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On the exterior problem in 2D for stationary

flows of fluids with shear dependent viscosity

M. Bildhauer, M. Fuchs

Abstract. On the complement of the unit disk B we consider solutions of the
equations describing the stationary flow of an incompressible fluid with shear
dependent viscosity. We show that the velocity field u is equal to zero provided
u|∂B = 0 and lim|x|→∞ |x|1/3|u(x)| = 0 uniformly. For slow flows the latter

condition can be replaced by lim|x|→∞ |u(x)| = 0 uniformly. In particular, these
results hold for the classical Navier-Stokes case.

Keywords: equations of Navier-Stokes type, stationary case, exterior problem
in 2D

Classification: 76D05, 35Q30

1. Introduction

In our note we investigate the following exterior problem for the stationary
flow of a generalized Newtonian fluid: let B denote the open unit disk in R2 and
suppose that the velocity field u: R2 \ B → R2 and the pressure π: R2 \ B → R
satisfy the equations

(1.1) − div [DH (ε(u))] + uk∂ku+∇π = 0

and

(1.2) div u = 0

on R2 \B together with the boundary condition

(1.3) u = 0 on ∂B.

Here ε(u) denotes the symmetric gradient of the field u, uk∂ku represents the
convective term (the convention of summation is used throughout this paper) and
we assume that the stress tensor T is generated by a given potential H in the
sense that TD = DH , where TD is the deviatoric part of T .

We further assume the structural condition

(1.4) H(ε) = h (|ε|)
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with prescribed function h : [0,∞) → [0,∞) of class C2. From (1.4) it follows

DH(ε) = µ (|ε|) ε

with viscosity function µ(t) := h′(t)
t and, together with (1.2), this means that we

consider stationary flows of incompressible generalized Newtonian fluids being of
shear thickening type if µ is an increasing function, and of shear thinning type if
the viscosity decreases.

For further mathematical and also physical explanations the reader is referred
to the monographs of Ladyzhenskaya [La], Galdi [Ga1],[Ga2] and Málek, Nečas,
Rokyta, Růžička [MNRR] (see also [FuSe]).

In the particular case h(t) = t2/2, the equations (1.1)–(1.3) reduce to the
exterior problem for the stationary Navier-Stokes equations, and it is a challenging
task to prove (or disprove) that

(1.5) Θ(R) := sup
|x|≥R

|u(x)| → 0 as R → ∞,

implies that the velocity field u is identically zero. Further details including
the historical background and related problems are presented in Chapter X.3 of
Galdi’s book [Ga2] and in his paper [Ga3].

Of course we will not give an answer to this open question: our goal is to
show that with the help of rather elementary energy estimates one can obtain the
following results.

Suppose that the fluid is shear thickening or shear thinning. Let u denote a
solution of (1.1)–(1.3). Then we have u = 0 if

(i) (1.5) holds and the convective term is neglected (“slow flows”)

or if

(ii) (1.5) is replaced by the stronger condition

(1.6) lim
R→∞

R1/3Θ(R) = 0.

In order to make these statements precise, we first have to introduce a reason-
able class of solutions.

Definition 1.1. A function u ∈ C1(R2 \ B), i.e. u and ∇u are continuous up
to ∂B, is a solution of (1.1)–(1.3), if (1.2) and (1.3) hold in the classical sense and
if

(1.7)

∫

R2\B
DH (ε(u)) : ε(ϕ) dx +

∫

R2\B
uk∂ku

iϕi dx = 0

holds for all ϕ ∈ C1
0 (R2 \B) satisfying divϕ = 0.
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Remark 1.1. Obviously (1.7) is the weak form of (1.1) and in the shear thickening
case we can replace Definition 1.1 just by the requirement that u is an element of
a suitable local energy space having finite energy on the annulus 1 < |x| < r.

In the shear thinning case the situation becomes more delicate and we decided
to work with Definition 1.1.

From the various hypotheses concerning h and the calculations presented below
the reader actually can deduce the minimal requirements concerning the field u
in the cases under investigation. However we emphasize that we do not assume
the validity of global energy bounds like

∫
R2\B h(|ε(u)|) dx < ∞ for our class of

solutions.

Next we formulate our hypotheses imposed on the density h occurring in the
structural condition (1.4). We suppose that h satisfies:

(A1) h is strictly increasing and convex; we have h′′(0) > 0 and lim
t→0

h(t)

t
= 0.

