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On quasivarieties of nilpotent Moufang loops. IVasile I. UrsuAbstra
t. In this part the smallest non-abelian quasivarieties for nilpotent Mou-fang loops are des
ribed.Keywords: loop, asso
iator, 
ommutator, nilpotent, quasivarieties, quasiidenti-ties, identitiesClassi�
ation: 20N05Introdu
tionThe theory of quasivarieties is one of the most important domains of universalalgebra. The base of this theory was set by A.I. Mal'
ev ([1℄, [2℄, [3℄, [4℄, [5℄, [6℄).Spe
ial attention is paid to two important problems:1) the des
ription of the latti
e of quasivarieties of algebras;2) when an algebra with a �nite signature has a �nite basis of quasiidentities.The study of these problems in the 
lass of nilpotent Moufang loops is the goalof this paper.In Se
tion 1 we explain the basi
 notations and des
ribe the identities thathold true in 2-nilpotent Moufang loops, obtained in [7℄. In Se
tion 2 we des
ribeall minimal non-abelian quasivarieties for nilpotent Moufang loops, namely,{ minimal non-asso
iative quasivarieties of 
ommutative Moufang loops;{ minimal non-asso
iative and non-
ommutative quasivarieties of MoufangA-loops with one proper minimal non-asso
iative sub-quasivariety of 
om-mutative Moufang loops and one proper minimal non-
ommutative sub-quasivariety of groups;{ minimal non-asso
iative and non-
ommutative quasivarieties of Moufangloops with the only proper non-
ommutative subquasivariety of groups;{ minimal non-
ommutative quasivarieties of groups.For some of these quasivarieties, examples of non-asso
iative Moufang loops are
onstru
ted. For instan
e, the smallest non-asso
iative and non-
ommutativenilpotent Moufang loop has 16 elements (basi
 elements of Cayley{Dixon algebraand their opposite).Results of this arti
le were presented at the 
onferen
e LOOPS'11.1. De�nitions, preliminary results, observations and notationWe shall use some notions and results from the monograph of R.H. Bru
k [8℄.



476 V.I. UrsuA Moufang Loop (ML) is an algebra hL; �;�1 i of type h2; 1i whose operationsand elements satisfy the following identities:x (y � xz) = (xy � x)z;(1) x�1 � xy = y = yx � x�1;(2)where by x�1 we denote the result of the unary operation applied to the element x.We observe that (2) implies the identity y �(x�1)�1 = yx, whi
h in turn impliesthe identity (x�1)�1 = x. This helps to dedu
e the identity(3) x � x�1y = y = yx�1 � xFor an arbitrary element x 2 L we denote e = x�1 � x. Then, a

ording to theidentities (1){(3), we will haveye = x�1 � x (ye) = x�1 �x � y �xx�1�� = x�1 �(xy � x)x�1� = x�1 � xy = yfor any y 2 L. It follows that e = y�1 � y and, therefore, e does not depend onthe element x. Then, taking (3) into 
onsideration,e � y = yy�1 � y = yfor any y 2 L and it follows that e is a unit element of the ML L. Further onML L will be studied with the signature h�;�1 ; ei made up of three operationalsymbols, whi
h will be simply noted as L.A ML is disso
iative, in the sense that any of its subloops generated by twoelements is asso
iative (Moufang theorem [8℄).For elements x, y and z in a ML L the asso
iator [x; y; z℄ and the 
ommutator[x; y℄ are de�ned by the equalities [x; y; z℄ = (x � yz)�1 � (xy � z) and [x; y℄ =x�1 � y�1(xy), respe
tively.For any subloop H of L we shall let [H;L℄ denote the subloop generated by allof the elements of the forms [h; x; y℄ and [h; x℄, where h 2 H and x; y 2 L.The asso
iant-
ommutant of the ML L is the subloop generated in L by all theasso
iators and 
ommutators of L and we shall denote it as L0 or [L;L℄. The setZ(L) = fx 2 L j [x; y; z℄ = e; [x; y℄ = e for any y; z 2 Lgis 
alled the 
enter of the ML L.The subloopH of the ML L is 
alled normal in L if xH = Hx and x�yH = xy�Hfor any x; y 2 L. It is easy to verify that the asso
iant-
ommutant L0 is normalin L. Likewise, any subloop of the ML L that is 
ontained in the 
enter Z(L) isalso normal in L.Spe
ial asso
iator-
ommutators of multipli
ity n are de�ned indu
tively: x1is a spe
ial asso
iator-
ommutator of multipli
ity 1; if u is a spe
ial asso
iant ofmultipli
ity n whi
h in
ludes exa
tly in variables, then [u; xin+1℄, [u; xin+1; xin+2℄is a spe
ial asso
iator-
ommutator of multipli
ity n+ 1.



