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ARCHIVUM MATHEMATICUM (BRNO)
Tomus 48 (2012), 97–105

δ-IDEALS IN PSEUDO-COMPLEMENTED DISTRIBUTIVE
LATTICES

M. Sambasiva Rao

Abstract. The concept of δ-ideals is introduced in a pseudo-complemented
distributive lattice and some properties of these ideals are studied. Stone
lattices are characterized in terms of δ-ideals. A set of equivalent conditions is
obtained to characterize a Boolean algebra in terms of δ-ideals. Finally, some
properties of δ-ideals are studied with respect to homomorphisms and filter
congruences.

Introduction

The theory of pseudo-complements was introduced and extensively studied
in semi-lattices and particularly in distributive lattices by Orrin Frink [4] and
G. Birkhoff [2]. Later the problem of characterizing Stone lattices has been studied
by several authors like R. Balbes [1], O. Frink [4], G. Grätzer [5] etc.

In this paper, the concept of δ-ideals is introduced in a distributive lattice in terms
of pseudo-complementation and filters. Some properties of these δ-ideals are studied
and then proved that the set of all δ-ideals can be made into a complete distributive
lattice. We derive a set of equivalent conditions for the class of all δ-ideals to
become a sublattice to the lattice of all ideals, which leads to a characterization of
Stone lattices. A set of equivalent conditions are established for every prime ideal
to become a δ-ideal which leads to a characterization of a Boolean algebra. Finally,
the set of δ-ideals of a pseudo-complemented distributive lattice is characterized in
terms of filter congruences.

1. Preliminaries

In this section, we recall certain definitions and important results taken from [6]
for the ready reference to the reader.

Definition 1.1 ([6]). For any element a of a distributive lattice L, the pseudo-com-
plement a∗ of a is an element satisfying the following property for all x ∈ L:

a ∧ x = 0 ⇔ a∗ ∧ x = x ⇔ x ≤ a∗ .
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A distributive lattice L in which every element has a pseudo-complement is
called a pseudo-complemented distributive lattice. Throughout this paper L stands
for a pseudo-complemented distributive lattice (L,∨,∧,∗ , 0, 1).

Theorem 1.2 ([6]). For any two elements a, b of a pseudo-complemented distribu-
tive lattice, we have the following:

(1) 0∗∗ = 0,
(2) a ∧ a∗ = 0,
(3) a ≤ b implies b∗ ≤ a∗,
(4) a ≤ a∗∗,
(5) a∗∗∗ = a∗,
(6) (a ∨ b)∗ = a∗ ∧ b∗,
(7) (a ∧ b)∗∗ = a∗∗ ∧ b∗∗.

An element x of a pseudo-complemented lattice L is called dense [6] if x∗ = 0
and the set D(L) of all dense element of L forms a filter of L.

Definition 1.3 ([1]). A pseudo-complemented distributive lattice L is called a
Stone lattice if, for all x ∈ L, it satisfies the property: x∗ ∨ x∗∗ = 1.

Theorem 1.4 ([6]). Let I be an ideal and F a filter of a distributive lattice L such
that I ∩ F = ∅. Then there exists a prime ideal P such that I ⊆ P and P ∩ F = ∅.

A prime ideal P of a distributive lattice L is called a minimal prime ideal [8] if
there exists no prime ideal Q such that Q ⊂ P . A prime ideal P is minimal if and
only if to each x ∈ P there exists y /∈ P such that x ∧ y = 0.

2. δ-ideals

In this section, the concept of δ-ideals is introduced in a pseudo-complemented
distributive lattice. Stone lattice and Boolean algebras are characterized in terms
of δ-ideals. Finally, δ-ideals are characterized in terms of congruences.

Definition 2.1. Let L be a pseudo-complemented distributive lattice. Then for
any filter F of L, define the set δ(F ) as follows:

δ(F ) = {x ∈ L | x∗ ∈ F} .

