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On quasivarieties of nilpotent Moufang loops. I
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Abstract. In this part the smallest non-abelian quasivarieties for nilpotent Mou-
fang loops are described.
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Introduction

The theory of quasivarieties is one of the most important domains of universal
algebra. The base of this theory was set by A.I. Mal’cev ([1], [2], [3], [4], [5], [6])-

Special attention is paid to two important problems:

1) the description of the lattice of quasivarieties of algebras;

2) when an algebra with a finite signature has a finite basis of quasiidentities.
The study of these problems in the class of nilpotent Moufang loops is the goal
of this paper.

In Section 1 we explain the basic notations and describe the identities that
hold true in 2-nilpotent Moufang loops, obtained in [7]. In Section 2 we describe
all minimal non-abelian quasivarieties for nilpotent Moufang loops, namely,

— minimal non-associative quasivarieties of commutative Moufang loops;

— minimal non-associative and non-commutative quasivarieties of Moufang
A-loops with one proper minimal non-associative sub-quasivariety of com-
mutative Moufang loops and one proper minimal non-commutative sub-
quasivariety of groups;

— minimal non-associative and non-commutative quasivarieties of Moufang
loops with the only proper non-commutative subquasivariety of groups;

— minimal non-commutative quasivarieties of groups.

For some of these quasivarieties, examples of non-associative Moufang loops are
constructed. For instance, the smallest non-associative and non-commutative
nilpotent Moufang loop has 16 elements (basic elements of Cayley—Dixon algebra
and their opposite).

Results of this article were presented at the conference LOOPS’11.

1. Definitions, preliminary results, observations and notation

We shall use some notions and results from the monograph of R.H. Bruck [8].
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A Moufang Loop (ML) is an algebra (L,-,~!) of type (2,1) whose operations
and elements satisfy the following identities:

(1) z(y-xz) = (zy - 7)2,

(2) ety =y=yr-x

where by 7! we denote the result of the unary operation applied to the element z.
We observe that (2) implies the identity y-(z~!)~! = yx, which in turn implies

the identity (z=!)~! = z. This helps to deduce the identity

(3) v ly=y=yx -z

For an arbitrary element z € L we denote e = 2~*
identities (1)—(3), we will have

-x. Then, according to the

ye=z""z(ye) =3 [z y(zz7")] =27 [(xy-2)a" ]| =27 cay =y

for any y € L. Tt follows that e = y~! - y and, therefore, e does not depend on

the element 2. Then, taking (3) into consideration,
— -1 —
ey=yvy y=y

for any y € L and it follows that e is a unit element of the ML L. Further on
ML L will be studied with the signature (-,~!,e) made up of three operational
symbols, which will be simply noted as L.

A ML is dissociative, in the sense that any of its subloops generated by two
elements is associative (Moufang theorem [8]).

For elements z, y and z in a ML L the associator [z,y, z] and the commutator
[z,y] are defined by the equalities [z,y,2] = (z - y2)~! - (zy - 2) and [z,y] =
z71 -y~ Y(zy), respectively.

For any subloop H of L we shall let [H, L] denote the subloop generated by all
of the elements of the forms [h, z,y] and [h, z], where h € H and z,y € L.

The associant-commutant of the ML L is the subloop generated in L by all the
associators and commutators of L and we shall denote it as L' or [L, L]. The set

Z(L)={z € L|[z,y,2] = e, [v,y] = e forany y,2 € L}

is called the center of the ML L.

The subloop H of the ML L is called normalin LiftH = Hx and x-yH = zy-H
for any z,y € L. It is easy to verify that the associant-commutant L' is normal
in L. Likewise, any subloop of the ML L that is contained in the center Z(L) is
also normal in L.

Special associator-commutators of multiplicity n are defined inductively: z;
is a special associator-commutator of multiplicity 1; if v is a special associant of
multiplicity n which includes exactly i, variables, then [u, z;, 1], [u, Z;i, 11, Zi, +2)
is a special associator-commutator of multiplicity n + 1.
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A ML L is called (central-)nilpotent (NML) of class n or n-nilpotent if for
any values of the variables in L the value of any special associator-commutator of
multiplicity n + 1 is equal to the unit element e € L, but the value of at least one
special associator-commutator of multiplicity n is different from e.