On quasivarieties of nilpotent Moufang loops. I 477A ML L is 
alled (
entral-)nilpotent (NML) of 
lass n or n-nilpotent if forany values of the variables in L the value of any spe
ial asso
iator-
ommutator ofmultipli
ity n+1 is equal to the unit element e 2 L, but the value of at least onespe
ial asso
iator-
ommutator of multipli
ity n is di�erent from e.A

ording to [7℄, in any nilpotent Moufang loop of 
lass 2 the following iden-tities are true: [x; y; z℄ = [y; z; x℄ = [y; x; z℄�1 ;(4) [x � y; z; t℄ = [x; z; t℄ [y; z; t℄ ;(5) [xm; y; z℄ = [x; y; z℄m ;(6) [x; y; z℄6 = e;(7) [x � y; z℄ = [x; z℄ [y; z℄ [x; y; z℄3 ;(8)and [xm; y℄ = [x; y℄m ;(9) [x; y℄ = [y; x℄�1 ;(10)be
ause Moufang loops are disso
iative.We shall also use the following notation:Fn(K) { free ML of rank n of quasivariety K;v(L) { variety generated by loop L;q(L) { quasivariety generated by loop L.2. The smallest nilpotent non-abelian quasivarieties of Moufang loopsThe following varieties are de�ned in the 
lass of all 2-nilpotent Moufang loops:K1;0;0 = modf[x; y; z℄ = eg;K1;p;0 = modf[x; y; z℄ = e; [x; y℄p = eg;K1;p;pm = modf[x; y; z℄ = e; [x; y℄p = e; xpm = eg;where m = 2; 3; : : : for p = 2 and m = 1; 2; : : : for any prime number p � 3,K2;0;0 = modf[x; y; z℄2 = eg;K2;2;0 = modf[x; y; z℄2 = e; [x; y℄2 = eg;K2;2;2m = modf[x; y; z℄2 = e; [x; y℄2 = e; x2m = eg; m = 2; 3; : : : ;K3;0;0 = modf[x; y; z℄3 = eg;K3;1;0 = modf[x; y; z℄3 = e; [x; y℄ = eg;K3;1;3m = modf[x; y; z℄3 = e; [x; y℄ = e; x3m = eg; m = 1; 2; : : : ;K3;3;0 = modf[x; y; z℄3 = e; [x; y℄3 = eg;



478 V.I. UrsuK3;3;3m = modf[x; y; z℄3 = e; [x; y℄3 = e; x3m = eg; m = 1; 2; : : :Denote by < the set of all varieties de�ned above.Lemma 1. If a 2-nilpotent Moufang loop N is �nite, then there exists a varietyK 2 < su
h that F3(K) 2 q(N).Proof: Sin
e N is nilpotent we 
an regard N as a p-loop. Let exp(N) = pm.We 
onsider the following possible 
ases.Case 1: N is non-asso
iative and p = 2. In this 
asem > 1. Then, a

ording tothe identity (7), the identity [x; y; z℄2 = e holds true in N . For a 
ertain integer k,1 � k � m, the identity [x; y℄2k = e also holds in N . Let F3 = F3(x; y; z) bea v(N)-free loop of rank 3 with free generators x; y; z, and H = ha; b; 
i be thesubloop of F 43 = F3 � F3 � F3 � F3 generated by the elementsa = (x; x; e; e); b = (e; y2k�1 ; y; e); 
 = (e; z2k�1 ; z2k�1 ; z):Then it is obvious thata2m = b2m = 
2m = e; [a; b℄ = (e; [x; y℄2k�1 ; e; e); [a; 
℄ = (e; [x; z℄2k�1 ; e; e);[b; 
℄ = (e; [y; z℄22(k�1) ; [y; z℄2k�1 ; e); [a; b; 
℄ = (e; [x; y; z℄22(k�1) ; e; e):From here it follows that for k = 1 the loop H is both non-asso
iative and non-
ommutative and the identities[x1; x2; x3℄2 = e; [x1; x2℄2 = e and H 2 K2;2;2mhold. Also, for k > 1, H is a non-
ommutative group and the identity holds true[x1; x2℄2 = e and H 2 K1;2;2m :We will show that any equality relation in H between the elements a; b and 
 is atrivial equality. Indeed, let(11) (a�b� � 

) � [a; b℄Æ[a; 
℄�[b; 
℄�[a; b; 
℄� = ebe su
h an equality relation in H . Then we have�x�; (x�y2k�1� � z2k�1
) � [x; y℄2k�1Æ[x; z℄2k�1�[y; z℄22(k�1)�[x; y; z℄22(k�1)� ;y�z2k�1
 [y; z℄2k�1�; z
� = (e; e; e; e);from where it follows that the equality relationsx� = e; y� [y; z℄2k�1� = e; z
 = e;(12) [x; y℄2k�1Æ[x; z℄2k�1�[x; y; z℄22(k�1)� = e;(13)