There is a constant a > 0 such that h(2t) ≤ ah(t) for all t ≥ 0(A2)

(doubling property).

(A3I) In the shear thickening case we have
h′(t)

t
≤ h′′(t) for all t > 0.

(A3II) In the shear thinning case we have h′′(t) ≤ h′(t)
t

for all t > 0.

Remark 1.2. (i) From (A1) it immediately follows that h(0) = h′(0) and
h′(t) > 0 for any t > 0.

(ii) By considering d
dt

h′(t)
t it is immediate that (A3I) and (A3II) express the

fact that the fluid is shear thickening and shear thinning, respectively.
(iii) (A1) together with (A2) implies the balancing condition

(1.8) c th′(t) ≤ h(t) ≤ th′(t) for all t ≥ 0

and for a suitable positive constant c. In fact, 0 = h(0) ≥ h(t) − th′(t)
holds by convexity, whereas by (A2) and the monotonicity of h′

h(t) ≥ 1

a
h(2t) =

1

a

∫ 2t

0

h′(s) ds ≥ 1

a

∫ 2t

t

h′(s) ds ≥ 1

a
th′(t).

(iv) It is easy to see that from (A2) it follows

h(t) ≤ h(1)ta for all t ≥ 1,
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thus

(1.9) h(t) ≤ c [ta + 1] for all t ≥ 0.

(v) If we are in the shear thickening case (A3I), then
h′(t)
t ≥ lims→0

h′(s)
s =

h′′(0) gives

(1.10) h(t) ≥ 1

2
h′′(0)t2 for all t ≥ 0,

and (A1) implies on account of h′′(0) > 0 that our energy is of at least
quadratic growth.

(vi) In the shear thinning case we have

(1.11) h(t) ≤ 1

2
h′′(0)t2

and

(1.12) h′(t)2 ≤ ch(t)

for any t ≥ 0. For (1.12) we observe h′(t) ≤ th′′(0), which is an immediate
consequence of h′(t)/t ≤ lims→0 h

′(s)/s, thus

h′(t)2 ≤ th′′(0)h′(t)
(1.8)

≤ ch′′(0)h(t).

Note that according to (1.11) the condition (A3II) implies that the energy
has subquadratic growth.

Actually, even the case of linear growth is covered, which means that
we can easily give examples of densities h satisfying (A1)–(A3II) for which
limt→∞ h(t)/t ∈ (0,∞).

(vii) It is not hard to show that (A1) and (A3II) already imply (A2), we refer
to the Appendix of [BF].

After these preparations we can state our main theorem:

Theorem 1.1. Suppose that u is a solution of (1.1)–(1.3) in the sense of Defi-
nition 1.1 with H from (1.4), where h satisfies (A1,2), (A3I) or (A1,2), (A3II).
Then u is identically zero, if

(i) |u(x)| → 0 uniformly as |x| → ∞, i.e. (1.5) holds, and if uk∂ku is neglected
(ii) or if |x|1/3|u(x)| → 0 uniformly as |x| → ∞, i.e. we have (1.6).

In the subsequent sections we will present the proof of Theorem 1.1 distin-
guishing the cases of increasing and decreasing viscosity.

However, in both cases we apply energy estimates originating in the papers
[Fu] and [FuZha] dealing with entire solutions of equations (1.1) and (1.2).

We finally remark that our arguments immediately extend to the exterior prob-
lem in Rn leading to appropriate bounds in part a) and b) of Theorem 1.1. The
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details are left to the reader. Moreover, it should be noted that Theorem 1.1 in-
cludes the exterior problem for the stationary Navier-Stokes equations as a special
case.

2. Some technical preliminaries

Our first tool is a slight extension (presented in [FuZha]) of the “ε-Lemma”
due to Giaquinta and Modica (see Lemma 0.5 in [GM]):

Lemma 2.1. Let Q := QR(z) := {x ∈ R2 : |xi − zi| < R, i = 1, 2} denote an
arbitrary square. Suppose that we are given non-negative functions f , f1, . . . , fl
from the space L1(Q) and exponents α1, . . . , αl > 0. Then we can find a number
ε0 > 0 depending on α1, . . . , αl as follows: if for ε ∈ (0, ε0) it is possible to
calculate a constant c(ε) > 0 such that the inequality

∫

Qr(y)

f dx ≤ ε

∫

Q2r(y)

f dx+ c(ε)

l∑

j=1

r−αj

∫

Q2r(y)

fj dx

holds for all squares Q2r(y) ⋐ Q, then there is a constant c > 0 (independent
of Q) with the property

∫

Qr(y)

f dx ≤ c

l∑

j=1

r−αj

∫

Q2r(y)

fj dx

again for all squares Q2r(y) ⋐ Q.

