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Abstract. Let G be a locally compact group. We continue our work [A. Ghaffari:
Γ-amenability of locally compact groups, Acta Math. Sinica, English Series, 26 (2010),
2313–2324] in the study of Γ-amenability of a locally compact group G defined with respect
to a closed subgroup Γ of G × G. In this paper, among other things, we introduce and
study a closed subspace A

p
Γ
(G) of L

∞(Γ) and then characterize the Γ-amenability of G

using A
p
Γ
(G). Various necessary and sufficient conditions are found for a locally compact

group to possess a Γ-invariant mean.
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1. Introduction

Throughout this paper G denotes a locally compact group with a fixed left Haar

measure dx. The spaces Lp(G), 1 6 p 6 ∞, of measurable functions will be as

defined in [8]. We set P p(G) = {f ∈ Lp(G) : f > 0, ‖f‖p = 1}. Let Γ be any closed

subgroup of the product group G × G, with left Haar measure denoted by d(y, z),

and modular function ∆Γ. For (y, z) ∈ Γ, 1 6 p < ∞, let πp(y, z) be the operator

on Lp(G) defined by

πp(y, z)f(x) = f(y−1xz)∆(z)1/p, x ∈ G, f ∈ Lp(G),

where ∆ is the modular function on G. The corresponding map, denoted by T pϕ, of

the group algebra L1(Γ) is given by

T pϕf(x) =

∫

f(y−1xz)∆(z)1/pϕ(y, z) d(y, z).

It is well known that ‖T pϕf‖p 6 ‖ϕ‖1‖f‖p [16].
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For locally compact group G, Li and Pier [16] have introduced the notion of Γ-

amenability, if there exists a Γ-invariant mean on G. Recall that a locally compact

group G is Γ-amenable if there existsm ∈ L∞(G)∗ such thatm > 0, 〈m, 1G〉 = 1 and

〈m, yhz〉 = 〈m,h〉 for every (y, z) ∈ Γ, h ∈ L∞(G), where yhz(x) = h(y−1xz) [9]. As

is well known, this is equivalent to the existence of a Γ-invariant mean on U(G,Γ), the

subspace of L∞(G) consisting of all h ∈ L∞(G) for which the mappings (y, z) 7→ yhz

from Γ into L∞(G) are continuous. This generalizes the concepts of amenability and

inner amenability of G. All abelian groups and all compact groups are Γ-amenable.

In case Γ = G × {e} or {e} × G, Γ-amenability is amenability in the usual sense.

Ample information about amenability can be found in the books [18] and [20]. In

case Γ = {(x, x) : x ∈ G}, Γ-amenability is inner amenability. The study of inner

invariant means was initiated by Effros [6] and pursued by Lau and Paterson [14].

Recently, several authors have studied means on L∞(G) that are invariant under the

inner automorphisms of G (see [10], [1], [15], [17], [23] and [24]).

In this paper, among other things, we characterize Γ-amenable groups by introduc-

ing the convolution operators which develop the techniques of the usual convolution

operators. A number of equivalent conditions characterizing Γ-amenable groups are

given.

2. Preliminaries and some basic results

Recall that Ap(G) is the Banach algebra consisting of all functions u on G written

as u =
∞
∑

n=1
fn ∗ g∗n with fn ∈ Lp(G), gn ∈ Lq(G) and

∞
∑

n=1
‖fn‖p‖gn‖q < ∞. It is

known that Ap(G) has a bounded approximate identity if and only if G is amenable

(see Theorem 10.4 in [20]). First we need to introduce some new spaces which we

shall denote by ApΓ(G). Let G be an arbitrary locally compact group, 1 < p < ∞

and 1/p + 1/q = 1. We define ApΓ(G) to be that subset of L∞(Γ) consisting of the

elements u which can be expressed as u(y, z) =
∞
∑

n=1

〈πp(y, z)fn, gn〉 almost everywhere

with respect to Haar measure d(y, z), where (y, z) ∈ Γ, fn ∈ Lp(G), gn ∈ Lq(G), n =

1, 2, . . . and
∞
∑

n=1
‖fn‖p‖gn‖q < ∞. For any f ∈ Lp(G) and any g ∈ Lq(G), we have

u(y, z) = 〈πp(y, z)f, g〉 ∈ Cb(Γ). Indeed, given ε > 0, there exist neighborhoods Vy
of y and Vz of z in G such that for all (s, t) ∈ Γ satisfying (s, t) ∈ Vy × Vz, the

inequality ‖sft∆(t)1/p − yfz∆(z)1/p‖p < ε/‖g‖q holds [11]. Hence we have

|u(s, t) − u(y, z)| = |〈πp(s, t)f, g〉 − 〈πp(y, z)f, g〉|

6 ‖sft∆(t)1/p − yfz∆(z)1/p‖p‖g‖q < ε.
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It is easy to see that ApΓ(G) is a translation invariant subspace of Cb(Γ). If u ∈ ApΓ(G)

we set

‖u‖Ap

Γ(G) = inf

{ ∞
∑

n=1

‖fn‖p‖gn‖q

}

where the infimum is taken over all representations

u(y, z) =

∞
∑

n=1

〈πp(y, z)fn, gn〉, fn ∈ Lp(G), gn ∈ Lq(G),

∞
∑

n=1

‖fn‖p‖gn‖q <∞.