On quasivarieties of nilpotent Moufang loops. I 479hold true in the �(N)-free loop F3. But any equality relation between the freegenerators x; y; z is a true identity in F3. Therefore (12) and (13) are true identitiesin F3. But the �rst and the last identity from (12) are true in F3 only if� � 0 (mod 2m); 
 � 0 (mod 2m):From the se
ond identity of (12), substituting in it z = e, and from identity (13),substituting in it alternatively z = e and y = e, we obtain(14) y� = e; [y; z℄2k�1� = e; [x; y℄2k�1Æ = e; [x; z℄2k�1� = e;and(15) [x; y; z℄22(k�1)� = e:But the identities from (14) are true in F3(x; y; z) only if� � 0mod 2m; � � 0mod 2; Æ � 0mod2; � � 0mod 2:When k = 1, the identity (15) holds true in F3(x; y; z) only if � � 0mod 2 andwhen k > 1 it holds true for any positive integer �. From this we 
an easily
on
lude that (11) is a trivial equality. Therefore, for k = 1 in the varietyK2;2;2m ,and for k > 1 in the variety K1;2;2m , the loop H has a �nite representation formedby three generators without any equality relation. Hen
e for k = 1 the loop His K2;2;2m-free and for k > 1 the loop H is K1;2;2m-free of the third rank withH 2 q(N).Case 2: N is non-asso
iative and p = 3. In this 
ase the identity (x; y; z)3 = eholds true in N . Assume that for a 
ertain integer k, 0 � k � m, the identity[x; y℄3k = e holds true in N .If k = 0, then in N the identity [x; y℄ = e holds true and thus N is a
ommutative Moufang loop. Then the �(N)-free 
ommutative Moufang loopF3(x; y; z) is free in any variety of Moufang loops with the exponent 3m. Hen
eF3(K3;1;3m) �= F3(x; y; z) 2 q(N).Let k � 1, F3 = F3(x; y; z) be a �(N)-free loop of the third rank with freegenerators x; y; z, andH = ha; b; 
i be the subloop generated in F 43 by the elementsa = (x; x; e; e); b = (e; y3k�1 ; y; e); 
 = (e; z3k�1 ; z3k�1 ; z):Then, obviouslya3m = b3m = 
3m = (e; e; e; e); [a; b℄ = (e; [x; y℄3k�1 ; e; e); [a; 
℄ = (e; [x; z℄3k�1 ; e; e);[b; 
℄ = (e; [y; z℄32(k�1) ; [y; z℄3m�1 ; e); [a; b; 
℄ = (e; [x; y; z℄32(k�1) ; e; e):From here it follows that for k = 1 the loop H is non-asso
iative and non-
ommutative, and the following identities hold true in it[x1; x2; x3℄3 = e; [x1; x2℄3 = e and H 2 K3;3;3m :



480 V.I. UrsuFor k > 1, H is a non-
ommutative group and the identities[x1; x2℄3 = e and H 2 K1;3;3mhold true in H . By analogy with Case 1 we show that for k = 1 the loop H isK3;3;3m-free of rank 3 and for k > 1 the loop H is K1;3;3m-free of rank 3 withH 2 q(N).Case 3: N is asso
iative and p is any prime number . Similar to the previous
ases, it 
an be shown that if, in the group N , the identity [x; y℄pk holds true fora 
ertain natural number k, 1 � k � m, then for k = 1 F3(K1;p;pm) 2 q(N). �Lemma 2. If the 2-nilpotent Moufang loop N, generated by three elements, isin�nite, then there exists a variety K 2 < su
h that F3(K) 2 q(N).Proof: Sin
e the loop N is not �nite, we have exp(N) = 0. We will 
onsider thefollowing possible 
ases.Case 1: N is non-asso
iative, in N the identity [x; y; z℄2 = e holds true andexp(h[u; v℄ j u; v 2 Ni) = 2ms, where m is a non-negative integer and 2 does notdivide s.We will �rst show that m > 0. So assume that m = 0. Then, a