In order to construct solenoidal testfunctions, we will make use of the following
basic lemma (see, e.g. [Ga1, Chapter III, Section 3]).

Lemma 2.2. Suppose that we are given numbers 1 < p1 ≤ p ≤ p2 < ∞. Then
there is a constant c = c(p1, p2) with the following property: if f ∈ Lp(BR(x0)),
BR(x0) := {x ∈ R2 : |x− x0| < R}, satisfies

∫
BR(x0)

f dx = 0, then there exists a

field v in the Sobolev class
◦
W1

p(BR(x0)) such that div v = f on the disk BR(x0)
together with the estimate

(2.1)

∫

BR(x0)

|∇v|s dx ≤ c

∫

BR(x0)

|f |s dx

for any exponent s ∈ [p1, p]. The same is true if the disk is replaced by a square

QR(x0) or an annulus B2R(x0) \BR(x0).

For handling the shear thickening case we need the following result stated in
Lemma 2.5 of [Fu] and being a consequence of (1.8) and (1.9).

Lemma 2.3. Let h satisfy (A1), (A2) and (A3I). Then there exists a number
τ ∈ (1, 2] such that

(2.2) h′(t) ≤ c
(
h(t)1/τ + t

)
for all t ≥ 0,
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where c denotes a suitable positive constant.

3. Shear thinning case

Let h satisfy (A1), (A2), (A3II) and suppose that we have a solution u in the
sense of Definition 1.1 satisfying at least (1.5). Note that in this case u is an
element of the space L∞(R2). We fix a square Q having positive distance to the
unit disk B and consider subsquares Q2r(z) ⋐ Q.

Our first goal is to obtain an estimate (see (3.8)) for the energy∫
Qr(z)

h(|ε(u)|) dx. To this purpose we let in equation (1.7) ϕ = η2u − v, where

η ∈ C1
0 (Q2r(z)), 0 ≤ η ≤ 1, η = 1 on Qr(z), |∇η| ≤ c/r.

The field v is defined according to Lemma 2.2 with the choices s = p1 = p2 = 2,

f = div(η2u)
(1.2)
= ∇η2 · u and with BR(x0) replaced by Q2r(z). We obtain

from (1.7)

(3.1)

∫

Q2r(z)

η2DH (ε(u)) : ε(u) dx

+ 2

∫

Q2r(z)

∂H

∂εiα
(ε(u)) ∂αη ηu

i dx−
∫

Q2r(z)

DH (ε(u)) : ε(v) dx

+

∫

Q2r(z)

uk∂ku
iuiη2 dx−

∫

Q2r(z)

uk∂ku
ivi dx

= T1 + T2 − T3 + T4 − T5 = 0.

From (1.4) and (1.8) it follows

(3.2) T1 =

∫

Q2r(z)

η2h′ (|ε(u)|) ε(u)

|ε(u)| : ε(u) dx ≥ c

∫

Q2r(z)

η2h (|ε(u)|) dx.

By Young’s inequality and again (1.8) we have

|T2| ≤ c

∫

Q2r(z)

h′ (|ε(u)|) η|∇η||u| dx

= c

∫

Q2r(z)

[
h′ (|ε(u)|)
|ε(u)|

] 1
2

|∇η||u|η
[
h′ (|ε(u)|) |ε(u)|

] 1
2 dx

≤ δ

∫

Q2r(z)

η2h (|ε(u)|) dx+ c(δ)

∫

Q2r(z)

h′ (|ε(u)|)
|ε(u)| |∇η|2|u|2 dx.