In view of the preceding discussion, it is apparent that if G is an arbitrary locally

compact group then ‖u‖ 6 ‖u‖Ap

Γ(G). It is easy to see that ‖ · ‖Ap

Γ(G) is a complete

norm for ApΓ(G). We shall omit the details. When p = 2 and Γ = G × {e}, then

ApΓ(G) is the Fourier algebra A(G) as studied by Eymard [7], and Herz [12] for Γ =

G×{e}. In this case ApΓ(G) is an F -algebra, see [13] and [19]. Let G be the discrete

free group that is freely generated by the elements a, b ∈ G. Put Γ = {(x, x) : x ∈ G}.

Then A2
Γ(G) is not necessarily closed under the pointwise multiplication. In fact,

let u(x, x) = 〈π2(x, x)δa, δa〉 and v(x, x) = 〈π2(x, x)δb, δb〉. It is easy to see that

uv = δ(e,e) /∈ A2
Γ(G). This shows that A2

Γ(G) is not an F -algebra.

Lemma 2.1. Let G be a locally compact group and let Γ be a closed subgroup

of G × G. Let ϕ ∈ P 1(Γ). If there exists 1 < p < ∞ such that ‖T pϕ‖ = 1, then for

every 1 < p′ <∞, ‖T p
′

ϕ ‖ = 1.

P r o o f. By a form of the Riesz-Thorin Convexity Theorem ([4], VI.10.11), the

function log ‖T
1/a
ϕ ‖ is convex on 0 6 a 6 1. As T∞

ϕ 1(x) =
∫

ϕ(y, z) d(y, z) = 1, we

have ‖T∞
ϕ ‖ = 1. Now let f ∈ L1(G) and f > 0. We have

‖T 1
ϕf‖1 =

∫∫

f(y−1xz)∆(z)ϕ(y, z) d(y, z) dx

=

∫∫

f(y−1xz)∆(z)ϕ(y, z) dxd(y, z) = ‖f‖1.

We conclude that ‖T 1
ϕ‖ = ‖T pϕ‖ = ‖T∞

ϕ ‖ = 1. On the other hand, ‖T p
′

ϕ ‖ 6 1 for

every p′ ∈ [1,∞]. From this it is immediate that ‖T p
′

ϕ ‖ = 1 for every p′ > 1. �
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3. Main results

By the weak∗ operator topology on B(Lp(G)), we shall mean the weak∗ topology of

B(Lp(G)) when it is identified with the dual space (Lp(G)⊗γ L
q(G))∗ in the obvious

way [3]. Let Mp
Γ(G) denote the closed algebra generated by {πp(y, z) : (y, z) ∈ Γ} in

B(Lp(G)). For ϕ ∈ L1(Γ), it is easy to see that T pϕ ∈ Mp
Γ(G) and {T pϕ : ϕ ∈ L1(Γ)}

is weak∗ operator topology dense in Mp
Γ(G).

Theorem 3.1. Let G be a locally compact group, 1 < p, q < ∞ and 1/p +

1/q = 1. Then there exists an isometric linear isomorphism of Mp
Γ(G) onto ApΓ(G)∗,

the Banach space of continuous linear functionals on ApΓ(G).

P r o o f. Let T ∈Mp
Γ(G). If u has a representation u(y, z) =

∞
∑

n=1
〈π(y, z)fn, gn〉,

then set Λ(T )u =
∞
∑

n=1
〈Tfn, gn〉. First we note that

|Λ(T )u| 6

∞
∑

n=1

|〈Tfn, gn〉| 6 ‖T ‖

∞
∑

n=1

‖fn‖p‖gn||q <∞.

Clearly Λ(T ) is linear. We show that Λ(T )u is independent of the representation

of u. Indeed, suppose u ∈ ApΓ(G) and u = 0. Let {ϕα} ⊆ L1(Γ) be a net of functions

such that ‖T pϕα
‖ 6 ‖T ‖ and Tϕα

converges to T in the weak∗ operator topology.

Then for each α, we have

∞
∑

n=1

|〈T pϕα
fn, gn〉| 6

∞
∑

n=1

‖T pϕα
fn‖p‖gn‖q 6 ‖T ‖

∞
∑

n=1

‖fn‖p‖gn‖q <∞.