ording to(8) and the identities [x; y; z℄2 = e, [x; y℄s = e we 
an dedu
e e = [xy; z℄s =([x; z℄[y; z℄[x; y; z℄3)s = ([x; z℄[y; z℄[x; y; z℄)s = [x; z℄s[y; z℄s[x; y; z℄s = [x; y; z℄s.Hen
e, in N , the identity [x; y; z℄s = e holds true and, sin
e 2 does not divide s, we
on
lude that the identity [x; y; z℄ = e is also true in N . That is, N is asso
iative,a 
ontradi
tion.Hen
e, m � 1. Now let F3 = F3(x; y; z) be a �(N)-free loop of the third rankwith free generators x; y; z, and H = ha; b; 
i be a subloop generated in F 43 by theelements a = (x; x; e; e); b = (e; y2m�1s; y; e); 
 = (e; z2m�1s; z2m�1s; z):Then, obviously, exp(H) = 0 and the following equalities hold true:(16)[a; b℄ = (e; [x; y℄2m�1s; e; e); [a; 
℄ = (e; [x; z℄2m�1s; e; e);[b; 
℄ = (e; [y; z℄22(m�1)s2 ; [y; z℄2m�1s; e); [a; b; 
℄ = (e; [x; y; z℄22(m�1)s2 ; e; e):From here it follows that for m = 1 the loop H is both non-asso
iative andnon-
ommutative and the identities (x1; x2; x3)2 = e, [x1; x2℄2 = e hold true in it.For m > 1 H is a non-
ommutative group and the identity [x1; x2℄2 = e holdstrue in it. Therefore, for m = 1 the loop H 2 K2;2;0, and for m > 1 the loopH 2 K1;2;0.We will now show that any equality relation in H between the elements a; band 
 is a trivial equality. Indeed, let(17) (a�b� � 

) � [a; b℄Æ[a; 
℄�[b; 
℄�[a; b; 
℄� = e
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h an equality relation. Then we have(18) �x�; (x�y2m�1s � � z2m�1s 
) � [x; y℄2m�1s Æ [x; z℄2m�1s �[y; z℄22(m�1)s2�[x; y; z℄22(m�1)s2� ; y�z2m�1s 
 [y; z℄2m�1s �; z
� = (e; e; e; e):Like in Lemma 1 we 
an show the identitiesx� = e; y� = e; z
 = e;(19) [x; y℄2m�1s Æ = e; [x; z℄2m�1s � = e; [y; z℄2m�1s � = e;(20) [x; y; z℄22(m�1)s2� = e:(21)Be
ause exp(N) = exp(F3) = 0, the identities from (19) hold true in F3(x; y; z)only if � = 0; � = 0; 
 = 0:The identities from (20) are true only if Æ � 0mod(2), � � 0mod 2 and � �0mod 2 and the identity (21), when m = 1, is true in F3 only if � � 0mod2and when m > 1 | for any positive integer �. We 
an easily 
on
lude that (17)is a trivial equality. Therefore, for m = 1 in the variety K2;2;0 and for m > 1in the variety K1;2;0, the Moufang loop H has a �nite representation formed ofthree generators without any equality relation. Hen
e, for m = 1 the loop H isK2;2;0-free of the third rank and for m > 1 the loop H is K1;2;0-free of the thirdrank with H 2 q(N).Case 2: N is non-asso
iative, the identities [x; y; z℄3 = e and exp(h[u; v℄ ju; v 2 Ni) = 3ms hold true in it, where m is a non-negative integer and 3 doesnot divide s.Let m = 0, then we 
onsider the subloop H = ha; b; 
i generated in the �(H)-free loop F3(x; y; z) by the elements a = x, b = ys, 
 = zs. We noti
e that in theloop F3(x; y; z) the following equalities hold true[a; b; 
℄ = [x; y; z℄s2 ; [a; b℄ = [x; y℄s = e; [a; 
℄ = [x; z℄s = e; [b; 
℄ = [y; z℄s2 = e;whi
h implies that H is a 
ommutative Moufang loop. As exp(H) = 0, it resultsthat H is a free 2-nilpotent 
ommutative Moufang loop, whi
h is 
ontained in thevariety K3;1;0. Therefore F3(K3;1;0) �= H 2 q(N).Now assume that m � 1. Let F3 = F3(x; y; z) be a �(N)-free loop of the thirdrank and H = ha; b; 
i be the subloop generated in F 43 by the elementsa = (x; x; e; e); b = (e; y3m�1s; y; e); 
 = (e; z3m�1s; z3m�1s; z):Then, obviously, exp(H) = 0 and the following equalities hold true[a; b℄ = (e; [x; y℄3m�1s; e; e); [a; 
℄ = (e; [x; z℄3m�1s; e; e);[b; 
℄ = (e; [y; z℄32(m�1)s2 ; [y; z℄3m�1s; e); [a; b; 
℄ = (e; [x; y; z℄32(m�1)s2 ; e; e):