If δ is chosen sufficiently small, we deduce from the above estimate in combination
with (3.1) and (3.2) and by recalling the inequality stated after (1.12)

(3.3)

∫

Q2r(z)

η2h (|ε(u)|) dx ≤ c

[
r−2

∫

Q2r(z)

|u|2 dx+ |T3|+ |T4|+ |T5|
]
.
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For any δ > 0 it holds on account of (2.1) and (1.12)

|T3| ≤ δ

∫

Q2r(z)

h′ (|ε(u)|)2 dx+ δ−1

∫

Q2r(z)

|∇v|2 dx

≤ c

[
δ

∫

Q2r(z)

h (|ε(u)|) dx+ δ−1r−2

∫

Q2r(z)

|u|2 dx
]
,

and if we replace c δ by δ we get from this estimate in combination with (3.3)

(3.4)

∫

Qr(z)

h (|ε(u)|) dx

≤ δ

∫

Q2r(z)

h (|ε(u)|) dx+ c

[
δ−1r−2

∫

Q2r(z)

|u|2 dx+ |T4|+ |T5|
]
.

We further have

T4 =
1

2

∫

Q2r(z)

uk∂k|u|2η2 dx
(1.2)
= −1

2

∫

Q2r(z)

u · ∇η2|u|2 dx,

hence

(3.5) |T4| ≤
1

r

∫

Q2r(z)

|u|3 dx,

moreover it holds

(3.6)

|T5|
(1.2)
=

∣∣∣∣∣

∫

Q2r(z)

ukui∂kv
i dx

∣∣∣∣∣

≤
[∫

Q2r(z)

|u|4 dx
] 1

2
[∫

Q2r(z)

|∇v|2 dx
] 1

2

(2.1)

≤ c r−1

[∫

Q2r(z)

|u|4 dx
∫

Q2r(z)

|u|2 dx
] 1

2

≤ c r−1

[∫

Q2r(z)

|u|4 dx+

∫

Q2r(z)

|u|2 dx
]
.

From (3.4)–(3.6) we finally obtain

(3.7)

∫

Qr(z)

h (|ε(u)|) dx ≤ δ

∫

Q2r(z)

h (|ε(u)|) dx+ c

[
δ−1r−2

∫

Q2r(z)

|u|2 dx

+ r−1

∫

Q2r(z)

(
|u|2 + |u|3 + |u|4

)
dx

]



228 M. Bildhauer, M. Fuchs

being valid for any δ > 0 and all squares Q2r(z) ⊂ Q. Inequality (3.7) shows that
we can apply Lemma 2.1 with the result

(3.8)

∫

Qr(z)

h (|ε(u)|) dx

≤ c

[
r−2

∫

Q2r(z)

|u|2 dx+ r−1

∫

Q2r(z)

(
|u|2 + |u|3 + |u|4

)
dx

]
,

which holds for all squares Q2r(z) ⊂ Q. Let us consider a square Q = QR(x0)
with side length R > 1. Choosing r = R/4, z = x0 in (3.8) and recalling the
boundedness of u we get

(3.9)

∫

QR
4
(x0)

h (|ε(u)|) dx ≤ cR−1

∫

QR
2
(x0)

|u|2 dx.

With (3.9) we return to the derivation of (3.7) with the choices r = R/8, z = x0,
but this time we estimate |T5| through the quantity
c r−1[

∫
Q2r(z)

|u|4 dx
∫
Q2r(z)

|u|2 dx]1/2 (compare (3.6)) and again we make use of

the boundedness of u, which means that in (3.5) we replace |u|3 by const|u|2.
This yields for any δ > 0:

∫

QR
8
(x0)

h (|ε(u)|) dx ≤ c


δR−1

∫

QR
2
(x0)

|u|2 dx+ δ−1R−2

∫

QR
4
(x0)

|u|2 dx

+R−1



∫

QR
4
(x0)

|u|4 dx
∫

QR
4
(x0)

|u|2 dx




1
2


 .

If we choose δ = R−1/2, this inequality implies

(3.10)

∫

QR
8
(x0)

h (|ε(u)|) dx ≤ c


R− 3

2

∫

QR
2
(x0)

|u|2 dx

+R−1



∫

QR
2
(x0)

|u|4 dx
∫

QR
2
(x0)

|u|2 dx




1
2


 .

Next we fix an annulus TR := B2R(0) \BR(0) of very large radius R and cover
its closure with a finite number N of squares QR

8
(xi) having centers xi in TR.

Note that N can be chosen independent of the radius R. We apply (3.10) to these
squares and estimate |u| on QR

2
(xi) just through Θ(R/4) being defined in (1.5).



On the exterior problem in 2D for stationary flows of fluids 229

After summation with respect to i we deduce

(3.11)

∫

TR

h (|ε(u)|) dx ≤ c

[
R

1
2Θ

(
R

4

)2

+RΘ

(
R

4

)3
]
.