According to [7], in any nilpotent Moufang loop of class 2 the following iden-
tities are true:

(4) [2,y.2] = [y, 2, 2] = [y, 2,2] ",
(5) [z y,2,t] = [z, 2, 1] [y, 2, 1],
(6) [2™.y, 2] = [2,y, 2]

(7) [2,y.2]" =e,

8) @y, 2] = [z, 2] [y, 2] [, 9, 2],
and

(9) [z, y] = [2,y]™,

(10) [z,y] = [y, 2],

because Moufang loops are dissociative.
We shall also use the following notation:

F,(K) — free ML of rank n of quasivariety K;
v(L) — variety generated by loop L;
q(L) — quasivariety generated by loop L.

2. The smallest nilpotent non-abelian quasivarieties of Moufang loops

The following varieties are defined in the class of all 2-nilpotent Moufang loops:

Kipo= mOd{[wvyaZ] = 6}’

=

3

=)
|

=mod{[z,y,z] = e, [z,y]" = e},
KLP pm = mod{[w,y,z] =€, [x,y]p =€, wpm = 6},
where m =2,3,... forp=2and m = 1,2, ... for any prime number p > 3,

2:6},

“=e [z,y] = e},

Ks0,0 = mod{[z,y, 2
K550 =mod{[z,y, z

K2,2,2m = mOd{ z,Y,z 2= €, [m,y]2 =6, x2m = e} m = 2,3, )
3
KS,LO :mOd{ iL‘,y,ZS =6, [m,y] :6},
K3,173m = mOd{ x,Y,z d = €, [ZE,y] =€, wS"’ - 6}7 m = 1725 5

[ ]

[ ]

[ ]
K500 = mod{[z,y, z]° = e},

[ ]

[ ]

[ 2

K330 =mod{[z,y, z
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K3,3’3m = mod{[m,y,z]S =6, [xay]S =6, x?)m = 6}, m = 1727 T

Denote by R the set of all varieties defined above.

Lemma 1. If a 2-nilpotent Moufang loop N is finite, then there exists a variety
K € R such that F3(K) € q(N).

m

PRrOOF: Since N is nilpotent we can regard N as a p-loop. Let exp(N) = p
We consider the following possible cases.

Case 1: N is non-associative and p = 2. In this case m > 1. Then, according to
the identity (7), the identity [z,y, 2]®> = e holds true in N. For a certain integer k,
1 < k < m, the identity [w,y]Qk = ¢ also holds in N. Let Fy = Fy(z,y,z) be
a v(N)-free loop of rank 3 with free generators z,y, z, and H = (a,b,c) be the
subloop of Fiif = Fy x F3 x F3 x Fy generated by the elements

a=(z,2,00), b=(e,® Lye), c=(e2% 222
Then it is obvious that
m m m k—1 k—1
> =0 = = €, [aab] = (6, ['Tay]2 ,6,6), [aac] = (6, [$72]2 7676)7
2(k—1) k-1 2(k—1)
b, = (e, [y, 2]? [w,27e), [a,b,c = (e, [z,y, 2] ;€ e).

From here it follows that for £ = 1 the loop H is both non-associative and non-
commutative and the identities

[z1,29, 23] =€, [z1,22]> =€ and H € K9 9m
hold. Also, for k£ > 1, H is a non-commutative group and the identity holds true
[561,2132]2 =e and H € Ky 9m.

We will show that any equality relation in H between the elements a,b and c is a
trivial equality. Indeed, let

(11) (a*b% - ¢7) - [a, P [a, ¢ b, V[, b, ]* = e
be such an equality relation in H. Then we have

k—1 k—1 k—1 k—1 2(k—1) 2(k—1)
(2, @y 7221 g2 0, 2 Ay, 2 a2

2k—1

k—1
yo2 Ty, 22T ) = (esesee),

from where it follows that the equality relations

2k—1

(12) z® =e, y’ly, 7]

k—1 k—1 2(k=1),,
(13) [,y e, 2 ey, 2P =e,

F=e, 27 =e,
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hold true in the v(IN)-free loop F3. But any equality relation between the free
generators x, ¥, z is a true identity in F3. Therefore (12) and (13) are true identities
in F3. But the first and the last identity from (12) are true in F3 only if

a=0 (mod2™), y=0 (mod 2™).