Hence
∞
∑

n=1
|〈T pϕα

fn, gn〉| converges uniformly with respect to α. Thus

lim
α

∞
∑

n=1

〈T pϕα
fn, gn〉 =

∞
∑

n=1

lim
α
〈T pϕα

fn, gn〉 =

∞
∑

n=1

〈Tfn, gn〉

the interchange of limits being justified by the uniformity of the convergence of the

series with respect to α. For every α, we have

∞
∑

n=1

〈T pϕα
fn, gn〉 =

∞
∑

n=1

∫

〈πp(y, z)fn, gn〉ϕα(y, z) d(y, z)

=

∫ ∞
∑

n=1

〈πp(y, z)fn, gn〉ϕα(y, z) d(y, z)

=

∫

u(y, z)ϕα(y, z) d(y, z) = 0.
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Consequently, if u ∈ ApΓ(G) is such that u = 0 then
∞
∑

n=1
〈Tfn, gn〉 = 0 for each rep-

resentation u(y, z) =
∞
∑

n=1
〈πp(y, z)fn, gn〉. Thus Λ(T ) is well defined linear functional

on ApΓ(G). Notice that

(1) |Λ(T )u| =

∣

∣

∣

∣

∞
∑

n=1

〈Tfn, gn〉

∣

∣

∣

∣

6 ‖T ‖
∞
∑

n=1

‖fn‖p‖gn‖q

and

‖T ‖ = sup{|〈Tf, g〉| : ‖f‖p 6 1, ‖g‖q 6 1}(2)

= sup{|Λ(T )u| : u(y, z) = 〈πp(y, z)f, g〉, ‖f‖p 6 1, ‖g‖q 6 1}

6 ‖Λ(T )‖.

Now (1) and (2) imply that Λ is an isometry. It remains to show that Λ mapsMp
Γ(G)

onto ApΓ(G)∗. We now consider F ∈ ApΓ(G)∗ and define T ∈ B(Lp(G)) by putting

〈Tf, g〉 = 〈F, u〉 where u(y, z) = 〈πp(y, z)f, g〉. Let T /∈ Mp
Γ(G). The Hahn-Banach

theorem implies the existence of f ∈ Lp(G) and g ∈ Lq(G) such that for any

(y, z) ∈ Γ, u(y, z) = 〈πp(y, z)f, g〉 = 0 whereas 〈F, u〉 = 〈Tf, g〉 = 1. This is a con-

tradiction. Therefore Λ is surjective and the proof is complete. �

Remark 3.2. If ϕ ∈ L1(Γ) and u(y, z) =
∞
∑

n=1
〈πp(y, z)fn, gn〉 is any continuous

mapping in ApΓ(G), the mapping

ϕ ∗ u(y, z) =

∫

ϕ(s, t)u(s−1y, t−1z) d(s, t)

belongs to ApΓ(G). Indeed, for every (y, z) ∈ Γ

ϕ ∗ u(y, z) =

∫

ϕ(s, t)

∞
∑

n=1

〈πp(s
−1y, t−1z)fn, gn〉d(s, t)

=

∫

ϕ(s, t)

∞
∑

n=1

∫

fn((s
−1y)−1xt−1z)∆(t−1z)1/pgn(x) dxd(s, t)

=

∫

ϕ(s, t)

∞
∑

n=1

∫

fn(y
−1xz)∆(z)1/pgn(s

−1xt)∆(t)1/q dxd(s, t)

=

∫

ϕ(s, t)

∞
∑

n=1

〈πp(y, z)fn, πq(s, t)gn〉d(s, t)

=

∞
∑

n=1

〈πp(y, z)fn, T
q
ϕgn〉.
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Moreover

‖ϕ ∗ u‖Ap

Γ(G) 6

∞
∑

n=1

‖fn‖p‖T
q
ϕgn‖q 6 ‖T qϕ‖

∞
∑

n=1

‖fn‖p‖gn‖q.

Taking the inf of
∞
∑

n=1
‖fn‖p‖gn‖q over all such representations

∞
∑

n=1
〈πp(y, z)fn, gn〉

for u, we obtain that ‖ϕ ∗ u‖Ap

Γ(G) 6 ‖T qϕ‖‖u‖Ap

Γ(G).

Definition 3.3. We say that Pp-condition with bound m ∈ N is satisfied if for

each ε > 0 and every compact subset C ⊆ Γ, there exists some u ∈ ApΓ(G) such that

‖u‖Ap

Γ(G) 6 m and |u(y, z)− 1| < ε for all (y, z) ∈ C.

Theorem 3.4. Let G be a locally compact group and let Γ be a closed subgroup

of G×G. Then the following conditions are equivalent:

(i) G is Γ-amenable;

(ii) for every 1 < p <∞, the Pp-condition is satisfied;

(iii) for every 1 < p <∞, the mapping T pϕ 7→
∫

ϕ(y, z) d(y, z) from {T pϕ : ϕ ∈ L1(Γ)}

into C is a linear functional of norm one.

