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Universal meager Fσ-sets in locally compact manifolds

Taras Banakh, Dušan Repovš

Dedicated to the 120th birthday anniversary of Eduard Čech.

Abstract. In each manifold M modeled on a finite or infinite dimensional cube
[0, 1]n, n ≤ ω, we construct a meager Fσ-subset X ⊂ M which is universal mea-

ger in the sense that for each meager subset A ⊂ M there is a homeomorphism
h : M → M such that h(A) ⊂ X. We also prove that any two universal meager
Fσ-sets in M are ambiently homeomorphic.

Keywords: universal nowhere dense subset, Sierpiński carpet, Menger cube, Hil-
bert cube manifold, n-manifold, tame ball, tame decomposition

Classification: 57N20, 57N45, 54F65

In this paper we shall construct and characterize universal meager Fσ-sets in
I
n-manifolds.
A meager subset A of a topological space X is called universal meager if for

each meager subset B ⊂ X there is a homeomorphism h : X → X such that
h(B) ⊂ A. So, each universal meager subset of X contains homeomorphic copies
of all other meager subsets of X .

In fact, the notion of a universal meager set is a special case of a more general
notion of a K-universal set for some family K of subsets of a topological space X .
Namely, we define a set U ∈ K to be K-universal if for each set K ∈ K there is a
homeomorphism h : X → X such that h(K) ⊂ U .

K-Universal sets for various classes K often appear in topology. A classical
example of such set is the Sierpiński Carpet M2

1 , known to be a K-universal set
for the family K of all (closed) nowhere dense subsets of the square I

2 = [0, 1]2

(see [14]). The Sierpiński Carpet M2
1 is one of the Menger cubes Mn

k , which
are K-universal for the family K of all k-dimensional compact subsets of the n-
dimensional cube I

n (see [15], [8, §4.1]). An analogue of the Sierpiński Carpet
exists also in the Hilbert cube Iω , which contains a Z0-universal set for the family
Z0 of closed nowhere dense subsets of Iω (see [3]).

Many K-universal spaces arise in infinite-dimensional topology. For example,
the pseudo-boundary B(Iω) = [0, 1]ω \ (0, 1)ω of the Hilbert cube I

ω is known to
be σZω-universal for the family σZω of σZω-subsets of I

ω . What is surprising, up
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to an ambient homeomorphism, B(Iω) is a unique σZω-universal set in I
ω . In this

paper we shall show that such a uniqueness theorem also holds for σZ0-universal
subsets in the Hilbert cube I

ω.
Let us recall the definition of the families σZω and σZ0. They consist of

σZω-sets and σZ0-sets, respectively.
A closed subset A of a topological space X is called a Zn-set in X for a (finite

or infinite) number n ≤ ω if the set {f ∈ C(In, X) : f(In) ∩ A = ∅} is dense
in the space C(In, X) of all continuous functions f : In → X , endowed with the
compact-open topology. Here by I = [0, 1] we denote the unit interval and by I

n

the n-dimensional cube. For n = ω the space I
n = I

ω is the Hilbert cube.
A subset A ⊂ X is called a σZn-set in X if A can be written as the union

A =
⋃

k∈ω Ak of countably many Zn-sets Ak ⊂ X . Let us observe that a subset
A ⊂ X is a Z0-set in X if and only if it is closed and nowhere dense in X , and A
is a σZ0-set if and only if A is a meager Fσ-set in X .

For a topological space X by Zn and σZn we denote the families of Zn-sets
and σZn-sets in X , respectively.

A characterization of Zω-universal sets in the Hilbert cube is quite simple and
can be easily derived from the Z-Set Unknotting Theorem 11.1 from [7]:

Proposition 1. A subset A ⊂ I
ω is Zω-universal in I

ω if and only if A is a Zω-set

in I
ω, containing a topological copy of the Hilbert cube I

ω .

A characterization of σZω-universal sets in the Hilbert cube is also well-known
and can be given in many different terms (skeletoid of Bessaga-Pelczynski [4],
capsets of Anderson [1], [6], absorptive sets of West [16], pseudoboundaries of
Geoghegan and Summerhill [11], [12]). For our purposes the most appropriate
approach is that of West [16] and Geoghegan and Summerhill [12]. To formulate
this approach, we need to recall some notation.