From the second identity of (12), substituting in it z = e, and from identity (13)
substituting in it alternatively z = e and y = e, we obtain

Y

(14) yﬁ =e, [y,z]2k_1“ =e, [w,y]2k_15 = e, [:U,z]2k_1’\ =e,
and
(15) [m,y,z]QZ(kfl)" —e

But the identities from (14) are true in F3(z,y, 2z) only if
B =0mod2™, p=0mod2, § =0mod2, A= 0mod2.

When k = 1, the identity (15) holds true in F3(z,y, z) only if v = O0mod 2 and
when k£ > 1 it holds true for any positive integer v. From this we can easily
conclude that (11) is a trivial equality. Therefore, for £ = 1 in the variety K» 5 om,
and for k£ > 1 in the variety K 2 2m, the loop H has a finite representation formed
by three generators without any equality relation. Hence for k = 1 the loop H
is Ky 5 om-free and for £ > 1 the loop H is K2 om-free of the third rank with
H € ¢q(N).

Case 2: N is non-associative and p = 3. In this case the identity (z,y,2)% = e
holds true in N. Assume that for a certain integer k, 0 < k < m, the identity
[z,y]*" = e holds true in N.

If k¥ = 0, then in N the identity [z,y] = e holds true and thus N is a
commutative Moufang loop. Then the v(N)-free commutative Moufang loop
Fs(x,y, z) is free in any variety of Moufang loops with the exponent 3™. Hence
F3(K3,1,3m) = F3(z,y,2) € q(N).

Let k > 1, F3 = F3(z,y,2) be a v(N)-free loop of the third rank with free
generators z,y, z, and H = {a, b, ¢) be the subloop generated in F3 by the elements

3k—1 3k—1

a:(w7w7e7e)’ b:(€5y ’y1€)5 c:(e)z 7Z ’Z)

Then, obviously

3k—1 3k—1

a3"’:b3m:c?;m: (6,6,6,6), [a,b]:(e,[x,y] 7676)7 [a,c]:(e,[x,z] ,6,6),
bycl = (e Ty, 2y, 27 e), [asbod = (e oy, 21 ese).
From here it follows that for & = 1 the loop H is non-associative and non-

commutative, and the following identities hold true in it

[$1,$2,$3]3 = e, [561,562]3 =e and H € K333m.
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For k > 1, H is a non-commutative group and the identities
[$1,$2]3 —e and H € K1’3’3m

hold true in H. By analogy with Case 1 we show that for £ = 1 the loop H is
K3 3 3m-free of rank 3 and for £ > 1 the loop H is K 33m-free of rank 3 with
H € ¢q(N).

Case 3: N is associative and p is any prime number. Similar to the previous
cases, it can be shown that if, in the group N, the identity [z, y]pk holds true for
a certain natural number k, 1 <k < m, then for k =1 F3(Ky ,m) € ¢(N). O

Lemma 2. If the 2-nilpotent Moufang loop N, generated by three elements, is
infinite, then there exists a variety K € R such that F3(K) € q(N).

ProOOF: Since the loop N is not finite, we have exp(IN) = 0. We will consider the
following possible cases.

Case 1: N is non-associative, in N the identity [x,y,2]*> = e holds true and
exp({[u,v] | u,v € N)) = 2™s, where m is a non-negative integer and 2 does not
divide s.

We will first show that m > 0. So assume that m = 0. Then, according to
(8) and the identities [z,y,2]> = e, [z,y]* = e we can deduce e = [zy,z]® =
(2,21l Al 3, 27 = (2]l 29, 2)° = [ 2l 2 [2,9, 21 = [, 21"
Hence, in N, the identity [z, y, z]® = e holds true and, since 2 does not divide s, we
conclude that the identity [z, y, z] = e is also true in N. That is, N is associative,
a contradiction.