P r o o f. (i) =⇒ (ii) We begin by showing that if G is Γ-amenable, the Pp-

condition holds for every 1 < p < ∞. Let a compact subset C of Γ and ε > 0

be given. By hypothesis there exists f ∈ P p(G) such that, for every (y, z) ∈ C,

‖πp(y, z)f − f‖p < ε [16]. Let g = fp/q, then gq = fp. Therefore g ∈ P q(G) and

〈f, g〉 = 1. For any (y, z) ∈ C, by Holder’s inequality,

|〈πp(y, z)f, g〉 − 1| = |〈πp(y, z)f, g〉 − 〈f, g〉|

6 ‖πp(y, z)f − f‖p‖g‖q < ε.

Therefore the Pp-condition holds.

(ii) =⇒ (iii) Suppose ϕ ∈ Cc(Γ) (the space of all complex-valued continuous

functions on Γ having compact support) with compact support C. Assume that

c > 1 and n ∈ N. Choose g ∈ Cc(Γ) such that
∫

g(y, z) d(y, z) = 1. By assumption,

there exists u ∈ ApΓ(G) with ‖u‖Ap

Γ(G) 6 m such that

∣

∣

∣

∣

∫

ϕ(y, z) d(y, z)

∣

∣

∣

∣

n

=

∣

∣

∣

∣

∫

ϕ(y, z) d(y, z)

∣

∣

∣

∣

n

|〈1Γ, g〉| = |〈ϕ ∗ . . . ∗ ϕ ∗ 1Γ, g〉|

= |〈1Γ,Â(ϕ ∗ . . . ∗ ϕ) ∗ g〉| 6 c|〈u,Â(ϕ ∗ . . . ∗ ϕ) ∗ g〉|

= c|〈ϕ ∗ . . . ∗ ϕ ∗ u, g〉| = c|〈Lnϕ(u), g〉|

6 c‖Lϕ‖
n‖u‖Ap

Γ(G)‖g‖1 6 cm‖Lϕ‖
n‖g‖1,
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here Lϕ : ApΓ(G) → ApΓ(G) is the operator of multiplication by ϕ on the left and

ϕ̃(y, z) = ϕ(y−1, z−1)∆Γ(y−1, z−1) for (y, z) ∈ Γ. Since this holds for all n, we

conclude that |
∫

ϕ(y, z) d(y, z)| 6 ‖Lϕ‖. Since Cc(Γ) is norm dense in L1(Γ), we

deduce that for each ϕ ∈ L1(Γ), |
∫

ϕ(y, z) d(y, z)| 6 ‖Lϕ‖. On the other hand, by

Remark 3.2 ‖ϕ ∗ u‖Ap

Γ(G) 6 ‖T qϕ‖‖u‖Ap

Γ(G). We conclude that |
∫

ϕ(y, z) d(y, z)| 6

‖T qϕ‖. But obviously, ‖T
q
ϕ‖ 6

∫

ϕ(y, z) d(y, z) for every ϕ ∈ L1(Γ) with ϕ > 0. Thus

(ii) implies (iii).

(iii) =⇒ (i) Our hypothesis permits us to define a linear functional ω1 on {T
2
ϕ : ϕ ∈

L1(Γ)} by ω1(T
2
ϕ) =

∫

ϕ(y, z) d(y, z) with norm one. By the Hahn-Banach theorem

for states (see Proposition 2.3.24 in [2]), we may extend ω1 to a state ω on the

algebra B(L2(G)) of bounded operators on L2(G). Therefore G is Γ-amenable by

Proposition 3.7 in [16]. �

Let I = {ϕ ∈ L1(Γ):
∫

ϕ(y, z) d(y, z) = 0}. Clearly I is a closed two sided

ideal in L1(Γ). Let ω be a state on M2
Γ(G) such that ω(T 2

ϕ) = 0 for all ϕ ∈ I

and ω(T 2
ϕ0

) = 1 for some ϕ0 ∈ P 1(Γ). Then G is Γ-amenable. Indeed, for every

ψ ∈ L1(Γ),

ψ =

(

ψ −

∫

ψ(y, z) d(y, z)ϕ0

)

+

∫

ψ(y, z) d(y, z)ϕ0.

It follows that ω(T 2
ψ) =

∫

ψ(y, z) d(y, z). Extend ω to a state on B(L2(G)). By

Proposition 3.7 in [16], G is Γ-amenable.

Theorem 3.5. Let G be a locally compact group and let Γ be a closed subgroup

of G × G. Let 1 6 p < ∞ and 1/p + 1/q = 1. Then the following conditions are

equivalent:

(i) G is Γ-amenable;

(ii) there exists a net {fα} in P
p(G) such that, for every weakly compact subset A

of L1(Γ), lim
α

‖T pϕfα − (
∫

ϕ(y, z) d(y, z))fα‖p = 0 uniformly for every ϕ ∈ A.