Let U , V be two families of sets of a topological space X . Put

U ∧ V = {U ∩ V : U ∈ U , V ∈ V , U ∩ V 6= ∅} and

U ∨ V = {U ∪ V : U ∈ U , V ∈ V , U ∩ V 6= ∅}.

We shall write U ≺ V and say that U refines V if each set U ∈ U is contained in
some set V ∈ V . Let St(U ,V) = {St(U,V) : U ∈ U} where St(U,V) =

⋃

{V ∈
V : U ∩ V 6= ∅}. Put St(U) = St(U ,U) and Stn+1(U) = St(Stn(U)) for each
n > 0. We shall say that two maps f, g : Z → X are U-near and denote it
by (f, g) ≺ U if the family (f, g) = {{f(z), g(z)} : z ∈ Z} refines the family
U ∪ {{x} : x ∈ X}. For a family F of subsets of a metric space (X, d) we put
mesh(F) = supF∈F diam(F ).

Let K be a family of closed subsets of a Polish space X and σK = {
⋃

n∈ω An :
An ∈ K, n ∈ ω}. We shall say that K is topologically invariant if K = {h(K) :
K ∈ K} for each homeomorphism h : X → X .

A subset B ⊂ X is called K-absorptive in X if B ∈ σK and for each set K ∈ K,
open set V ⊂ X , and open cover U of V there is a homeomorphism h : V → V
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such that h(K ∩ V ) ⊂ B ∩ V and (h, id) ≺ U . An important observation is that
each set A ∈ σK containing a K-absorptive subset of X is also K-absorptive.

The following powerful uniqueness theorem was proved by West [16] and Ge-
oghegan and Summerhill [12, 2.5].

Theorem 1 (Uniqueness Theorem for K-absorptive sets). Let K be a topolo-

gically invariant family of closed subsets of a Polish space X . Then any two

K-absorptive sets B,B′ ⊂ X are ambiently homeomorphic. More precisely, for

any open set V ⊂ X and any open cover U of V there is a homeomorphism

h : V → V such that h(V ∩ B) = V ∩ B′ and h is U-near to the identity map

of V .

Two subsets A,B of a topological space X are called ambiently homeomorphic

if there is a homeomorphism h : X → X such that h(A) = B. This happens if and
only if the pairs (X,A) and (X,B) are homeomorphic. We shall say that two pairs
(X,A) and (Y,B) of topological spaces A ⊂ X and B ⊂ Y are homeomorphic if
there is a homeomorphism h : X → Y such that h(A) = B. In this case we say
that h : (X,A) → (Y,B) is a homeomorphism of pairs.

According to the following corollary of Theorem 1, each K-absorptive set is
σK-universal.

Corollary 1. Let K be a topologically invariant family of closed subsets of a

Polish space. If a K-absorptive set B in X exists, then a subset A ⊂ X is σK-

universal in X if and only if A is K-absorptive.

Proof: Assume that a subset A of X is K-absorptive. The definition implies
that A ∈ σK. To show that A is σK-universal, fix any subset K ∈ σK. The
definition of a K-absorptive set implies that the union A∪K is K-absorptive. By
the Uniqueness Theorem 1, there is a homeomorphism of pairs h : (X,A ∪K) →
(X,A). This homeomorphism embeds the set K into A, witnessing that the K-
absorptive set A is σK-universal.

Now assume that a set A ⊂ X is σK-universal. Since the K-absorptive set B
belongs to the family σK, there is a homeomorphism h of X such that h(B) ⊂ A.
The topological invariance of the class K implies that the set h(B) is K-absorptive,
and so is the set A ⊃ h(B). �

Corollary 1 reduces the problem of studying σK-universal sets in a Polish space
X to studying K-absorptive sets in X (under the assumption that a K-absorptive
set in X exists). The problem of the existence of K-absorptive sets was considered
in several papers. In particular, Geoghegan and Summerhill [12] proved that each
Euclidean space R

n contains a Z0-absorptive set and such a set is unique up to
ambient homeomorphism.