Hence, m > 1. Now let F3 = F3(z,y, 2) be a v(IN)-free loop of the third rank
with free generators z,y, z, and H = (a, b, ¢) be a subloop generated in F3 by the
elements

-1 -1
a:(mim)e)e)5 b:(e,me s,y’e)’ 02(6522m S7Z ’Z)

Then, obviously, exp(H) = 0 and the following equalities hold true:
(16)
[aa b] = (e= [x,y

12775 ), la,c] = (e, [z, 2270

Y

b) e) e))
[b,c] = (e, [y, 212" 75" [y, 227 5 ,e), [a,b,¢] = (e, [w,y, 27" V5 eye).

From here it follows that for m = 1 the loop H is both non-associative and
non-commutative and the identities (z1,z2,73)? = e, [z1,22]*> = e hold true in it.
For m > 1 H is a non-commutative group and the identity [z;,z2]?> = e holds
true in it. Therefore, for m = 1 the loop H € K320, and for m > 1 the loop
H € K1’2,0.

We will now show that any equality relation in H between the elements a,b
and c is a trivial equality. Indeed, let

(17) (a®b? - ¢7) - [a, b]°[a, b, ]*[a, b, ¢]” = e
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be such an equality relation. Then we have

(2, @y 108 22" a2, 22

(18) _ _ _
[o,y, 22 B2 ey o) ls”=27>:(e,e,e,6)-

Like in Lemma 1 we can show the identities

(19) 2 =e y’ =e 2 =e
(20) N N T
(21) [y, 22 =

Because exp(N) = exp(F3) = 0, the identities from (19) hold true in F3(z,y, z)

only if
a=0,=0,v=0.

The identities from (20) are true only if 6 = Omod(2), A = Omod2 and u =
Omod 2 and the identity (21), when m = 1, is true in F3 only if » = Omod2
and when m > 1 — for any positive integer v. We can easily conclude that (17)
is a trivial equality. Therefore, for m = 1 in the variety K»20 and for m > 1
in the variety K9, the Moufang loop H has a finite representation formed of
three generators without any equality relation. Hence, for m = 1 the loop H is
K> 5 o-free of the third rank and for m > 1 the loop H is Kj 3 o-free of the third
rank with H € g(N).

Case 2: N is non-associative, the identities [v,y,2]*> = e and exp(([u,v] |
u,v € N)) = 3™s hold true in it, where m is a non-negative integer and 3 does
not divide s.

Let m = 0, then we consider the subloop H = (a, b, c) generated in the v(H)-
free loop F3(z,y, z) by the elements a = z, b = y*, ¢ = z°. We notice that in the
loop F3(z,y, z) the following equalities hold true

[a,b,c) = [2,9,2)", [a,0] = [0,9]" = e, [a,c] = [2,2)" =, [b.c] = [y,2]" =e,
which implies that H is a commutative Moufang loop. As exp(H) = 0, it results
that H is a free 2-nilpotent commutative Moufang loop, which is contained in the
variety K31 0. Therefore F3(K31,0) = H € g(N).

Now assume that m > 1. Let F3 = F3(z,y,2) be a v(N)-free loop of the third
rank and H = (a, b, ¢) be the subloop generated in Fj by the elements

3m—ls 3m—ls 3m—ls

a:(x7x7e7e) b:(e7y 7y7e)7cz(e7z 72 72)'

Y

Then, obviously, exp(H) = 0 and the following equalities hold true

[a,b] = (e, [,y % ese), [a.d = (e, [, 2] % ese)

32(m—1) ;2

Y Y

3m71 ]32(m—1)52

[b7 c] = (67 [y7z] 7[y7 z] 376)7 [a7 b7c] = (67 [x7y7z 767 e)'
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From here it follows that for m = 1 the loop H is both non-associative and non-
commutative and that the identities (21, 22,73)® = e, [21, 22]® = e hold true in it.
However, for m > 1, H is a non-commutative group and the identity [z1,22]® = e
holds in it. Therefore, for m = 1 the loop H € K330 and for m = 1 the loop
H € K;3,0. Then, similar to Case 1, we can show that for m = 1 the loop H
is K3 3,0-free of rank 3 and for m > 1 the loop H is K 3-free of rank 3 with
H € ¢q(N).