P r o o f. (i) =⇒ (ii) We denote by A the family of all weakly compact subsets

in L1(Γ). We consider the directed set I = A × R
+ where for α = (A, ε) ∈ I,

α′ = (A′, ε′) ∈ I, α ≺ α′ in case A ⊆ A′ and ε′ < ε. Now let α = (A, ε) ∈ I.

Since A is weakly compact, A is weakly bounded. By Theorem 3.18 in [21], A is

norm bounded. Let cA = sup{‖ϕ‖1 : ϕ ∈ A}. By Theorem 4.21.2 in [5], there exists

a compact subset C in Γ such that
∫

Γ\C |ϕ(y, z)| d(y, z) < ε/4 for every ϕ ∈ A. By

Proposition 3.1 in [16], there exist fα ∈ P p(G) such that ‖πp(y, z)fα−fα‖p < ε/(2cA)
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for every (y, z) ∈ C. Hence for all ϕ ∈ A and g ∈ Cc(Γ),

ε‖g‖q > 2‖g‖q
ε

4
+

ε

2cA
‖g‖q‖ϕ‖1

>

∫

Γ\C

+

∫

C

|ϕ(y, z)|‖πp(y, z)fα − fα‖p‖g‖q d(y, z)

>

∣

∣

∣

∣

∫

ϕ(y, z)

∫
(

fα(y−1xz)∆(z)1/p − fα(x)

)

g(x) dxd(y, z)

∣

∣

∣

∣

>

∣

∣

∣

∣

〈T pϕfα−

(
∫

ϕ(y, z) d(y, z)

)

fα, g〉

∣

∣

∣

∣

.

Since this holds for all g ∈ Cc(Γ), by Theorem 12.13 in [11] we have

∥

∥

∥

∥

T pϕfα −

(
∫

ϕ(y, z) d(y, z)

)

fα

∥

∥

∥

∥

p

6 ε

for every ϕ ∈ A. Let A0 be a weakly compact subset of L
1(Γ) and ε0 ∈ R

+. We

consider α0 = (A0, ε0). If (A0, ε0) = α0 ≺ α = (A, ε), then

∥

∥

∥

∥

T pϕfα −

(
∫

ϕ(y, z) d(y, z)

)

fα

∥

∥

∥

∥

p

6 ε

for every ϕ ∈ A. This shows that the limit is uniform on compacta.

(ii) =⇒ (i) Consider a fixed ϕ ∈ P 1(Γ). Let C be a compact subset of Γ and

ε ∈ (0, 1). Since the mapping (s, t) 7→ (s−1,t−1)ϕ is weakly continuous [8], it follows

that {(s−1,t−1)ϕ : (s, t) ∈ C} is weakly compact. Hence A = {(s−1,t−1)ϕ− ϕ : (s, t) ∈

C}
⋃

{ϕ} is weakly compact. By assumption, there exists f1 ∈ P p(G) such that

‖T p
(s−1,t−1)ϕ−ϕ

f1

∥

∥

∥

∥

p

=

∥

∥

∥

∥

T p
(s−1,t−1)ϕ−ϕ

f1 −

(
∫

(s−1,t−1)ϕ− ϕd(y, z)

)

f1

∥

∥

∥

∥

p

< ε

and ‖T pϕf1− (
∫

ϕ(y, z) d(y, z))f1‖p < ε for every (s, t) ∈ C. Clearly 1− ε < ‖T pϕf1‖p.

Let f = (T pϕf1)/(‖T
p
ϕf1‖p) ∈ P p(G). For any (s, t) ∈ C, we have

‖T pϕf1‖p‖πp(y, z)f − f‖p = ‖yT
p
ϕf1z∆(z)1/p − T pϕf1‖p

= ‖T p
(s−1,t−1)ϕ

f1 − T pϕf1‖p < ε.

This shows that ‖πp(y, z)f − f‖p < ε/(1 − ε) for every (s, t) ∈ C. As ε ∈ (0, 1) may

be chosen arbitrarily, by Proposition 3.1 in [16], G is Γ-amenable. �
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It is known that G is amenable if and only if, for all f ∈ L1(G),

inf{‖f ∗ ϕ‖1 : ϕ ∈ P 1(G)} =

∣

∣

∣

∣

∫

f(x) dx

∣

∣

∣

∣

(see Theorem 4.18 in [18]). As an immediate consequence of Theorem 3.5, we can

prove that G is inner amenable if and only if, for all ϕ ∈ L1(G),

inf{‖T 1
ϕf‖1 : f ∈ P 1(G)} =

∣

∣

∣

∣

∫

ϕ(x) dx

∣

∣

∣

∣

.