Note that assumption (1.6) immediately implies the vanishing of
∫
TR

h(|ε(u)|) dx
passing to the limit R → ∞.

In the absence of the convective term this is already true under the weaker
hypothesis (1.5): under the assumption uk∂ku ≡ 0 inequality (3.8) reduces to

∫

Qr(z)

h (|ε(u)|) dx ≤ c r−2

∫

Q2r(z)

|u|2 dx,

and (3.11) has to be replaced by

∫

TR

h (|ε(u)|) dx ≤ cΘ

(
R

4

)2

.

In a next step we show that (1.6) implies

(3.12)

∫

|x|>1

h (|ε(u)|) dx = 0,

which forces u to be a rigid motion, hence u = 0 on account of the boundary
condition (1.3).

For proving (3.12) it just remains to verify the validity of

(3.13) lim
R→∞

∫

1<|x|<R

h (|ε(u)|) dx = 0

under the hypothesis (1.6) (or (1.5) in case uk∂ku = 0).
To this purpose we fix a radius R ≫ 1 and choose

ϕ :=

{
u if 1 ≤ |x| ≤ R,

η2u− v if R ≤ |x| ≤ 2R

as testfunction in equation (1.7) with η = 1 on 1 ≤ |x| ≤ R, 0 ≤ η ≤ 1 in
1 ≤ |x| ≤ 2R, η = 0 outside of |x| ≤ 2R and |∇η| ≤ c/R.

The field v is defined according to Lemma 2.2 with the choices s = p1 = p2 = 2,

f = div(η2u) and for the domain TR, i.e. v ∈
◦
W 1

2(TR), div v = f on TR and v
satisfies (2.1). Note (recall (1.3)) that ϕ vanishes on |x| = 1, moreover we have

(3.14)

∫

TR

f dx = 0,
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which justifies the application of Lemma 2.2: in fact, by the choice of η it holds

∫

TR

f dx =

∫

∂TR

η2uNTRdH1 = −
∫

∂BR

u · N∂BRdH1

(1.3)
= −

∫

∂(BR\B)

u · N∂(BR\B)dH1

= −
∫

BR\B
div u dx = 0

and (3.14) follows. Here N denotes the exterior normal of the domains under
consideration and H1 denotes the one-dimensional Hausdorff measure.

Equation (1.7) then yields

0 =

∫

1<|x|<R

DH (ε(u)) : ε(u) dx+

∫

TR

DH (ε(u)) : ε(η2u) dx

−
∫

TR

DH (ε(u)) : ε(v) dx +

∫

1<|x|<2R

uk∂ku
iϕi dx

or equivalently

(3.15)

∫

1<|x|<2R

η2DH(ε(u)) : ε(u) dx

= −
∫

TR

DH (ε(u)) :
(
∇η2 ⊗ u

)
dx

+

∫

TR

DH (ε(u)) : ε(v) dx−
∫

1<|x|<2R

uk∂ku
iϕi dx.

We have

∣∣∣∣
∫

TR

DH (ε(u)) :
(
∇η2 ⊗ u

)
dx

∣∣∣∣ ≤
∫

TR

h′ (|ε(u)|) |∇η||u| dx

≤ c

[∫

TR

h′ (|ε(u)|)2 dx+R−2

∫

TR

|u|2 dx
]

(1.12)

≤ c

[∫

TR

h (|ε(u)|) dx+R−2

∫

TR

|u|2 dx
]

as well as

∣∣∣∣
∫

TR

DH (ε(u)) : ε(v) dx

∣∣∣∣ ≤
∫

TR

h′ (|ε(u)|) |ε(v)| dx

≤ c

[∫

TR

h (|ε(u)|) dx+R−2

∫

TR

|u|2 dx
]
,
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where we used Young’s inequality and the definition of v. Returning to (3.15) we
find (recall (1.8))

(3.16)

∫

1<|x|<R

h (|ε(u)|) dx ≤ c

[∫

TR

h (|ε(u)|) dx+R−2

∫

TR

|u|2 dx+ |S|
]
,

S :=

∫

1<|x|<2R

uk∂ku
iϕi dx.

With (3.11) we immediately see that (3.16) implies our claim (3.13), i.e. finishes
the proof in the presence of the convective term, as soon as we can show that

(3.17) lim
R→∞

S = 0.