Case 3: N is non-associative, the identities [r,y,z]> = e (respectively, [z, y, 2]
=e) and exp({[u,v] | u,v € N)) =0 hold true in it.

Let F3(z,y,2) be a v(N)-free loop with free generators z,y and z. It is clear
that Fs(z,y, z) € K3,0,0 (respectively, F3(x,y,2) € Ka0,)-

Let an arbitrary equality relation hold true in the v(N)-free loop F3(z,y, z)

(22) (@297 - 27) - [2,9) [z, 2y, 2] (2,9, 2)" = e.

This equality relation is the identity true in F3(z,y, 2). Then we can easily deduce
that it implies the identities
])\

% = €, yB =€ y'y =6, [x,y]é =6, [iE,Z =6, [y,z]l/« =6, [x,y,z]" =6,

which are true in F3(z,y, z) only if

a=0,=0,v=0,d=0, A=0, p =0, » =0mod3
(v = 0mod 2, respectively).

From here we obtain that (22) is a trivial equality in F3(z,y,z). Therefore,
F3(z,y,z) is a free loop in the variety K3 g0 (K2,0,0, respectively). It then follows
that Fs(z,y,z) € ¢(N).

Case 4: N is non-associative, the identities [x,y,2]*> = e and [z,y,2]> = e do
not hold true in it.

We consider one of the non-associative subloops Ny = (u? | u € N), Ny =
(u® | u € N). The loops N; and N, are non-associative subloops of N. Since the
identity [z,y, z]® = e holds true in N, the identities [z, y, 2] = e and [z,y, 2]* = e,
respectively, hold true in the non-associative loops Ny and Ns, respectively. Thus
we obtain one of the situations studied above.

Case 5: N is associative and exp({[u,v] | u,v € N)) = p™s, where p is a prime
number not dividing s and m > 1.

In this case we consider in the v(N)-free group F5(z,y, z) the elements a = z*,
b=y?" 'S,c=2""""¢and H = (a,b,c). Then it is obvious that the loop H with
exponent zero is non-commutative and the following equalities hold true

[a,b]" = e, [a,c]’ =e, [b,c]" =e.

Then in the non-commutative group H the identity [z,y]? = e is true. Applying
the same reasoning as in Case 1 or 2 we obtain F3(K1 ,0) = H € g(N).
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Case 6: N is associative and exp({|u,v] | u,v € N)) = 0.
Similar to the previous cases we can easily deduce that F3(Kj,0) € ¢(N). O

Lemma 3. For any variety K € R the following equalities q(F5(K)) = q(F,(K)),

PrOOF: It is enough to show that for any natural number n the K-free loop
F,(K), of finite rank n, belongs to the quasivariety Q). Since F, F», F3 € @), we
assume that n > 3. Let F,, = F,,(z1,...,2,) be a K-free loop of rank n with free
generators x1, . .., Z,. We will first show that the K-free loop F), is approximated
by the subloops of the K-free loop Fs(z,y, z), i.e., for any element u # e from F,
there exists a homomorphism ¢ from F;, to F3 such that ¢(u) # e. If we admit
that it is impossible, then in F), there exists an element v = u(zy,...,x,) # €
such that for any homomorphism ¢ from F, to F3 we have ¢(u) # e. We will
represent the element u in its canonical form

u= (2, ...,zp") - H (i, x;]% H [i,xj, xp] T,

1<i<j<n 1<i<j<k<n

where the multiplication of factors from parenthesis is performed in a certain
established order, for instance, from left to right. Assume that for a certain index
i, 1 <1i<mn,onehas z;" #e. The mapping z; —e, j€{l,...,n}\{i}, z; =z
extends to a homomorphism ¢ from F, to F3. Then ¢ (u) = ¢(x;)* = 2% and
in F3 we get the equality z® = e. But the last expression is a true identity in
the K-free loop F),(z,y,z), hence in F,, as well. But in this case we came to a

contradiction with z7* # e. Hence, we can suppose that z{" =e,..., 23" = e
and
u= II @oz)® 1 (wiw,z]e
1<i<j<n 1<i<j<k<n