Definition 3.6. Let µ be a positive, regular Borel measure on a locally compact

group G. For f ∈ Lp(G), we define T pµf(x) =
∫

f(y−1xz)∆(z)
1
p dµ(y, z) whenever

the latter integral exists. µ is p-admissible if T pµ(Lp(G)) ⊆ Lp(G).

Note that T pµ(Lp(G)) ⊆ Lp(G) means that if f ∈ Lp(G), then the function

(y, z) 7→ f(y−1xz)∆(z)1/p is in L1(µ), and that the function T pµf given by T
p
µf(x) =

∫

f(y−1xz)∆(z)1/p dµ(y, z) belongs to Lp(G).

Theorem 3.7. Let G be a locally compact group and let Γ be a closed subgroup

of G×G. Then the following conditions are equivalent:

(i) G is Γ-amenable;

(ii) for all p > 1, every p-admissible measure µ on G is bounded.

P r o o f. (i) =⇒ (ii) Let µ be a p-admissible measure on G and suppose that

T pµ : Lp(G) → Lp(G) is not continuous. For each positive integer n there would be

an fn ∈ P p(G) such that ‖T pµfn‖p > n3. It is apparent that
∞
∑

n=1
fn/n

2 converges

in Lp(G) to some f ∈ Lp(G). For each positive integer n, n2f > fn and so n
2T pµf >

T pµfn. Hence for each n, we have n
2‖T pµf‖p > ‖T pµfn‖p > n3 which contradicts the

fact that T pµ(Lp(G)) ⊆ Lp(G).

By Theorem 3.4, there would exist fα ∈ P p(G) and gα ∈ P q(G) such that

uα(y, z) = 〈πp(y, z)fα, gα〉 converges to 1 whenever (y, z) ∈ Γ. The limit is uni-

form on compacta. Let C be a compact subset of Γ and let c > 1. There exists α

such that 1 6 c〈πp(y, z)fα, gα〉 whenever (y, z) ∈ Γ. We have

µ(C) 6 c

∫

C

〈πp(y, z)fα, gα〉dµ(y, z) 6 c

∫

〈πp(y, z)fα, gα〉dµ(y, z)

= c〈T pµfα, gα〉 6 c‖T pµfα‖p‖gα‖q 6 c‖T pµ‖.

Using the inner regularity of µ, it follows that µ is bounded.
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(ii) =⇒ (i) By Theorem 3.4, we assume to the contrary that there exists ϕ ∈

P 1(Γ) such that α = ‖T pϕ‖ < 1. If ϕi is the ith power of ϕ in L1(Γ), we have

‖ϕi‖1 = ‖ϕ‖i1 = 1, ‖
n
∑

i=1

ϕi‖1 =
n
∑

i=1

‖ϕi‖1 = n, because all functions are positive.

Hence Φ =
∞
∑

i=1

ϕi is a positive measurable function which is not in L1(Γ) and so defines

an unbounded measure Φ d(y, z) on Γ. Let us prove that Φ is locally integrable on Γ.

If 1/p+ 1/q = 1, we may choose f ∈ Lp(G)+ and g ∈ Lq(G)+ such that 〈f, g〉 > 1.

Let C be a compact subset of Γ. For every (y, z) ∈ Γ, we have 〈πp(y, z)f, πq(y, z)g〉 =

〈f, g〉 > 1. For every (y0, z0) ∈ C, the mapping (y, z) 7→ 〈πp(y, z)f, πq(y0, z0)g〉 is

continuous [8]. We may determine a subset {(y1, z1), . . . , (yn, zn)} in C and open

subsets U1, . . . , Un such that C ⊆
n
⋃

i=1

Ui, (yi, zi) ∈ Ui and 〈πp(y, z)f, πq(yi, zi)g〉 > 1

for all (y, z) ∈ Ui and 1 6 i 6 n. Put h =
n
∑

i=1

πq(yi, zi)g. Hence 〈πp(y, z)f, h〉 > 1

for every (y, z) ∈ C. We have

∫

C

Φ(y, z) d(y, z) 6

∫

C

Φ(y, z)〈πp(y, z)f, h〉d(y, z)

6

∫∫

Φ(y, z)f(y−1xz)∆(z)
1
ph(x) dxd(y, z)

=

∫

T pΦf(x)h(x) dx = 〈T pϕf, h〉 <∞.

So Φ(y, z) d(y, z) is an unbounded Borel measure on Γ. On the other hand, for every

f ∈ Lp(G) and every n ∈ N,

∥

∥

∥

∥

n
∑

i=1

T pϕif

∥

∥

∥

∥

p

6

n
∑

i=1

‖T pϕi‖‖f‖p 6

n
∑

i=1

αi‖f‖p 6
‖f‖p
1 − α

.