482 V.I. UrsuFrom here it follows that for m = 1 the loop H is both non-asso
iative and non-
ommutative and that the identities (x1; x2; x3)3 = e, [x1; x2℄3 = e hold true in it.However, for m > 1, H is a non-
ommutative group and the identity [x1; x2℄3 = eholds in it. Therefore, for m = 1 the loop H 2 K3;3;0 and for m = 1 the loopH 2 K1;3;0. Then, similar to Case 1, we 
an show that for m = 1 the loop His K3;3;0-free of rank 3 and for m > 1 the loop H is K1;3;0-free of rank 3 withH 2 q(N).Case 3: N is non-asso
iative, the identities [x; y; z℄3 = e (respe
tively, [x; y; z℄2= e) and exp(h[u; v℄ j u; v 2 Ni) = 0 hold true in it .Let F3(x; y; z) be a �(N)-free loop with free generators x; y and z. It is 
learthat F3(x; y; z) 2 K3;0;0 (respe
tively, F3(x; y; z) 2 K2;0;0).Let an arbitrary equality relation hold true in the �(N)-free loop F3(x; y; z)(22) (x�y� � z
) � [x; y℄Æ [x; z℄�[y; z℄�(x; y; z)� = e:This equality relation is the identity true in F3(x; y; z). Then we 
an easily dedu
ethat it implies the identitiesx� = e; y� = e; y
 = e; [x; y℄Æ = e; [x; z℄� = e; [y; z℄� = e; [x; y; z℄� = e;whi
h are true in F3(x; y; z) only if� = 0; � = 0; 
 = 0; Æ = 0; � = 0; � = 0; � � 0mod3(� � 0mod2; respe
tively):From here we obtain that (22) is a trivial equality in F3(x; y; z). Therefore,F3(x; y; z) is a free loop in the variety K3;0;0 (K2;0;0, respe
tively). It then followsthat F3(x; y; z) 2 q(N).Case 4: N is non-asso
iative, the identities [x; y; z℄2 = e and [x; y; z℄3 = e donot hold true in it .We 
onsider one of the non-asso
iative subloops N1 = hu2 j u 2 Ni, N2 =hu3 j u 2 Ni. The loops N1 and N2 are non-asso
iative subloops of N . Sin
e theidentity [x; y; z℄6 = e holds true in N , the identities [x; y; z℄3 = e and [x; y; z℄2 = e,respe
tively, hold true in the non-asso
iative loops N1 and N2, respe
tively. Thuswe obtain one of the situations studied above.Case 5: N is asso
iative and exp(h[u; v℄ j u; v 2 Ni) = pms, where p is a primenumber not dividing s and m � 1.In this 
ase we 
onsider in the �(N)-free group F3(x; y; z) the elements a = xs,b = ypm�1s, 
 = zpm�1s and H = ha; b; 
i. Then it is obvious that the loop H withexponent zero is non-
ommutative and the following equalities hold true[a; b℄p = e; [a; 
℄p = e; [b; 
℄p = e:Then in the non-
ommutative group H the identity [x; y℄p = e is true. Applyingthe same reasoning as in Case 1 or 2 we obtain F3(K1;p;0) �= H 2 q(N).



On quasivarieties of nilpotent Moufang loops. I 483Case 6: N is asso
iative and exp(h[u; v℄ j u; v 2 Ni) = 0.Similar to the previous 
ases we 
an easily dedu
e that F3(K1;0;0) 2 q(N). �Lemma 3. For any varietyK 2 < the following equalities q(F3(K)) = q(F!(K)),q(F3(K)) = q(Fn(K)), n = 4; 5; : : :, hold.Proof: It is enough to show that for any natural number n the K-free loopFn(K), of �nite rank n, belongs to the quasivariety Q. Sin
e F1; F2; F3 2 Q, weassume that n > 3. Let Fn = Fn(x1; : : : ; xn) be a K-free loop of rank n with freegenerators x1; : : : ; xn. We will �rst show that the K-free loop Fn is approximatedby the subloops of the K-free loop F3(x; y; z), i.e., for any element u 6= e from Fnthere exists a homomorphism ' from Fn to F3 su
h that '(u) 6= e. If we admitthat it is impossible, then in Fn there exists an element u = u(x1; : : : ; xn) 6= esu
h that for any homomorphism ' from Fn to F3 we have '(u) 6= e. We willrepresent the element u in its 
anoni
al formu = (x�11 ; : : : ; x�nn ) � Y1�i<j�n[xi; xj ℄�ij Y1�i<j<k�n[xi; xj ; xk℄
ijk ;where the multipli
ation of fa
tors from parenthesis is performed in a 
ertainestablished order, for instan
e, from left to right. Assume that for a 
ertain indexi, 1 � i � n, one has x�ii 6= e. The mapping xj 7! e, j 2 f1; : : : ; ng n fig, xi 7! xextends to a homomorphism  from Fn to F3. Then  (u) =  (xi)�i = x�i andin F3 we get the equality x�i = e. But the last expression is a true identity inthe K-free loop Fn(x; y; z), hen
e in Fn as well. But in this 
ase we 
ame to a
ontradi
tion with x�ii 6= e. Hen
e, we 
an suppose that x�11 = e; : : : ; x�nn = eand u = Y1�i<j�n[xi; xj ℄�ij Y1�i<j<k�n[xi; xj ; xk℄
ijk :Assume that [xi; xj ℄�ij 6= e for a 
ertain pair (i; j), 1 � i < j � n. The mappingxk 7! e, k 2 f1; : : : ; ng n fi; jg, xi 7! x, xj 7! y extends to a homomorphism from Fn to F3. Then  (u) = [ (xi);  (xj)℄�ij = [x; y℄�ij and we get that theidentity [x; y℄�ij = e holds true in F3. But then this identity also holds truein Fn, whi
h 
ontradi
ts the inequality [xi; xj ℄�ij 6= e. Hen
e, we 
an say thatQ1�i<j�n[xi; xj ℄�ij = e andu = Y1�i<j<k�n[xi; xj ; xk℄
ijk :Now assume that [xi; xj ; xk ℄
ijk 6= e for a 
ertain triple (i; j; k), 1 � i < j < k � n.The mapping xl ! e, l 2 f1; : : : ; ngnfi; j; kg, xi ! x, xj ! y, xk ! z extendsto a homomorphism  from Fn to F3. Then (u) = [ (xi);  (xj);  (xk)℄
ijk = [x; y; z℄
ijk