In the following, some basic properties of δ(F ) can be observed.

Lemma 2.2. Let L be a pseudo-complemented distributive lattice. Then for any
filter F of L, δ(F ) is an ideal of L.

Proof. Since 0∗ ∈ F , we get that 0 ∈ δ(F ). Let x, y ∈ δ(F ). Then x∗, y∗ ∈ F .
Hence (x∨ y)∗ = x∗ ∧ y∗ ∈ F . Again, let x ∈ δ(F ) and r ∈ L. Then x∗ ∈ F . Hence
(x∧ r)∗ = (x∧ r)∗∗∗ = (x∗∗ ∧ r∗∗)∗ = (x∗ ∨ r∗)∗∗ ∈ F (because x∗ ∨ r∗ ∈ F ). Hence
we get that x ∧ r ∈ δ(F ). Therefore δ(F ) is an ideal in L. �

Lemma 2.3. Let L be a pseudo-complemented distributive lattice. For any two
filters F,G of L, we have the following:



δ-IDEALS IN PSEUDO-COMPLEMENTED DISTRIBUTIVE LATTICES 99

(1) F ∩ δ(F ) = ∅,
(2) x ∈ δ(F ) ⇒ x∗∗ ∈ δ(F ),
(3) F = L if and only if δ(F ) = L,
(4) F ⊆ G ⇒ δ(F ) ⊆ δ(G),
(5) δ(F ∩G) = δ(F ) ∩ δ(G).

Proof. (1) Suppose x ∈ F ∩ δ(F ). Then x ∈ F and x∗ ∈ F . Since F is a filter, we
get 0 = x∗ ∧ x ∈ F , which is a contradiction. Therefore F ∩ δ(F ) = ∅.
(2) Since x∗∗∗ = x∗, it is clear.
(3) Assume that F = L. Then we have 0∗∗ = 0 ∈ F . Hence 0∗ ∈ δ(F ). Therefore
δ(F ) = L. Converse is an easy reverse of the above.
(4) Suppose F ⊆ G. Let x ∈ δ(F ). Then x∗ ∈ F ⊆ G. Therefore x ∈ δ(G).
(5) Clearly δ(F∩G) ⊆ δ(F )∩δ(G). Conversely, let x ∈ δ(F )∩δ(G). Then x∗ ∈ F∩G.
Hence x ∈ δ(F ∩G). Therefore δ(F ) ∩ δ(G) ⊆ δ(F ∩G). �

The concept of δ-ideals is now introduced in the following.

Definition 2.4. Let L be a pseudo-complemented distributive lattice. An ideal I
of L is called a δ-ideal if I = δ(F ) for some filter F of L.

Example 2.5. Consider the distributive lattice L = {0, a, b, c, 1} whose Hasse
diagram is given in the following figure:
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Consider I = {0, a} and F = {b, c, 1}.
Clearly I is an ideal and F a filter of L.
Now δ(F ) = {x | x∗ ∈ F} = {0, a}.
Therefore I is a δ-ideal of L.
But J = {0, a, b, c} is not a δ-ideal of L.
Suppose J = δ(F ) for some filter F
Then 0 = c∗ ∈ F . Hence F = L, which yields that J = δ(F ) = L.

The following lemmas produce some more examples for δ-ideals.

Lemma 2.6. For each x ∈ L, (x∗] is a δ-ideal of L.

Proof. It is enough to show that (x∗] = δ([x)). Let a ∈ (x∗]. Then a ∧ x = 0 and
hence a∗ ∧ x = x ∈ [x). Thus a∗ ∈ [x). Therefore a ∈ δ([x)). Conversely, suppose
that a ∈ δ([x)). Then a∗ ∧x = x and hence a∧x = a∧ a∗ ∧x = 0. Thus a∧x∗ = a,
which yields that a ∈ (x∗]. Therefore (x∗] is a δ-ideal of L. �

Lemma 2.7. Every prime ideal without dense element is a δ-ideal.