Assume that [z;,z;]% # e for a certain pair (i,j), 1 <i < j <n. The mapping
zy = e, ke {l,...,n}\ {i,j}, zi = z, z; — y extends to a homomorphism
¢ from F,, to F3. Then 9 (u) = [¢(z;),(x;)]% = [z,y)% and we get that the
identity [z,y]% = e holds true in F3. But then this identity also holds true
in F,, which contradicts the inequality [z;,z;]%7 # e. Hence, we can say that

H1§i<jgn[xi=$j]6“ = e and

u= H [i, 2, xp] Vi~

1<i<j<k<n
Now assume that [z;, 2, 24]"9* # e for a certain triple (4, j, k), 1 <i < j <k <n.

The mapping z; — e, 1 € {1,...,n}\{i,j,k}, z; = =, z; = y, xx — z extends
to a homomorphism ¢ from F),, to F5. Then

Y(u) = [Y(z),(x5), ¢ (op)] "7 = [2,y, 2]

483
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and we get that the identity [z, y, 2]77* = e holds true in F3. But then this identity
is also true in F},, which contradicts the inequality [z;, 2, 24]"* # e. Then we can
say that [[,; ;p<,[®i,zj, 2]"* = e and u = e. We came to a contradiction
with the assumption that u # e. From here we can conclude that the loop F}, is
approximated by the subloops of the loop F3, hence it is included isomorphically
in a Cartesian product of subloops of the loop F3. Therefore, F,, belongs to the
quasivariety ¢(F3) and, hence, F,, also belongs to the quasivariety . O

According Lemmas 1, 2 and 3 we can formulate the following theorem.

Theorem 1. If () is a quasivariety that contains a nilpotent non-associative or
non-commutative Moufang loop, then there exists at least one variety K € R so
that F,(K) € Q.

Corollary 1. For any variety K € R the following statements are true:

(a) if q(F,(K)) contains a non-associative and non-commutative loop H,
then q(H) = q(F.,(K));

(b) if q(F,(K)) contains only commutative Moufang loops (respectively,
groups) and H is a non-associative (respectively, non-commutative) loop,
then g(H) = q(F.,(K)).

Remark 1. Since the following inclusions hold true
K310C K330, Ki30C K330, K313m CK3z33m, m=1,2,...,

each of the quasivarieties ¢(F, (K3,3)), ¢(F,(K3,3,3m)), m =1,2,..., contains only

two non-abelian subquasivarieties: one formed of commutative Moufang loops and
another formed of groups.

Remark 2. According to identity (5) and (8) inner permutations of the multi-
plication group of any loop of K3, are automorphisms. Loops of these varieties
are A-loops (see the research on nilpotent A-loops in [9]).

2,3, ...} has only one non-abelian own subquasivariety being generated by a free
group of rank 2 of this quasivariety.

Remark 3. Each quasivariety of the set {¢(F,(K2520)), ¢(F,(Ka222m)), m =

From Theorem 1, Corollary 1 and Remarks 1-3 one gets the following.

Theorem 2. Non-abelian minimal quasivarieties of the lattice of quasivarieties
of nilpotent Moufang loops are:

— minimal non-associative quasivarieties of commutative Moufang loops

q(Fu(K310)), ¢(Fo(Ks13m)) (m=1,2,...);
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— minimal non-associative and non-commutative quasivarieties of Moufang
A-loops with one proper minimal non-associative subquasivariety of com-
mutative Moufang loops and one proper minimal non-commutative sub-
quasivariety of groups;

q(F.(Ks300)), q(Fu(K330)), ¢(Fu(K333m)) (m=1,2,...);

— minimal non-associative and non-commutative quasivarieties of Moufang
loops with the only proper non-commutative subquasivariety of groups

Q(Fw(K2,0,0))= Q(Fw(K2,2,0)), (J(Fw(K2,2,2m)) (m=2,3,...);

— minimal non-commutative quasivarieties of groups

q(Fw(Kl,O,O)): q(Fw(Kl,p,O)) (p = 2737 o ')a
q(Fy(Ki120m))(m=2,3,...), ¢(Fu,(Kippm)) (p >3, m=2,3,...).