484 V.I. Ursuand we get that the identity [x; y; z℄
ijk = e holds true in F3. But then this identityis also true in Fn, whi
h 
ontradi
ts the inequality [xi; xj ; xk℄
ijk 6= e. Then we 
ansay that Q1�i<j<k�n[xi; xj ; xk℄
ijk = e and u = e. We 
ame to a 
ontradi
tionwith the assumption that u 6= e. From here we 
an 
on
lude that the loop Fn isapproximated by the subloops of the loop F3, hen
e it is in
luded isomorphi
allyin a Cartesian produ
t of subloops of the loop F3. Therefore, Fn belongs to thequasivariety q(F3) and, hen
e, Fn also belongs to the quasivariety Q. �A

ording Lemmas 1, 2 and 3 we 
an formulate the following theorem.Theorem 1. If Q is a quasivariety that 
ontains a nilpotent non-asso
iative ornon-
ommutative Moufang loop, then there exists at least one variety K 2 < sothat F!(K) 2 Q.Corollary 1. For any variety K 2 < the following statements are true:(a) if q(F!(K)) 
ontains a non-asso
iative and non-
ommutative loop H ,then q(H) = q(F!(K));(b) if q(F!(K)) 
ontains only 
ommutative Moufang loops (respe
tively,groups) and H is a non-asso
iative (respe
tively, non-
ommutative) loop,then q(H) = q(F!(K)).Remark 1. Sin
e the following in
lusions hold trueK3;1;0 � K3;3;0; K1;3;0 � K3;3;0; K3;1;3m � K3;3;3m ; m = 1; 2; : : : ;ea
h of the quasivarieties q(F!(K3;3)), q(F!(K3;3;3m)), m = 1; 2; : : :, 
ontains onlytwo non-abelian subquasivarieties: one formed of 
ommutative Moufang loops andanother formed of groups.Remark 2. A