Proof. Let P be a prime ideal with out dense element. Let x ∈ P . Then clearly
x ∧ x∗ = 0 and x ∨ x∗ is dense. Hence x ∨ x∗ /∈ P . Thus we get x∗ /∈ P , which
yields that x∗ ∈ L− P . Thus x ∈ δ(L− P ). Therefore P ⊆ δ(L− P ). Conversely,
let x ∈ δ(L−P ). Then x∗ ∈ L−P , which implies that x∗ /∈ P . Hence x ∈ P . Thus
P = δ(L− P ). Therefore P is a δ-ideal of L. �
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Corollary 2.8. Every minimal prime ideal is a δ-ideal.

Proof. Let P be a minimal prime ideal of L. Suppose x ∈ P ∩D(L). Then there
exists y /∈ P such that x ∧ y = 0. Hence y ≤ x∗ = 0 ∈ P , which is a contradiction.
Thus P ∩D(L) = ∅. Therefore, by above lemma, P is a δ-ideal. �

In the following, a simple property of δ-ideals is observed.

Lemma 2.9. A proper δ-ideal contains no dense element.

Proof. Let δ(F ) be a proper δ-ideal of L. Suppose x ∈ δ(F ) ∩D(L). Then we get
0 = x∗ ∈ F , which is a contradiction. Therefore δ(F ) ∩D(L) = ∅. �

Let us denote the set of all δ-ideals of L by Iδ(L). Then by Example 2.5, it
can be observed that Iδ(L) is not a sublattice of I(L) of all ideals of L. Consider
F = {b, c, 1} and G = {a, c, 1}. Clearly F and G are filters of L. Now δ(F ) = {0, a}
and δ(G) = {0, b}. But δ(F ) ∨ δ(G) = {0, a, b, c} is not a δ-ideal of L, because
c ∈ δ(F ) ∨ δ(G) is a dense element. However, in the following theorem, we prove
that Iδ(L) forms a complete distributive lattice.

Theorem 2.10. Let L be a pseudo-complemented distributive lattice. Then the set
Iδ(L) forms a complete distributive lattice on its own.

Proof. For any two filters F,G of L, define two binary operations ∩ and t as
follows:

δ(F ) ∩ δ(G) = δ(F ∩G) and δ(F ) t δ(G) = δ(F ∨G) .
It is clear that δ(F ∩G) is the infimum of δ(F ) and δ(G) in Iδ(L). Also δ(F )tδ(G)
is a δ-ideal of L. Clearly δ(F ), δ(G) ⊆ δ(F ∨G) = δ(F )tδ(G). Let δ(H) be a δ-ideal
of L such that δ(F ) ⊆ δ(H) and δ(G) ⊆ δ(H), where H is a filter of L. Now we
claim that δ(F ∨G) ⊆ δ(H). Let x ∈ δ(F ∨G). Then x∗ ∈ F ∨G. Hence x∗ = f ∧ g
for some f ∈ F and g ∈ G. Since f ∈ F and g ∈ G, we can get f∗ ∈ δ(F ) ⊆ δ(H)
and g∗ ∈ δ(G) ⊆ δ(H). Now

f∗ ∈ δ(H), g∗ ∈ δ(H) ⇒ f∗ ∨ g∗ ∈ δ(H)
⇒ (f∗ ∨ g∗)∗∗ ∈ δ(H)
⇒ (f∗∗ ∧ g∗∗)∗ ∈ δ(H)
⇒ x∗∗ ∈ δ(H)
⇒ x ∈ δ(H)

Hence δ(F ) t δ(G) = δ(F ∨G) is the supremum of both δ(F ) and δ(G) in Iδ(L).
Therefore

〈
Iδ(L),∩,t

〉
is a lattice. Distributivity of δ-ideals can be easily followed

by using the above operations of Iδ(L).
It is clear that Iδ(L) is a partially ordered set with respect to set-inclusion.