Hence ‖T pΦf‖p 6 ‖f‖p/(1 − α) and so ‖T pΦ‖ 6 1/(1 − α). Consequently Φ d(y, z)

defines a bounded linear operator on Lp(G) and is unbounded. This is a contradic-

tion. �

Following Li and Pier [16], we define Sϕh(x) =
∫

ϕ(y, z)h(yxz−1) d(y, z) where

ϕ ∈ L1(Γ) and h ∈ L∞(G). A mean m on L∞(G) is called topologically Γ-invariant

if 〈m,Sϕh〉 = 〈m,h〉 whenever h ∈ L∞(G) and ϕ ∈ P 1(Γ). It is well known that

any topologically Γ-invariant mean on L∞(G) is also Γ-invariant (see Proposition 2.3

in [16]). Let G be a nondiscrete abelian group and Γ = G×{e}. By Proposition 22.3

in [20], there exists a Γ-invariant mean m on L∞(G) such that 〈m,Sϕh〉 6= 〈m,h〉

for some h ∈ L∞(G) and ϕ ∈ P 1(G). This shows that m can not be a topologically

Γ-invariant mean.

Theorem 3.8 below, in the special case where Γ = G × {e}, is proved in ([20,

p. 265]).
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Theorem 3.8. Let G be a locally compact group and let Γ be a closed subgroup

of G × G. If m is a Γ-invariant mean on L∞(G) and there exists ϕ0 ∈ P 1(Γ)

such that 〈m,Sϕ0h〉 = 〈m,h〉 whenever h ∈ L∞(G), then also m is a topologically

Γ-invariant.

P r o o f. Let m be a Γ-invariant mean on L∞(G) and 〈m,Sϕ0h〉 = 〈m,h〉 for all

h ∈ L∞(G). Let h ∈ L∞(G) and ϕ ∈ P 1(Γ). Since Cc(Γ) is dense in L1(Γ), we may

assume that ϕ ∈ P 1(Γ) ∩Cc(Γ). By [16], we have

(1) 〈m,Sϕh〉 = 〈m,Sϕ0(Sϕh)〉 = 〈m,Sϕ∗ϕ0h〉.

Since the mapping (s, t) 7→ S
(s,t)ϕ0h from Γ into L∞(G) is continuous, by [16] and

Theorem 3.27 in [21], we have

〈Sϕ∗ϕ0h, 〉 =

∫

f(x)

∫∫

ϕ(s, t)(s−1,t−1)ϕ0(y, z)h(yxz
−1) d(s, t) d(y, z) dx

=

∫

ϕ(s, t)〈S
(s−1,t−1)

ϕ0h, f〉d(s, t)

=
〈

∫

ϕ(s, t)S
(s−1,t−1)ϕ0hd(s, t), f

〉

.

We conclude that

〈m,Sϕ∗ϕ0h〉 =

∫

〈m,S
(s−1,t−1)ϕ0h〉ϕ(s, t) d(s, t)(2)

=

∫

〈m,Sϕ0s−1ht−1〉ϕ(s, t) d(s, t)

=

∫

〈m, s−1ht−1〉ϕ(s, t) d(s, t) = 〈m,h〉.

Now (1) and (2) imply that m is a topologically Γ-invariant mean on L∞(G). �

Definition 3.9. A net (Aα) of measurable subsets of G with 0 < |Aα| < ∞ is

called asymptotically Γ-invariant if

|yAα∆Aαz|

|Aα|
→ 0

for every (y, z) ∈ Γ.

The following result is the key to the proof of one of our results:

Theorem 3.10 (Theorem 2.3 in [9]). Let G be a unimodular locally compact

group and let Γ be a closed subgroup of G × G. Then the following conditions are

equivalent:

(i) G is Γ-amenable;

(ii) G has an asymptotically Γ-invariant net of subsets.
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Theorem 3.11. Let G be a Γ-amenable unimodular locally compact group, and

let L∞(G) have a unique Γ-invariant mean, say m. If (Aα) is an asymptotically

Γ-invariant net and h ∈ L∞(G), then lim
α

|Aα|
−1

∫

Aα
h(x) dx ∈ C and

〈m,h〉 = lim
α

1

|Aα|

∫

Aα

h(x) dx.

P r o o f. If h ∈ L∞(G)R (subscripts R indicate that we consider real functions),

let p(h) = lim sup
α

|Aα|
−1

∫

Aα
h(x) dx. Obviously p is positively homogenous and

subadditive. Since p(0) = 0, by the Hahn-Banach theorem there existsm0 ∈ L∞(G)∗

such that −p(−h) 6 〈m0, h〉 6 p(h) whenever h ∈ L∞(G)R. It is easy to see that

m0 is a mean on L
∞(G). For every (y, z) ∈ Γ, h ∈ L∞(G)R and α,
∣

∣

∣

∣

1

|Aα|

∫

Aα

yhz − h(x) dx

∣

∣

∣

∣

6
|yAα∆Aαz|

|Aα|
‖h‖.