ording to identity (5) and (8) inner permutations of the multi-pli
ation group of any loop of K3;0;0 are automorphisms. Loops of these varietiesare A-loops (see the resear
h on nilpotent A-loops in [9℄).Remark 3. Ea
h quasivariety of the set fq(F!(K2;2;0)), q(F!(K2;2;2m)), m =2; 3; : : : g has only one non-abelian own subquasivariety being generated by a freegroup of rank 2 of this quasivariety.From Theorem 1, Corollary 1 and Remarks 1{3 one gets the following.Theorem 2. Non-abelian minimal quasivarieties of the latti
e of quasivarietiesof nilpotent Moufang loops are:{ minimal non-asso
iative quasivarieties of 
ommutative Moufang loopsq(F!(K3;1;0)); q(F!(K3;1;3m)) (m = 1; 2; : : : );
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iative and non-
ommutative quasivarieties of MoufangA-loops with one proper minimal non-asso
iative subquasivariety of 
om-mutative Moufang loops and one proper minimal non-
ommutative sub-quasivariety of groups;q(F!(K3;0;0)); q(F!(K3;3;0)); q(F!(K3;3;3m)) (m = 1; 2; : : : );{ minimal non-asso
iative and non-
ommutative quasivarieties of Moufangloops with the only proper non-
ommutative subquasivariety of groupsq(F!(K2;0;0)); q(F!(K2;2;0)); q(F!(K2;2;2m)) (m = 2; 3; : : : );{ minimal non-
ommutative quasivarieties of groupsq(F!(K1;0;0)); q(F!(K1;p;0)) (p = 2; 3; : : : );q(F!(K1;2;2m)) (m = 2; 3; : : : ); q(F!(K1;p;pm)) (p � 3; m = 2; 3; : : : ):Further, we will show a few 
on
rete examples of nilpotent Moufang loops.First, we will prove the following important statement.Theorem 3. If the alternative ring K with a unit element 
ontains a nilpotentsub-ring R with index n � 2 (i.e., any produ
t of n fa
tors a1a2 � � � an = 0 for anya1; : : : ; an 2 K), then the set L of all elements of the form 1 + x, where x 2 R,forms a nilpotent Moufang loop of 
lass n� 1.Proof: The equality(1 + x)(1� x+ x2 � � � �+ (�1)n�1xn�1) = 1where x 2 R, shows that any element from L is invertible and, therefore, L is aMoufang loop. Now let Rk be the set of all linear 
ombinations of all produ
ts ofk � n� 1 elements from R. Note that the following in
lusions are true:(23) Rk � Rl � Rk+l; Rk+1 � Rk:Then for any x 2 Rk we have the equality(1 + x)�1 = 1� x+ x2 � � � �+ (�1)n�1xn�1;that is,(24) (1 + x)�1 = 1 + x�;where x� = �x+x0 and x0 = x2�x3�� � �+(�1)n�1xn�1. Be
ause x 2 Rk, thenis 
lear that x2; x4; : : : ; xn�1 2 R2k and it follows that(25) x0 2 R2k:



486 V.I. UrsuNow, if x 2 Rk and y; z 2 R, then, a

ording to Moufang's Theorem and theequality (24):[1 + z; 1 + y; 1 + x℄ = ((1 + z) � (1 + y)(1 + x))�1 � ((1 + z)(1 + y) � (1 + x))= ((1 + x)�1(1 + y)�1 � (1 + z)�1) � ((1 + z)(1 + y) � (1 + x))= ((1 + x�)(1 + y)�1 � (1 + z)�1) � ((1 + z)(1 + y) � (1 + x))= (((1 + z)(1 + y))�1 + x�(1 + y�) � (1 + z�)) � ((1 + z)(1 + y) � (1 + x))= 1 + x+ (x�(1 + y�) � (1 + z�)) � ((1 + z)(1 + y) � (1 + x))= 1+x+(x�+x�y�+x�z�+x�y� � z�) � (1 + z + y + x+ zy + zx+ yx+ zy � x)= 1 + x+ x� + x�y� + x�z� + x�y� � z�+(x� + x�y� + x�z� + x�y� � z�) � (z + y + x+ zy + zx+ yx+ zy � x);similarly we 
an dedu
e[1 + x; 1 + y℄ = ((1 + y)(1 + x))�1 � (1 + x)(1 + y)= ((1 + x)�1(1 + y)�1) � ((1 + x)(1 + y))= (1 + x�)(1 + y)�1 � ((1 + y) + x(1 + y))= 1 + x� + (1 + x�)(1 + y)�1 � x(1 + y)= 1 + x� + (1 + x�)(1 + y�) � (x+ xy)= 1 + x� + (1 + x� + y� + x�y�)(x + xy)= 1 + x+ x� + xy + (x� + y� + x�y�)(x+ xy):We note thatx1 = x+ x� + [x�y� + x�z� + x�y� � z�+ (x� + x�y� + x�z� + x�y� � z�) � (z + y + x+ zy + zx+ yx+ zy � x)℄;x2 = x+ x� + [xy + (x� + y� + x�y�)(x + xy)℄:Be
ause x; x� 2 Rk, a

ording to (25) x + x� = x0 2 R2k, and a

ording to (23)items from square bra
kets from the last two equalities belong to Rk+1. Thus wehave: [1 + z; 1 + y; 1 + x℄ = 1 + x1 2 1 +Rk+1;(26) [1 + x; 1 + y℄ = 1 + x2 2 1 +Rk+1:(27)Further, from the fa
t that x 2 Rk and y; z 2 R it follows that x� 2 Rk andy�; z� 2 R, whi
h in view of (26) implies that [1 + x�; 1+ y�; 1+ z�℄ 2 1+Rk+1.
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ording to (26) and (27) we have(1 + x) � (1 + y)(1 + z) = (1 + x�)�1 � (1 + y�)�1(1 + z�)�1= ((1 + z�)(1 + y�) � (1 + x�))�1= (((1 + z�) � (1 + y�)(1 + x�)) � [1 + z�; 1 + y�; 1 + x�℄)�1= [1 + z�; 1 + y�; 1 + x�℄�1 � ((1 + z�) � (1 + y�)(1 + x�))�1= [1 + z�; 1 + y�; 1 + x�℄�1 � ((1 + x�)�1(1 + y�)�1 � (1 + z�)�1)= [1 + z�; 1 + y�; 1 + x�℄�1 � ((1 + x)(1 + y) � (1 + z))= ((1 + x)(1 + y) � (1 + z)) � [1 + z�; 1 + y�; 1 + x�℄�1�[[1 + z�; 1 + y�; 1 + x�℄�1; (1 + x)(1 + y) � (1 + z)℄2 ((1 + x)(1 + y) � (1+z)) � (1 + Rk+1)(1 +Rk+1)� ((1 + x)(1 + y) � (1 + z)) � (1 +Rk+1)whi
h shows that the asso
iator(28) [1 + x; 1 + y; 1 + z℄ 2 1 +Rk+1:Now a