Then by the extension of the property of Lemma 2.3(5), we can obtain that Iδ(L)
is a complete lattice. Therefore Iδ(L) is a complete distributive lattice. �

From Lemma 2.6, we have already observed that each (x∗](for x ∈ L) is a δ-ideal
of L. Now let us denote that A∗(L) = {(x∗] | x ∈ L}. Then, in the following
theorem, it is proved that A∗(L) is a Boolean algebra.
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Theorem 2.11. For any pseudo-complemented distributive lattice L, A∗(L) is a
sublattice of the lattice Iδ(L) of all δ-ideals of L and hence is a Boolean algebra.
Moreover, the mapping x 7−→ (x∗] is a dual homomorphism from L onto A∗(L).
Proof. Let (x∗], (y∗] ∈ A∗(L) for some x, y ∈ L. Then clearly (x∗]∩ (y∗] ∈ A∗(L).
Again, (x∗] t (y∗] = δ([x)) t δ([y)) = δ([x) ∨ [y)) = δ([x ∧ y)) = ((x ∧ y)∗] ∈ A∗(L).
Hence A∗(L) is a sublattice of Iδ(L) and hence a distributive lattice. Clearly
(0∗∗] and (0∗] are the least and greatest elements of A∗(L). Now for any x ∈ L,
(x∗] ∩ (x∗∗] = (0] and (x∗] t (x∗∗] = δ([x)) t δ([x∗)) = δ([x) ∨ [x∗)) = δ([x ∧
x∗)) = δ([0)) = δ(L) = L. Hence (x∗∗] is the complement of (x∗] in A∗(L).
Therefore 〈A∗(L),t,∩〉 is a bounded distributive lattice in which every element is
complemented. The remaining part can be easily observed. �

It was already observed that Iδ(L) is not a sublattice of the ideal lattice I(L).
However, we establish some equivalent conditions for Iδ(L) to become a sublattice
of I(L), which leads to a characterization of Stone lattices. For this, we need the
following lemma.
Lemma 2.12. Every proper δ-ideal is contained in a minimal prime ideal.
Proof. Let I be a proper δ-ideal of L. Then I = δ(F ) for some filter F of L. Clearly
δ(F ) ∩D(L) = ∅. Then there exists a prime ideal P of L such that δ(F ) ⊆ P and
P ∩ D(L) = ∅. Let x ∈ P . We have always x ∧ x∗ = 0. Suppose x∗ ∈ P . Then
x ∨ x∗ ∈ P ∩D(L), which is a contradiction. Thus P is a minimal prime ideal of
L. �

Since the minimal prime ideals are precisely the complements of maximal filter
of L, the following corollary is a direct consequence.
Corollary 2.13. The minimal prime ideals of a pseudo-complemented distributive
lattice L are maximal elements of the complete lattice Iδ(L).

We now characterize Stone lattices in terms of δ-ideals.
Theorem 2.14. Let L be a pseudo-complemented distributive lattice. Then the
following are equivalent:

(1) L is a Stone lattice,
(2) For any x, y ∈ L, (x ∧ y)∗ = x∗ ∨ y∗,
(3) For any two filters F,G of L, δ(F ) ∨ δ(G) = δ(F ∨G),
(4) Iδ(L) is a sublattice of I(L).