Further, we will show a few concrete examples of nilpotent Moufang loops.
First, we will prove the following important statement.

Theorem 3. If the alternative ring K with a unit element contains a nilpotent
sub-ring R with index n > 2 (i.e., any product of n factors ajas - - - a,, = 0 for any
ai,...,an € K), then the set L of all elements of the form 1 + z, where ¢ € R,

)

forms a nilpotent Moufang loop of classn — 1.
PROOF: The equality
A+z2)1-—z4+2°>— 4+ (=) 2" =1

where € R, shows that any element from L is invertible and, therefore, L is a
Moufang loop. Now let R* be the set of all linear combinations of all products of
k < n —1 elements from R. Note that the following inclusions are true:

(23) Rk . Rl g Rk+l, Rk+1 g Rk

Then for any € R* we have the equality

142 '=1-242>— -+ (=D 12",
that is,
(24) (1+2)" ' =1+2",
where z* = —z + 2’ and ' = 22 — 2% — ... 4+ (=1)""12"~!. Because z € R*, then
is clear that 22, 2%,...,2""" € R*! and it follows that

(25) z' € R
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Now, if € R* and y,z € R, then, according to Moufang’s Theorem and the
equality (24):

[T+z, 14y, 1+2]=(1+2) - 1+y)(l+2) " (1+2)1+y) (1+2)
=((1+2)"'(1+y)~" 1+2)7") (A+2)(1+y) (1 +2))
=((1+2)A+y) - A+2)7" (A+2)(1+y) - (1+2))
=(M+2)Q+y) " +2 (1 +y) - (1+2%)) - (L+2)(1+y)- (1 +x))
=l+z+(@Q+y") - 1+2%) - (1+2)(1+y) 1+2))
= 14z+(z*+a*y* +z*2*+2*y* - 2*) - 1+ z+y+z+z2zy+ 22+ yz+2y-x)
=l+z+z"+2"y" +2%2" +2%y" - 2"

+(z* + iyt ittty 2*) - (ztyt et zy+ 2zt yr + 2y - x);

similarly we can deduce

142, 14y = (1491 +2) " (L+2)(1+y)
= (1+2) (1 +9)) - (1 +2) (1 +)

S (1+a)(14y) 1 (1 +y) + 21 +)
=1+ +(1+z9)1+y) ' 2(1+y)
=1l+z2*+1+2z")1+y*) (z+azy)

=1+az*+ 1 +z"+y*+2*y*)(z + zy)
=l+z+z* +zy+ (% +y* +2*y*)(z + zy).

We note that

21 :$+$*+[$*y* +$*Z*+$*y*'2*
+ (2* +2*y* +a*2* +aty* - 2*) (z+yt+ae+zy+ze+yz+zy-x)],
Ty =z +a" + [y + (27 +y" +27y") (@ + ay)).

Because z,z* € R, according to (25) = + z* = ' € R?*, and according to (23)
items from square brackets from the last two equalities belong to R¥*!. Thus we

have:
(26) M4z 1+y 1+2]=142 €1+ R,
(27) M+, 1+y] =142, €14 R

Further, from the fact that z € R* and y,2 € R it follows that z* € R* and
y*,2* € R, which in view of (26) implies that [I +z*, 1+ y*, 1+ 2z*] € 1 + RFFL
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Then according to (26) and (27) we have

(I+2) A+y)(l+2)=T+a")"" (L+y)7 (1 +27)7"
= ((1+2)1+y") (1 +2%)"

=((T+27) A+y)(A+a%) [L+25 1+y* T+a*])7!