Unfortunately, the methods of constructing Z0-absorptive sets in Euclidean
spaces used in [12] do not work in case of the Hilbert cube or Hilbert cube
manifolds (in spite of the fact that the paper [12] was written to demonstrate
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applications of methods of infinite-dimensional topology in the theory of finite-
dimensional manifolds). Known results on Zω-absorptive sets in the Hilbert cube
I
ω and Z0-absorptive sets in Euclidean spaces allow us to make the following:

Conjecture 1. The Hilbert cube contains a Zn-absorptive set for every n ≤ ω.

This conjecture is true for n = ω as witnessed by the pseudoboundary B(Iω) =
I
ω \ (0, 1)ω of Iω which is a Zω-absorptive set in I

ω . In this paper we shall confirm
Conjecture 1 for n = 0. In fact, our proof works not only for the Hilbert cube but
also for any I

k-manifold of finite or infinite dimension. By a manifold modeled

on a space E (briefly, an E-manifold) we understand any paracompact space M
admitting a cover by open subsets homeomorphic to open subspaces of the model
space E. In this paper we consider only manifolds modeled on (finite or infinite
dimensional) cubes In, n ≤ ω. So, from now on, by amanifold we shall understand
an I

n-manifold for some 0 < n ≤ ω. If a manifold X is finite-dimensional, then
its boundary ∂X consists of all points x ∈ X which do not have neighborhoods
homeomorphic to Euclidean spaces. If X is a Hilbert cube manifold, then we put
∂X = ∅.

Our approach to constructing Z0-absorptive sets in manifolds is based on the
notion of a tame Gδ-set, which is interesting by itself, see [2]. First we recall some
definitions.

A family F of subsets of a topological space X is called vanishing if for each
open cover U of X the family F ′ = {F ∈ F : ∀U ∈ U , F 6⊂ U} is locally finite
in X . It is easy to see that a countable family F = {Fn}n∈ω of subsets of a
compact metric space (X, d) is vanishing if and only if limn→∞ diam(Fn) = 0.

An open subset B of an I
n-manifold X is called a tame open ball in X if its

closure B̄ has an open neighborhood O(B̄) in X such that the pair (O(B̄), B̄) is
homeomorphic to the pair (Rn, In) if n < ω and to the pair (Iω× [0,∞), Iω× [0, 1])
if n = ω. Tame balls form a neighborhood base at each point x ∈ X , which does
not belong to the boundary ∂X of X (this is trivial for n < ω and follows from
Theorem 12.2 of [7] for n = ω).

A subset U of a manifold X is called a tame open set in X if U =
⋃

U for
some vanishing family U of tame open balls having pairwise disjoint closures
in X . Observe that the family U is unique and coincides with the family C(U) of
connected components of the set U . By C̄(U) = {C̄ : C ∈ C(U)} we shall denote
the family of the closures of the connected components of U in X .

A subset G ⊂ X is called a tame Gδ-set in X if G =
⋂

n∈ω Un for some decreas-
ing sequence (Un)n∈ω of tame open sets such that the family C =

⋃

n∈ω C(Un)

is vanishing and for every n ∈ ω the family C̄(Un+1) refines the family C(Un) of
connected components of Un.

Tame open and tame Gδ-sets can be equivalently defined via tame families of
tame open balls. A family U of non-empty open subsets of a topological space X
is called tame if U is vanishing and for any distinct sets U, V ∈ U one of three
possibilities hold: either Ū ∩ V̄ = ∅ or Ū ⊂ V or V̄ ⊂ U . For a family U of subsets
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of a set X by

⋃∞U =
⋂
{
⋃

(U \ F) : F is a finite subfamily of U
}

we denote the set of all points x ∈ X which belong to infinite number of sets
U ∈ U .

Proposition 2. A subset T of a manifold X is tame open (resp. tame Gδ) if and
only if T =

⋃

T (resp. T =
⋃∞T ) for a suitable tame family T of tame open

balls in X .