Proof. (1)⇒ (2): It is obtained in Lemma 3 of [6] pp.113.
(2)⇒ (3): Assume the condition (2). Let F,G be two filters of L. We have always
δ(F ) ∨ δ(G) ⊆ δ(F ∨G). Conversely, let x ∈ δ(F ∨G). Then

x∗ ∈ F ∨G⇒ x∗ = f ∧ g for some f ∈ F, g ∈ G
⇒ x∗∗ = (f ∧ g)∗

⇒ x∗∗ = f∗ ∨ g∗

⇒ x∗∗ = f∗ ∨ g∗ ∈ δ(F ) ∨ δ(G) since f∗∗ ∈ F, g∗∗ ∈ G
⇒ x ∈ δ(F ) ∨ δ(G) .
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Hence δ(F ∨G) ⊆ δ(F ) ∨ δ(G). Therefore δ(F ) ∨ δ(G) = δ(F ∨G).
(3)⇒ (4): It is obvious.
(4)⇒ (1): Assume that Iδ(L) is a sublattice of I(L). Let x ∈ L. By Lemma 2.6,
(x∗] and (x∗∗] are both δ-ideals of L. Suppose x∗ ∨ x∗∗ 6= 1. Then by condition (4),
(x∗] ∨ (x∗∗] is a proper δ-ideal of L. Hence there exists a minimal prime ideal P
such that (x∗] ∨ (x∗∗] ⊆ P . Since P is minimal, we get that x∗∗ /∈ P , which is a
contradiction. Therefore L is a Stone lattice. �

In the following theorem, a set of equivalent conditions are obtained for every
prime ideal of L to become a δ-ideal which in turn leads to establish some equivalent
conditions for a pseudo-complemented distributive lattice to become a Boolean
algebra. Let us recall that an element x is called closed [6] if x∗∗ = x.

Theorem 2.15. Let L be a pseudo-complemented distributive lattice. Then the
following conditions are equivalent:

(1) L is a Boolean algebra,
(2) Every element of L is closed,
(3) Every principal ideal is a δ-ideal,
(4) For any ideal I, x ∈ I implies x∗∗ ∈ I,
(5) For any proper ideal I, I ∩D(L) = ∅,
(6) For any prime ideal P , P ∩D(L) = ∅,
(7) Every prime ideal is a minimal prime ideal,
(8) Every prime ideal is a δ-ideal,
(9) For any x, y ∈ L, x∗ = y∗ implies x = y,

(10) D(L) is a singleton set.

Proof. (1)⇒ (2): Assume that L is a Boolean algebra. Then clearly L has a unique
dense element, precisely the greatest element. Let x ∈ L. Then x∗∧x = 0 = x∗∧x∗∗.
Also x∗ ∨x, x∗ ∨x∗∗ ∈ D(L). Hence x∗ ∨x = x∗ ∨x∗∗. By the cancelation property
of L, we get x = x∗∗. Therefore every element of L is closed.
(2)⇒ (3): Let I be a principal ideal of L. Then I = (x] for some x ∈ L. Then by
condition (2), x = x∗∗. Now, (x] = (x∗∗] = δ([x∗)). Therefore (x] is a δ-ideal.
(3)⇒ (4): Let I be a proper ideal of L. Let x ∈ I. Then (x] = δ(F ) for some filter
F of L. Hence we get x∗∗∗ = x∗ ∈ F . Therefore x∗∗ ∈ δ(F ) = (x] ⊆ I.
(4)⇒ (5): Let I be a proper ideal of L. Suppose x ∈ I ∩D(L). Then x∗∗ ∈ I and
x∗ = 0. Therefore 1 = 0∗ = x∗∗ ∈ I, which is a contradiction.
(5)⇒ (6): It is clear.
(6)⇒ (7): Let P be a prime ideal of L such that P ∩D(L) = ∅. Let x ∈ P . Then
clearly x ∧ x∗ = 0 and x ∨ x∗ ∈ D(L). Hence x ∨ x∗ /∈ P . Thus x∗ /∈ P . Therefore
P is a minimal prime ideal of L.
(7)⇒ (8): Let P be a minimal prime ideal of L. Then clearly L− P is a filter of
L. Let x ∈ P . Since P is minimal, there exists y /∈ P such that x ∧ y = 0. Hence
x∗∧y = y, which implies that x∗ /∈ P . Thus x∗ ∈ L−P , which yields x ∈ δ(L−P ).
Conversely, let x ∈ δ(L − P ). Then we get x∗ /∈ P . Hence we have x ∈ P . Thus
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P = δ(L− P ) and therefore P is a δ-ideal of L.
(8) ⇒ (9): Assume that every prime ideal of L is a δ-ideal. Let x, y ∈ L be such
that x∗ = y∗. Suppose x 6= y. Then there exists a prime ideal P of L such that
x ∈ P and y /∈ P . By hypothesis, P is a δ-ideal of L. Hence P = δ(F ) for some
filter F of L. Since x ∈ P = δ(F ), we get y∗ = x∗ ∈ F . Hence y ∈ δ(F ) = P , which
is a contradiction. Therefore x = y.
(9)⇒ (10): Suppose a, b be two elements of D(L). Then a∗ = 0 = b∗. Hence a = b.
Therefore D(L) is a singleton set.
(10)⇒ (1): Assume that D(L) = {d} is a singleton set. Let x ∈ L. We have always
x ∨ x∗ ∈ D(L). Therefore x ∧ x∗ = 0 and x ∨ x∗ = d. This true for all x ∈ L. Also
0 ≤ x ≤ x ∨ x∗ = d. Therefore L is a bounded distributive lattice in which every
element is complemented. �

