1 = e−
1

2
(ϕ1+···+ϕn),

where c ∈ R+.

Proof: The map ϕ : (M, g) −→ (Rn, 〈·, ·〉Rn) where ϕ = (ϕ1, . . . , ϕn) is harmonic
morphism if and only if it is harmonic horizontally and weakly conformal with

dilation λ. Let f1 = e−
1

2
(ϕ1+···+ϕn), so that

τf1(ϕ)
α = f1τ(ϕ)

α + g(gradM f1, grad
M ϕα) = g(gradM f1, grad

M ϕα),

because ϕ is harmonic. One has

gradM f1 = −
1

2
e−

1

2
(ϕ1+···+ϕn)(gradM ϕ1 + · · ·+ gradM ϕn)

= −
1

2
f1(grad

M ϕ1 + · · ·+ gradM ϕn).

So we get

τf1(ϕ)
α = −

1

2
f1

(

g(gradM ϕ1, gradM ϕα) + · · ·+ g(gradM ϕn, gradM ϕα)
)

.

Since ϕ is horizontally and weakly conformal with dilation λ, we obtain

(2.29) τf1 (ϕ)
α = −

1

2
λ2 f1(〈·, ·〉Rn)αα ◦ ϕ = −

1

2
λ2 f1.

Let f(x, t) = f1(x) e
t+c for all (x, t) ∈M ×R, where c ∈ R+. Then the condition

(2.25) is equivalent to (2.29). Finally, by Corollary 2.4 the map ϕ is f -harmonic
morphism. �

Example 2.2. Let (M, g) be a Riemannian manifold, γ : M −→ (0,∞) be a
smooth function and let M ×γ2 R

n be the warped product equipped with the
Riemannian metric Gγ = g + γ2 〈·, ·〉Rn . The natural projection

π2 : (M ×γ2 R
n, Gγ) −→ (Rn, 〈·, ·〉Rn),
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is harmonic morphism ([2]). According to Proposition 2.2 the natural projection
π2 is f -harmonic morphism with

f(x, y1, . . . , yn, t) = e−
1

2
(y1+···+yn)+t+c, c ∈ R+

for all (x, y1, . . . , yn, t) ∈M × R
n × R.

Example 2.3. Let Hm = (Rm−1 × R
∗
+,

1
x2
m

〈·, ·〉Rm). The projection

π1 : Hm −→ (Rm−1, 〈·, ·〉Rm−1), (x1, . . . , xm−1, xm) 7−→ a (x1, . . . , xm−1),

where a ∈ R\{0} is harmonic morphism ([2]). According to Proposition 2.2 the
projection π1 is f -harmonic morphism with

f(x1, . . . , xm−1, xm, t) = e−
a

2
(x1+···+xm−1)+t+c, c ∈ R+

for all (x1, . . . , xm−1, xm, t) ∈ Hm × R.

Example 2.4. (1) Let ϕ : (R2\{0}, 〈·, ·〉R2) −→ (R2\{0}, 〈·, ·〉R2) be defined by

ϕ(x, y) =
( x

x2 + y2
,

y

x2 + y2

)

.

Then ϕ is a horizontally and weakly conformal map with dilation λ(x, y) = 1
x2+y2 ,

and ϕ is f -harmonic morphism with

f(x, y, t) = F
(

2 t−
x+ y

x2 + y2

)

,

where F : R −→ (0,∞) is a smooth function. Indeed, we have

ϕ1(x, y) =
x

x2 + y2
, ϕ2(x, y) =

y

x2 + y2
, fϕ1(x, y) = F

( x− y

x2 + y2

)

,

fϕ2(x, y) = F
( y − x

x2 + y2

)

, ∆R
2

ϕ1 = ∆R
2

ϕ2 = 0,

gradR
2

ϕ1 =
( y2 − x2

(x2 + y2)2
,−

2xy

(x2 + y2)2

)

,

gradR
2

ϕ2 =
(

−
2xy

(x2 + y2)2
,
x2 − y2

(x2 + y2)2

)

,

gradR
2

fϕ1 = F ′
( x− y

x2 + y2

)(−x2 + y2 + 2xy

(x2 + y2)2
,−

x2 − y2 + 2xy

(x2 + y2)2

)

,

gradR
2

fϕ2 = F ′
( y − x

x2 + y2

)(x2 − y2 − 2xy

(x2 + y2)2
,
x2 − y2 + 2xy

(x2 + y2)2

)

,
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〈gradR
2

ϕ1, gradR
2

fϕ1〉R2 =
F ′

(

x−y
x2+y2

)

(x2 + y2)2
,

〈gradR
2

ϕ2, gradR
2

fϕ2〉R2 =
F ′

(

y−x
x2+y2

)

(x2 + y2)2
,

e(ϕ1) = e(ϕ2) =
1

2(x2 + y2)2
, (f ′)ϕ1 = 2F ′

( x− y

x2 + y2

)

, (f ′)ϕ2 = 2F ′
( y − x

x2 + y2

)

.

By (2.3) the functions ϕ1 and ϕ2 are f -harmonic and by Proposition 2.1 the map
ϕ is f -harmonic morphism. With the same method we find that:

(2) Let ψ : (R3\{0}, 〈·, ·〉R3) −→ (R3\{0}, 〈·, ·〉R3) be defined by

ψ(x, y, z) =
( x

x2 + y2 + z2
,

y

x2 + y2 + z2
,

z

x2 + y2 + z2

)

.

Then ψ is f -harmonic morphism with

f(x, y, z, t) =
F
(

2 t− x+y+z
x2+y2+z2

)

x2 + y2 + z2
,

where F : R −→ (0,∞) is a smooth function. Here ψ is a horizontally and weakly
conformal map with dilation λ(x, y, z) = 1

x2+y2+z2 .

Remark 2.1. Using Proposition 2.1, we can construct many examples for f -
harmonic morphisms (in a generalized sense).

Proposition 2.2 remains true for the map ϕ : (M, g) −→ (N, h), where N is an
open subsets of Rn and h = eα(y)〈·, ·〉Rn is a metric conformally equivalent to the
standard inner product on R

n.
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