Proof: The “only if” part follows directly from the definition of a tame open
(resp. tame Gδ) set. To prove the “if” part, assume that T is a tame family of
tame open balls in X . Endow the family T with a partial order ≤ defined by the
reverse inclusion relation, that is U ≤ V if and only if U ⊃ V . The vanishing
property of T guarantees that for each set U ∈ T the set ↓U = {V ∈ T : V ≤ U}
is finite. This allows us to define the ordinal rank(U) letting rank(U) = |↓U |.
For each number n ∈ ω let Tn = {U ∈ T : rank(U) = n + 1}. It follows from
the definition of a tame family that the union Un =

⋃

Tn is a tame open set and
Un ⊂ Un−1, where U−1 = X . In particular, the union

⋃

T = U0 is tame open set
in X and the set T =

⋃∞T =
⋂

n∈ω Un is a tame Gδ-set in X . �

The classes of dense tame open sets and dense tame Gδ-sets have the following
cofinality property.

Proposition 3. (1) Each open subset of a manifold X contains a dense tame

open set.

(2) Each Gδ-subset of a manifold contains a dense tame Gδ-set.

Proof: Let X be a manifold and d be a metric generating the topology of X .

1. Given an open set V ⊂ X and an open cover U of V we shall construct a
tame open set W ⊂ X such that W is dense in V and the family C̄(W ) refines the
cover U . Replacing V by V \∂X , we can assume that the set V does not intersect
the boundary ∂X of X . Replacing the set V by V \ {v} for some point v ∈ V ,
we can additionally assume that the set V is not compact. We can also assume
that V =

⋃

U . Without loss of generality, the manifold X is connected and hence
separable. So, we can fix a countable dense subset {xn}n∈ω in V . By induction
we can construct an increasing number sequence (nk)k∈ω and a sequence Bk of
tame open balls in X such that for each k ∈ ω the following conditions hold:

(1) nk is the smallest number n such that xn /∈
⋃

i<k B̄k;

(2) Bk is a tame open ball such that xnk
∈ Bk, the closure B̄k of Bk in X

has diameter < 2−k and is contained in U \
⋃

i<k B̄k for some set U ∈ U .

It is easy to check that W =
⋃

k∈ω Bk is a required dense tame open set in V

with C̄(W ) = {B̄k}k∈ω ≺ U .
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2. Fix an arbitraryGδ-set G in X and write it as the intersection G =
⋂

n∈ω Un

of a decreasing sequence (Un)n∈ω of open sets in X . By the (proof of the) pre-
ceding item, we can construct inductively a decreasing sequence (Vn)n∈ω of tame
open sets in X such that for every n ∈ ω we get

• mesh C̄(Vn) < 2−n,
•
⋃

C̄(Vn) ⊂ Vn−1 ∩ Un, and
• Vn is dense in Vn−1 ∩ Un.

Here we assume that V−1 = X . It follows that V =
⋃

n∈ω C(Vn) is a tame family

of tame open balls whose limit set
⋃∞V =

⋂

n∈ω Vn is a required dense tame
Gδ-set in G. �

It is easy to see that any two tame open balls in a connected I
n-manifold are

ambiently homeomorphic. A similar fact holds also for dense tame open sets.
Generalizing earlier results of Whyburn [17] and Cannon [5], Banakh and Repovš
in [3, Corollary 2.8] proved the following Uniqueness Theorem for dense tame
open sets.

Theorem 2 (Uniqueness Theorem for Dense Tame Open Sets in Manifolds). Any
two dense tame open sets U,U ′ ⊂ X of a manifoldX are ambiently homeomorphic.

Moreover, for each open cover U of X there is a homeomorphism h : (X,U) →
(X,U ′) such that (h, id) ≺ St(C̄(U),U) ∨ St(C̄(U ′),U).

This theorem will be our main tool in the proof of the following Uniqueness
Theorem for dense tame Gδ-sets.

Theorem 3 (Uniqueness Theorem for Dense Tame Gδ-Sets in Manifolds). Any

two dense tame Gδ-sets G,G′ in a manifold X are ambiently homeomorphic.

Moreover, for each open cover U of X there is a homeomorphism h : (X,G) →
(X,G′) such that (h, id) ≺ U .