We now prove that the homomorphic image of a δ-ideal is again a δ-ideal. By a
homomorphism [6] on a bounded lattice, we mean a homomorphism which preserves
0 and 1. We now start our observation with the following fact.

Unlike in rings, if an onto homomorphism of a distributive lattice L into another
lattice L′ such that ker f = {x ∈ L | f(x) = 0} = {0}, then f need not be an
isomorphism. For this, we consider two chains L = {0, a, 1} and L′ = {0′, 1′}. Now,
define a mapping f : L −→ L′ by f(0) = 0′ and f(a) = f(1) = 1′. Then clearly f is
a homomorphism from L into L′ and also f is onto. Also Ker f = {0}. But f is
not one-one. Hence f is not an isomorphism.

Lemma 2.16. Let L and L′ be two pseudo-complemented distributive lattices with
pseudo-complementation ∗ and f : L −→ L′ an onto homomorphism. If Ker f =
{0}, then f(x∗) = {f(x)}∗ for all x ∈ L.

Proof. We have always f(x)∧f(x∗) = f(x∧x∗) = f(0) = 0. Suppose f(x)∧f(t) =
0 for some t ∈ L. Then f(x ∧ t) = 0 and hence x ∧ t ∈ ker f = {0}. Thus x ∧ t = 0.
Hence x∗ ∧ t = t, which yields f(x∗) ∧ f(t) = f(x∗ ∧ t) = f(t). Therefore f(x∗) is
the pseudo-complement of f(x) in L′. �

In the following, we prove that the image of a δ-ideal of L under the above
homomorphism is again a δ-ideal.

Theorem 2.17. Let L, L′ be two pseudo-complemented distributive lattices with
pseudo-complementation ∗ and f : L −→ L′ an onto homomorphism such that
Ker f = {0}. If I is a δ-ideal of L, then f(I) is a δ-ideal of L′.

Proof. Let I be a δ-ideal of L. Then I = δ(G) for some filter G of L. Since the
homomorphism f preserves 1, we can get that f(G) is a filter in L′. Now, it is
enough to show that f{δ(G)} = δ{f(G)}. Let a ∈ f{δ(G)}. Then a = f(x) for
some x ∈ δ(G). Hence x∗ ∈ G. Now f(x) ∧ f(x∗) = f(x ∧ x∗) = f(0) = 0. Hence
{f(x)}∗ ∧ f(x∗) = f(x∗) ∈ f(G). Thus {f(x)}∗ ∈ f(G). Therefore a = f(x) ∈
δ{f(G)}. Therefore f{δ(G)} ⊆ δ{f(G)}. Conversely, let y ∈ δ{f(G)}. Since f
is on-to, there exists x ∈ L such that y = f(x). Then {f(x)}∗ ∈ f(G). Hence
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{f(x)}∗ = f(a) for some a ∈ G. Now
f(x) ∧ {f(x)}∗ = 0⇒ f(x) ∧ f(a) = 0