=+ T+y s 14+2 ] (L4275 - (L+y) (1 +a2%)) 7!

=[+z1+y, 1+z 7 (U+2) (1 +y)7 - (142971

=[l+z 14y 14277 (A +2)(1+y) - (1+2)

(T+2)1+y) (1+2) - 1+2% 1+y*, 1+a"]7!

(+z 14y 1427 L+ 2) (L +y) - (1+2)]

e ((1+2)(1+y)- (142)) - (14 R1)(1 4+ Rk

C(A+z)(L+y) (L+2)) (1+ R

which shows that the associator
(28) 142, 1+y, 1+z] €1+ RN

Now according to the definition of the special associator-commutator and the
formulas (27), (28) by simple induction it shows that values in ML L of any
special associator-commutator of multiplicity k, 1 < k < n are contained in
1+ RF. In particular that values in ML L of any special associator-commutator
of multiplicity n are contained in 1 + R™ = {1}. This means that L is nilpotent
of class n — 1. O

Example 1. Let R be an alternative n-nilpotent ring and Z the ring of integers.
On the set K = R x Z we define operations + and - as follows:

(a, k) + (b,1) =(a+0b, k+1),
(a,k)-(b,]) = (a-b+la+kb, k-1),

where (a,k), (b,1) € K. It is easy to see that K together with the operations
defined above is an alternative ring with the unit e = (0, 1) and that the set L' of
all elements of the form (a,0) is a subring K isomorphic to R. Therefore, due to
Theorem 3, the set L = e + L' forms an (n — 1)-nilpotent Moufang loop.

In particular, if R is a free alternating ring of characteristic 3 (or zero), then
L is a (n — 1)-nilpotent Moufang loop with exponent 3 (or zero).

Example 2. A basis of a Cayley-Dixon algebra K (see [6]) over the field of real
numbers R consists of the elements e; =1, e3 =1, e3 =j,eq4 =k, e5 = €, eg = ie,
er = je, eg = ke, the first of which is a unit for algebra K and the first four of
which form a basis of the sub-algebra of quaternions. Multiplication is defined on

487
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these elements by the relations:
=72 =k>=¢?= -1,

(29) ij=—ji=k, jk=-kj=1i, ki=—ik=y/},
eq =qe,p-qe =qp-e, pe-q = pq, pe-qe = —qp,

where § = —q, p,q € {i,J,k}. The Cayley numbers K are multiplied according to
the distributive laws and relations (29). It is easy to verify that

(30) lei,ej] =1or [e;,e;] = =1, [e;,ej,ex] =1 or [e;ej,er] =—1.
From (29) and (30) we can see that the subsets

Ly = {1, i, £j, £k, Le, tie, £je, tke},
Ly = RURiURj UReURie URjeURke (R =R\ {0})

with respect to the multiplication are Moufang loops with the associators and
commutators equal to 1 or —1, hence, they belong to the center of this loop.
Therefore, the Moufang loops L; and L, are non-associative, non-commutative
and 2-nilpotent. It is easy to verify that the exponent of L; is 4, the exponent of
L» is infinite, and in both loops the following identities hold

[z,y,2° =1, [z,y]* = L.
Therefore, Ly € K5 502 and Ly € K 5.

Example 3. In the ring of all square matrices of order n > 3 over the Cayley—
Dixon algebra we study the set L of all matrices of the form ¢ - A, where ¢ is an
element of the Moufang loop L; (or Ls) from Example 2 and A is a lower (or
upper) triangular matrix of order n that has 1s along the main diagonal and the
other elements above it are arbitrary real numbers (it is well known that these
matrices A form a nilpotent group relative to the usual multiplication [10]).

It is easy to check that for any elements pA, ¢B,rC € L we have

[pA,¢B,rC] = [p,q,r] - [A,B,C) € {—E, E},
[pAan] = [p=Q] ’ [AaB] € {_[AaB]a [AaB]}a

where FE is the unit matrix. From this it follows that L forms a nilpotent Moufang
loop of class (n — 1) relative to the multiplication. In particular, for n = 3,
Le K27070.
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