Proof: Fix a bounded complete metric d generating the topology of the mani-
fold X . By [9, 8.1.10], the metric d can be chosen so that the cover {B̄(x, 1) : x ∈
X} by closed balls of radius 1 refines the cover U . In this case any two functions
f, g : X → X with d(f, g) = supx∈X d(f(x), g(x)) ≤ 1 are U-near.

Represent the tame Gδ-sets G and G′ as the limit sets G =
⋃∞G and G′ =

⋃∞G′ of suitable tame families G and G′ of tame open balls in X . For every n ∈ ω
let Gn = {U ∈ G : |{V ∈ G : V ⊃ Ū}| ≥ n} and G′

n = {U ∈ G′ : |{V ∈ G′ : V ⊃
Ū}| ≥ n}. It follows that G =

⋂

n∈ω

⋃

Gn and G′ =
⋂

n∈ω

⋃

G′
n.

Let U−1 = U ′
−1 = X and h−1 : X → X be the identity homeomorphism of X .

Let also U−1 = U ′
−1 be a cover of X by open subsets of diameter ≤ 1

8 .
For every n ∈ ω we shall construct a homeomorphism hn : X → X , two tame

open sets Un, U
′
n ⊂ X , and open covers Un, U ′

n of the sets Un, U
′
n, respectively,

such that

(1) G ⊂ Un ⊂ Un−1 ∩
⋃

Gn and C̄(Un) ≺ Un−1;
(2) G′ ⊂ U ′

n ⊂ U ′
n−1 ∩

⋃

G′
n and C̄(U ′

n) ≺ U ′
n−1 ∧ hn−1(Un−1);

(3) hn(Un) = U ′
n;
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(4) hn|X \ Un−1 = hn−1|X \ Un−1;
(5) d(hn, hn−1) ≤ 2−n−1 and d(h−1

n , h−1
n−1) ≤ 2−n−1;

(6) mesh(U ′
n) < 2−n−3, mesh(Un) < 2−n−3, and St2(Un) ≺ {B(x, d(x,X \

Un)/2) : x ∈ Un}.

Assume that for some n ∈ ω the open sets Un−1, U
′
n−1, open covers Un−1,U ′

n−1

and a homeomorphism hn−1 : (X,Un−1) → (X,U ′
n−1) satisfying the conditions

(1)–(6) have been constructed. Consider the subfamilies Fn = {U ∈ Gn : {Ū} ≺
Un−1} and F ′

n = {U ∈ G′
n : {Ū} ≺ U ′

n−1 ∧ hn−1(Un−1)}. The vanishing property
of the tame families G and G′ implies that the sets Un =

⋃

Fn and U ′
n =

⋃

F ′
n

satisfy the conditions (1), (2) of the inductive construction. The sets Un and
U ′
n are tame open, being unions of the tame families Fn and F ′

n, respectively.
Moreover, C̄(Un) ≺ Un−1 and C̄(U ′

n) ≺ U ′
n−1 ∧ hn−1(Un−1).

Now we shall construct a homeomorphism hn : (X,Un) → (X,U ′
n). Since

hn−1(Un−1) = U ′
n−1, each connected component C ∈ C(Un−1) of the open set

Un−1 maps onto the connected component C′ = hn−1(C) ∈ C(U ′
n−1) of the set

U ′
n−1. Taking into account that each set B̄ ∈ C̄(Un) is a compact connected subset

of the open set
⋃

U ′
n−1 = U ′

n−1, we see that the intersection U ′
n ∩ C′ is a dense

tame open set in the open set C′. Consequently, its image h−1
n−1(U

′
n ∩ C′) is a

dense tame open set in the open set C = h−1
n−1(C

′). By Theorem 2, there is a

homeomorphism of pairs gC : (C,C ∩ Un) → (C, h−1
n−1(C

′ ∩ U ′
n)) which is WC -

near to the identity map idC : C → C for the cover WC = St(C̄(C ∩Un),Un−1)∨
St(C̄(h−1

n−1(C
′ ∩ U ′

n)),Un−1).
Taking into account that

C̄(C ∩ Un) ≺ C̄(Un) ≺ Un−1 and C̄(h−1
n−1(U

′
n ∩ C′)) ≺ C̄(h−1

n−1(U
′
n))