It holds

(3.18)

S = −
∫

1<|x|<2R

ukui∂kϕ
i dx

= −
∫

1<|x|<2R

ukui∂k(η
2ui) dx +

∫

TR

ukui∂kv
i dx

=: −T1 + T2,

and for T2 we have

|T2| ≤
∫

TR

|u|2|∇v| dx

≤
[∫

TR

|u|4 dx
] 1

2
[∫

TR

|∇v|2 dx
] 1

2

≤ cR−1

[∫

TR

|u|4 dx
] 1

2
[∫

TR

|u|2 dx
] 1

2

≤ cRΘ(R)3,

thus by (1.6)

(3.19) lim
R→∞

T2 = 0.

For T1 we observe the identity (recalling (1.3))

T1 =

∫

1<|x|<2R

∂k(u
kuiη2ui) dx−

∫

1<|x|<2R

∂k(u
kui)η2ui dx

= −
∫

1<|x|<2R

∂k(u
kui)η2ui dx = −1

2

∫

1<|x|<2R

uk∂k|u|2η2 dx

=
1

2

∫

1<|x|<2R

uk|u|2∂kη2 dx,
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and this immediately shows

(3.20) lim
R→∞

T1 = 0.

With (3.19) and (3.20) we obtain (3.17), and as outlined before this completes
the proof of Theorem 1.1 in the shear thinning case. �

4. Shear thickening case

With h satisfying (A1), (A2) and (A3I) we consider a solution u of the exterior
problem (1.1)–(1.3) as explained in Definition 1.1. We further assume the validity
of (1.6) (or of (1.5) in the case that uk∂ku = 0). The calculations follow the same
ideas as in the previous section, for the necessary adjustments we benefit from
[Fu, Section 4].

Let p := τ
τ−1 ≥ 2 with exponent τ being defined in Lemma 2.3. For l ∈ N

sufficiently large we let ϕ := η2lu−v with η as introduced in front of equation (3.1),

but now we choose v ∈
◦
W 1

p(Q2r(z)) such that div v = div(η2lu)(= ∇η2l · u) on
Q2r(z) together with

(4.1)
‖∇v‖Lp(Q2r(z)) ≤ c‖∇η2l · u‖Lp(Q2r(z)) and

‖∇v‖L2(Q2r(z)) ≤ c‖∇η2l · u‖L2(Q2r(z)).

Replacing η2 by η2l in (3.1) we obtain for the terms Ti, i = 1, . . . , 5

(4.2)

T1 ≥ c

∫

Q2r(z)

η2lh (|ε(u)|) dx,

|T2| ≤ c

∫

Q2r(z)

h′ (|ε(u)|) η2l−1|∇η||u| dx

(2.2)

≤ c

∫

Q2r(z)

η2l−1|∇η||u|
[
h (|ε(u)|) 1

τ + |ε(u)|
]
dx

≤ δ

∫

Q2r(z)

η(2l−1)τh (|ε(u)|) dx+ c(δ)

∫

Q2r(z)

|∇η|p|u|p dx

+ δ

∫

Q2r(z)

η(2l−1)2|ε(u)|2 dx+ c(δ)

∫

Q2r(z)

|∇η|2|u|2 dx,

where we have used Young’s inequality with arbitrary δ > 0. Observing (1.10)
and selecting l so large that (2l − 1)τ ≥ 2l, we see that after suitable choice of δ
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it follows from (4.2)

(4.3)

∫

Q2r(z)

η2lh (|ε(u)|) dx ≤ c

[
r−p

∫

Q2r(z)

|u|p dx

+r−2

∫

Q2r(z)

|u|2 dx+ |T3|+ |T4|+ |T5|
]
.

From (2.2) and Young’s inequality we get

|T3| ≤ c

∫

Q2r(z)

h′ (|ε(u)|) |ε(v)| dx

≤ c

∫

Q2r(z)

[
h(|ε(u)|) 1

τ + |ε(u)|
]
|ε(v)| dx

≤ δ

∫

Q2r(z)

h (|ε(u)|) dx+ cδ1−p

∫

Q2r(z)

|ε(v)|p dx

+δ

∫

Q2r(z)

|ε(u)|2 dx+ cδ−1

∫

Q2r(z)

|ε(v)|2 dx,

and if we use (4.1) and (1.10) we have shown

(4.4)

|T3| ≤ δ

∫

Q2r(z)

h (|ε(u)|) dx

+ c

[
δ1−pr−p

∫

Q2r(z)

|u|p dx+ δ−1r−2

∫

Q2r(z)

|u|2 dx
]
.