⇒ f(x ∧ a) = 0
⇒ x ∧ a ∈ Ker f = {0}
⇒ x∗ ∧ a = a ∈ G
⇒ x∗ ∈ G
⇒ x ∈ δ(G)
⇒ y = f(x) ∈ f{δ(G)} .

Thus δ{f(G)} ⊆ f{δ(G)}. Therefore δ{f(G)} = f{δ(G)}. �

We now characterize δ-ideals in terms of congruences. For this, we consider a
well known filter congruence introduced by T. P. Speed [7].

Theorem 2.18 ([7]). For any filter F of L, define a relation θ(F ) as follows:
(a, b) ∈ θ(F ) ⇔ a ∧ f = b ∧ f for some f ∈ F .

Then θ(F ) is a congruence relation on L.

Lemma 2.19. Let L be a pseudo-complemented distributive lattice. Then for any
ideal I of L, FI = {x ∈ L | x∗ ∧ a∗ = 0 for some a ∈ I} is a filter of L.

Proof. Clearly 0∗ ∈ FI . Let x, y ∈ FI . Then x∗ ∧ a∗ = 0 and y∗ ∧ b∗ = 0 for
some a, b ∈ I. Hence x∗∗ ∧ a∗ = a∗ and y∗∗ ∧ b∗ = b∗. Now (x ∧ y)∗∗ ∧ (a ∨ b)∗ =
x∗∗∧y∗∗∧a∗∧b∗ = a∗∧b∗. Thus (x∧y)∗∧(a∨b)∗ = 0. Therefore x∧y ∈ FI . Again, let
x ∈ FI and s ∈ L. Then x∗∧a∗ = 0 for some a ∈ I. Now (x∨s)∗∧a∗ ≤ x∗∧a∗ = 0.
Thus x ∨ s ∈ FI . Therefore FI is a filter of L. �

Theorem 2.20. For any ideal I of a pseudo-complemented distributive lattice L,
the following conditions are equivalent:

(1) I is a δ-ideal,
(2) I = Ker θ(FI),
(3) I = Ker θ(F ) for some filter F of L.

Proof. (1)⇒ (2): Assume that I is a δ-ideal of L. Then I = δ(F ) for some filter
F of L. Let x ∈ I. Since x∗∗ ∧ x∗ = 0, we can get x∗ ∈ FI . Since x ∧ x∗ = 0
and x∗ ∈ FI , we thus get x ∈ Ker θ(FI). Therefore I ⊆ Ker θ(FI). Conversely, let
x ∈ Ker θ(FI). Then (x, 0) ∈ θ(FI). Thus x ∧ f = 0 for some f ∈ FI . Since f ∈ FI ,
we get that f∗ ∧ a∗ = 0 for some a ∈ I. Hence x ≤ f∗ ≤ a∗∗ ∈ δ(F ) = I. Therefore
I = Ker θ(FI).
(2)⇒ (3): It is clear.
(3)⇒)1): Assume that I = Ker θ(F ) for some filter F of L. Let x ∈ I = Ker θ(F ).
Then x ∧ f = 0 for some f ∈ F . Hence x∗ ∧ f = f ∈ F . Thus x∗ ∈ F , which yields
that x ∈ δ(F ). Therefore I ⊆ δ(F ). Conversely, let x ∈ δ(F ). Then x∗ ∈ F . Since
x ∧ x∗ = 0 and x∗ ∈ F , we get (x, 0) ∈ θ(F ). Thus x ∈ Ker θ(F ) = I. Therefore I
is a δ-ideal of L. �
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