= h−1
n−1(C̄(U

′
n)) ≺ h−1

n−1(hn−1(Un−1)) = Un−1,

we conclude that

WC = St(C̄(C ∩ Un),Un−1) ∨ St(C̄(h−1
n−1(C

′ ∩ U ′
n)),Un−1)

≺ St(Un−1,Un−1) ∨ St(Un−1,Un−1)

= St(Un−1) ∨ St(Un−1) ≺ St2(Un−1) ≺ {B(x, d(X \ Un−1)/2) : x ∈ Un−1}.

Now the vanishing property of the family C(Un−1) implies that the map gn :
X → X defined by

gn(x) =

{

x if x /∈ Un−1,

gC if x ∈ C ∈ C(Un−1)

is a homeomorphism of X such that (gn, id) ≺ St2(Un−1) and (gn, id) ≺ C(Un−1).
Then hn = hn−1 ◦ gn is a homeomorphism of X satisfying the conditions (3) and
(4) of the inductive construction.
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To prove the condition (5) we shall consider separately the cases of n = 0 and
n > 0. If n = 0, then h0 = g0 and hence (h0, h−1) = (g0, id) ≺ St2(U−1). It follows
from mesh(U−1) ≤ 1/8 that d(h−1

0 , h−1
−1) = d(h0, h−1) ≤ mesh(St2(U−1)) ≤

1
2 .

If n > 0, then (hn, hn−1) = (hn−1◦gn, hn−1◦id) ≺ hn−1(C(Un−1)) = C(U ′
n−1) ≺

U ′
n−2 implies d(hn, hn−1) ≤ mesh(U ′

n−2) ≤ 2−n−1. By analogy, (h−1
n , h−1

n−1) =

(g−1
n ◦h−1

n−1, h
−1
n−1) = (g−1

n , id) = (gn, id) ≺ C(Un−1) ≺ Un−2 implies d(h−1
n , h−1

n−1) ≤
mesh(Un−2) ≤ 2−n−1. So, the condition (5) holds.

Finally, using the paracompactness of the metrizable spaces Un and U ′
n choose

two open covers Un and U ′
n of Un and U ′

n satisfying the condition (6).

After completing the inductive construction, we obtain a sequence of homeo-
morphisms hn : (X,Un) → (X,U ′

n), n ∈ ω. The condition (5) guarantees that
the limit map h = limn→∞ hn is a well-defined homeomorphism of X such that
d(h, id) ≤ 1. Moreover, the conditions (1) and (3) imply

h(G) = h
(

⋂

n∈ω

Un

)

=
⋂

n∈ω

h(Un) =
⋂

n∈ω

U ′
n = G′.

By the choice of the metric d, the inequality d(h, id) ≤ 1 implies (h, id) ≺ U . So,
h : (X,G) → (X,G′) is a required homeomorphism of pairs with (h, id) ≺ U . �

Now we are able to prove a characterization of σZ0-universal sets in manifolds.

Theorem 4 (Characterization of σZ0-Universal Sets in Manifolds). For a subset

A of a manifold X the following conditions are equivalent:

(1) A is σZ0-universal in X ;

(2) A is Z0-absorptive in X ;

(3) the complement X \A is a dense tame Gδ-set in X .

Proof: We shall prove the equivalences (3) ⇔ (2) ⇔ (1). Let d be a metric
generating the topology of the manifold X .

To prove that (3) ⇒ (2), assume that the complement X \ A is a dense tame
Gδ-set in X . To prove that A is Z0-absorptive, fix any open set V ⊂ X , an
open cover U of V and a closed nowhere dense subset K ⊂ X . We lose no
generality assuming that U ≺ {B(x, d(x,X \ V )/2) : x ∈ V }. Since V \ (A ∪K)
is a dense Gδ-set in V , we can apply Proposition 3 and find a dense tame Gδ-set
G ⊂ V \ (A ∪ K). The characterization of tame Gδ-sets given in Proposition 2
implies that the intersection V ∩ (X \A) = V \A is a dense tame Gδ-set in V . By
Theorem 3, there is a homeomorphism of pairs h : (V,G) → (V, V \A) such that
(h, id) ≺ U . Since U ≺ {B(x, d(x,X \ V )/2) : x ∈ V }, the homeomorphism h of
V extends to a homeomorphism h̄ : X → X such that h̄|X \ V = id. Observing
that h̄(V ∩K) ⊂ h̄(V \G) = V ∩ A, we see that the set A is Z0-absorptive.