This shows that

(1) lim
α

1

|Aα|

∫

Aα

yhz − h(x) dx = 0

and so 〈m0, yhz〉 = 〈m0, h〉. We conclude that m0 = m. Let h1 ∈ L∞(G)R, we will

show that the net

lim
α

1

|Aα|

∫

Aα

h1(x) dx

converges and

〈m,h1〉 = lim
α

1

|Aα|

∫

Aα

h1(x) dx.

If this net did not converge, there would exist λ 6= 〈m,h1〉 such that

−p(−h1) = lim inf
α

1

|Aα|

∫

Aα

h1(x) dx < λ < lim sup
α

1

|Aα|

∫

Aα

h1(x) dx = p(h1).

Write N for the real closed subspace generated by {1G, h1}. By one form of the Hahn-

Banach theorem, there exists a linear functional m1 on N such that 〈m1, 1G〉 = 1,

〈m1, h1〉 = λ, and −p(−h) 6 〈m1, h〉 6 p(h) for all h ∈ N (see B.12 in [11]). By

the Hahn-Banach theorem there exists m2 ∈ L∞(G)∗ such that m2|N = m1 and

−p(−h) 6 〈m2, h〉 6 p(h) for all h ∈ L∞(G)R. Then by (1), m2 is a Γ-invariant

mean on L∞(G)R. By assumption λ = 〈m1, h1〉 = 〈m2, h1〉 = 〈m,h1〉 which is

a contradiction. Clearly

〈m,h〉 = lim
α

1

|Aα|

∫

Aα

h(x) dx.

This completes the proof. �
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For functions ϕ, ψ ∈ L1(G) and h ∈ L∞(G), we write

ϕ ⋆ ψ(x) =

∫

ψ(y−1xy)∆(y)ϕ(y) dy, ϕ ⋆ h(x) =

∫

h(yxy−1)ϕ(y) dy.

For more information on this multiplication, see [22]. For ϕ, ψ ∈ L1(G), h ∈ L∞(G)

and m,n ∈ L∞(G)∗, the elements h . ϕ and m.h of L∞(G) and m. n of L∞(G)∗ are

defined by

〈h . ϕ, ψ〉 = 〈h, ϕ ⋆ ψ〉, 〈m . h, ϕ〉 = 〈m,h . ϕ〉, 〈m . n, h〉 = 〈m,n . h〉,

respectively. This is the first Arens multiplication on L∞(G)∗ [3].

By Proposition 1.10 in [22], G is inner amenable if and only if there exists a meanm

on L∞(G) such that 〈m,ϕ ⋆ h〉 = 〈m,h〉 for all h ∈ L∞(G) and ϕ ∈ P 1(G).

Theorem 3.12. For h ∈ L∞(G), the following conditions are equivalent:

(i) there exists a meanm on L∞(G) such that 〈m,ϕ⋆h〉 = 〈m,h〉 for all ϕ ∈ P 1(G);

(ii) there exists a net {ϕα} in P
1(G) such that {ϕα . h} converges to a constant

function in the weak∗ topology of L∞(G).

P r o o f. (i) =⇒ (ii) Let h ∈ L∞(G) and 〈m,ϕ ⋆ h〉 = 〈m,h〉 for all ϕ ∈ P 1(G).

By Proposition 3.3 in [20], there exists a net {ϕα} in P
1(G) that is weak∗ convergent

to m. For any ϕ ∈ P 1(G),

lim
α
〈ϕα.h, ϕ〉 = lim

α
〈ϕα, h . ϕ〉 = 〈m,ϕ ⋆ h〉

= 〈m,h〉 = 〈m,h〉〈1G, ϕ〉.

As P 1(G) spans L1(G), we conclude that 〈m,h〉1G belongs to the weak
∗ closure of

{ϕ . h : ϕ ∈ P 1(G)}.

(ii) =⇒ (i) Let h ∈ L∞(G). Assume that there exists a net {ϕα} in P
1(G) such

that {ϕα . h} converges to a constant function c1G in the weak
∗ topology of L∞(G).

Let n be a weak∗ cluster point of the net {ϕα} in L
∞(G)∗. Then n is a mean

on L∞(G). For every ψ ∈ L1(G),

〈n . h, ψ〉 = 〈n, h . ψ〉 = lim
α
〈ϕα, h . ψ〉

= lim
α
〈ϕα . h, ψ〉 = c〈1G, ψ〉.

This shows that n · h = c1G. Finally, let m = n . n. Then m is a mean on L∞(G)

and for every ϕ ∈ P 1(G),

〈m,ϕ ⋆ h〉 = 〈m,h . ϕ〉 = 〈n, n . (h . ϕ)〉 = 〈n, (n . h) . ϕ〉

= c〈n, 1G . ϕ〉 = 〈n, n . h〉 = 〈m,h〉.

This completes the proof. �
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