ording to the de�nition of the spe
ial asso
iator-
ommutator and theformulas (27), (28) by simple indu
tion it shows that values in ML L of anyspe
ial asso
iator-
ommutator of multipli
ity k, 1 � k � n are 
ontained in1 + Rk. In parti
ular that values in ML L of any spe
ial asso
iator-
ommutatorof multipli
ity n are 
ontained in 1 + Rn = f1g. This means that L is nilpotentof 
lass n� 1. �Example 1. Let R be an alternative n-nilpotent ring and Z the ring of integers.On the set K = R�Z we de�ne operations + and � as follows:(a; k) + (b; l) = (a+ b; k + l);(a; k) � (b; l) = (a � b+ la+ kb; k � l);where (a; k); (b; l) 2 K. It is easy to see that K together with the operationsde�ned above is an alternative ring with the unit e = (0; 1) and that the set L0 ofall elements of the form (a; 0) is a subring K isomorphi
 to R. Therefore, due toTheorem 3, the set L = e+ L0 forms an (n� 1)-nilpotent Moufang loop.In parti
ular, if R is a free alternating ring of 
hara
teristi
 3 (or zero), thenL is a (n� 1)-nilpotent Moufang loop with exponent 3 (or zero).Example 2. A basis of a Cayley{Dixon algebra K (see [6℄) over the �eld of realnumbers R 
onsists of the elements e1 = 1, e2 = i, e3 = j, e4 = k, e5 = e, e6 = ie,e7 = je, e8 = ke, the �rst of whi
h is a unit for algebra K and the �rst four ofwhi
h form a basis of the sub-algebra of quaternions. Multipli
ation is de�ned on



488 V.I. Ursuthese elements by the relations:(29) i2 = j2 = k2 = e2 = �1;ij = �ji = k; jk = �kj = i; ki = �ik = j;eq = qe; p � qe = qp � e; pe � q = pq; pe � qe = �qp;where q = �q, p; q 2 fi; j; kg. The Cayley numbers K are multiplied a

ording tothe distributive laws and relations (29). It is easy to verify that(30) [ei; ej ℄ = 1 or [ei; ej ℄ = �1; [ei; ej ; ek℄ = 1 or [ei; ej ; ek℄ = �1:From (29) and (30) we 
an see that the subsetsL1 = f�1; �i; �j; �k; �e; �ie; �je; �keg;L2 = R [ Ri [ Rj [ Re [ Rie [ Rje [ Rke (R = R n f0g)with respe
t to the multipli
ation are Moufang loops with the asso
iators and
ommutators equal to 1 or �1, hen
e, they belong to the 
enter of this loop.Therefore, the Moufang loops L1 and L2 are non-asso
iative, non-
ommutativeand 2-nilpotent. It is easy to verify that the exponent of L1 is 4, the exponent ofL2 is in�nite, and in both loops the following identities hold[x; y; z℄2 = 1; [x; y℄2 = 1:Therefore, L1 2 K2;2;22 and L2 2 K2;2;0.Example 3. In the ring of all square matri
es of order n � 3 over the Cayley{Dixon algebra we study the set L of all matri
es of the form q � A, where q is anelement of the Moufang loop L1 (or L2) from Example 2 and A is a lower (orupper) triangular matrix of order n that has 1s along the main diagonal and theother elements above it are arbitrary real numbers (it is well known that thesematri
es A form a nilpotent group relative to the usual multipli
ation [10℄).It is easy to 
he
k that for any elements pA; qB; rC 2 L we have[pA; qB; rC℄ = [p; q; r℄ � [A;B;C℄ 2 f�E;Eg;[pA; qB℄ = [p; q℄ � [A;B℄ 2 f�[A;B℄; [A;B℄g;where E is the unit matrix. From this it follows that L forms a nilpotent Moufangloop of 
lass (n � 1) relative to the multipli
ation. In parti
ular, for n = 3,L 2 K2;0;0. Referen
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