Returning to (4.3) and using (4.4) we obtain in place of (3.4)

∫

Qr(z)

h (|ε(u)|) dx ≤ δ

∫

Q2r(z)

h (|ε(u)|) dx+ c

[
δ1−pr−p

∫

Q2r(z)

|u|p dx

+δ−1r−2

∫

Q2r(z)

|u|2 dx+ |T4|+ |T5|
]
,

and since the estimates for T4 and T5 remain unchanged we deduce in place of (3.7)

(4.5)

∫

Qr(z)

h (|ε(u)|) dx ≤ δ

∫

Q2r(z)

h (|ε(u)|) dx

+ c

[
δ1−pr−p

∫

Q2r(z)

|u|p dx+ δ−1r−2

∫

Q2r(z)

|u|2 dx

+ r−1

∫

Q2r(z)

(
|u|2 + |u|3 + |u|4

)
dx

]
.
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Inequality (4.5) enables us to use Lemma 2.1, hence

(4.6)

∫

Qr(z)

h (|ε(u)|) dx ≤ c

[
r−p

∫

Q2r(z)

|u|p dx + r−2

∫

Q2r(z)

|u|2 dx

+r−1

∫

Q2r(z)

(
|u|2 + |u|3 + |u|4

)
dx

]
.

With the notation introduced after (3.8) we see that (4.6) implies in a first step
the inequality (3.9), that is we obtain

(4.7)

∫

QR
4
(x0)

h (|ε(u)|) dx ≤ cR−1

∫

QR
2
(x0)

|u|2 dx.

With the help of (4.7) we then proceed exactly as done after (3.9) and get (for
any δ > 0)

∫

QR
8
(x0)

h (|ε(u)|) dx ≤ c


δR−1

∫

QR
2
(x0)

|u|2 dx+ δ1−pR−p

∫

QR
4
(x0)

|u|p dx

+δ−1R−2

∫

QR
4
(x0)

|u|2 dx

+R−1



∫

QR
4
(x0)

|u|4 dx
∫

QR
4
(x0)

|u|2 dx




1
2


 .

Let δ = R−1/2. The above inequality implies (3.10) with the additional term

R− 1
2−

p
2

∫

QR
2
(x0)

|u|p dx

on the right-hand side. Therefore we get in place of (3.11)

∫

TR

h (|ε(u)|) dx ≤ c

[
R

1
2Θ

(
R

4

)2

+ RΘ

(
R

4

)3

+R
3
2−

p
2 Θ

(
R

4

)p
]
,

but on account of p ≥ 2 and the vanishing of Θ it clearly holds

R
1
2Θ

(
R

4

)2

≥ cR
3
2−

p
2Θ

(
R

4

)p

,

and as in Section 3 we obtain

lim
R→∞

∫

TR

h (|ε(u)|) dx = 0
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under the assumption (1.6) (or (1.5) for slow flows).
It remains to verify (3.13). We use the same testfunction ϕ as introduced after

(3.13) observing that v satisfies

(4.8) ‖∇v‖Ls(TR) ≤ c‖∇η2 · u‖Ls(TR)

for s = 2 and s = p.
Passing to (3.15) the first two terms on the right-hand side are now estimated

as follows:
∣∣∣∣
∫

TR

DH (ε(u)) :
(
∇η2 ⊗ u

)
dx

∣∣∣∣
(2.2)

≤ c

∫

TR

(
h

1
τ (|ε(u)|) + |ε(u)|

)
|∇η||u| dx

≤ c

[∫

TR

h (|ε(u)|) dx+R−p

∫

TR

|u|p dx

+

∫

TR

|ε(u)|2 dx+R−2

∫

TR

|u|2 dx
]

(1.10)

≤ c

[∫

TR

h (|ε(u)|) dx+R−2

∫

TR

|u|2 dx
]

on account of p ≥ 2 and the boundedness of u. With (4.8) the same bound is
seen to be true for

∫
TR

DH(ε(u)) : ε(v) dx, hence we get (3.16) with S being

defined there. Clearly (3.17) remains valid, thus we get (3.13), and the proof of
Theorem 1.1 is complete. �
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