To prove that (2) ⇒ (3), assume that the set A is Z0-absorptive. By Propo-
sition 3, the dense Gδ-set X \ A contains a dense tame Gδ-set G in X . Since
A ⊂ X \G, the set X \G ∈ σZ0 is Z0-absorptive. By the Uniqueness Theorem 3,
there is a homeomorphism of pairs h : (X,A) → (X,X \G). Then X \A = h(G) is
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a dense tame Gδ-set in X , which completes the proof of the implication (2) ⇒ (3).

By Proposition 3, X contains a dense tame Gδ-set G and by the implication
(3) ⇒ (2) proved above the complement X \G is Z0-absorptive. Now Corollary 1
yields the equivalence (2) ⇔ (1). �

Theorem 4 implies:

Corollary 2. Each dense Gδ-subset of a dense tame Gδ-set in a manifold is tame.

We finish this paper by some open problems. It is clear that each tame Gδ-
set in a manifold is zero-dimensional. However, not each zero-dimensional dense
Gδ-subset of the Hilbert cube I

ω is tame.

Proposition 4. For any dense Gδ-set G ⊂ I the countable product Gω is not a

tame Gδ-set in I
ω.

Proof: Assuming that Gω is tame, we can find a dense tame open set T ⊂ I
ω

containingGω. By Theorem 1.4 of [3], the complement S = I
ω\T is homeomorphic

to the Hilbert cube and the boundary B̄ \ B of each tame open ball B ∈ C(T )
in I

ω is a Zω-set in S. Let prn : Iω → I, n ∈ ω, denote the projection of the
Hilbert cube I

ω onto the nth coordinate. Since I
ω \ T ⊂

⋃

n∈ω pr−1
n (I \G), Baire

Theorem yields a non-empty open subset W ⊂ S such that W ⊂ pr−1
n (I \G) for

some n ∈ ω. Since S is homeomorphic to the Hilbert cube, we can assume that
the set W is connected and hence is contained in pr−1

n (t) for some point t ∈ I \G.
Since the union ∆ =

⋃

B∈C(U) B̄ \ B is a σZω-set in S, we can choose a point

x0 ∈ W \∆. Choose an open neighborhood U of x0 in I
ω such that U ∩ S ⊂ W

and U \ pr−1
n (t) has at most two connected components.

Since the family C(T ) is vanishing and T =
⋃

C(T ) is dense in I
ω, there are three

pairwise distinct tame open balls B1, B2, B3 ∈ C(T ) such that B̄1 ∪ B̄2 ∪ B̄2 ⊂ U .
Since the set U \ pr−1

n (t) has at most two connected components, there are two
distinct indices 1 ≤ i, j ≤ 3 such that the balls Bi and Bj meet the same connected
component V of U \ pr−1

n (t). Since B̄i \ Bi ⊂ U ∩ S ⊂ pr−1
n (t), the set V ∩Bi is

closed-and-open in the connected set V and hence coincides with V . So, V ⊂ Bi.
By the same reason, V ⊂ Bj , which is not possible as the balls Bi and Bj are
disjoint. �

Problem 1. Can the countable power Gω of a dense Gδ-set G ⊂ I be covered by

countably many dense tame Gδ-sets?

By Smirnov’s result [9, 5.2.B], the Hilbert cube I
ω can be covered by ℵ1 zero-

dimensional Gδ-sets.

Problem 2. What is the smallest cardinality of a cover of the Hilbert cube I
ω

by tame Gδ-sets? Is it equal to ℵ1? (By Theorem 1.6 of [2] this cardinality does
not exceed add(M), the additivity of the ideal M of meager subsets on the real
line.)
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