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CONTROL OF THE UNDERACTUATED MECHANICAL
SYSTEMS USING NATURAL MOTION

Zdeněk Neusser and Michael Valášek

The paper deals with the control of underactuated mechanical systems between equilibrium
positions across the singular positions. The considered mechanical systems are in the gravity
field. The goal is to find feasible trajectory connecting the equilibrium positions that can be
the basis of the system control. Such trajectory can be stabilized around both equilibrium
positions and due to the gravity forces the mechanical system overcomes the singular positions.
This altogether constitutes the control between the equilibrium positions. The procedure is
demonstrated on the different inverse pendulum mechanisms.
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Classification: 70E55, 93C10, 93B60

1. INTRODUCTION

This study deals with the control of mechanical systems moving in the gravity field
with fewer actuators than degrees of freedom, so called underactuated systems. In the
applications further described in this paper the concept of underactuated systems can
be defined by this relation, although the more precise definition should be based on the
number of blocks in the Brunovsky canonical form [9]. It is investigated the control
of underactuated mechanical systems between equilibrium positions passing through
singularity positions in the gravity field. These systems are in this area uncontrollable
by considered NQR control ([6, 11]) with zero velocity, in particular it is the swing-
up of pendubot and of pendulum on the cart (called also cart-pole system, see [2]).
The controllability is calculated from the controllability matrix composed of A and B
matrices derived at each time step and evaluating its rank. These studied mechanisms
can be controlled in their equilibrium positions (see [4]), but between these equilibrium
states there are always singularity points. The main goal is to determine the behavior of
the actuator(s) to get them through the singularities. To move the mechanism through
this region or even trajectory tracking (see [1]) is a challenging task.

These problems have been already investigated by many authors. There is used in [5]
the method adding the actuators to the underactuated joints and running the swing-up
motion with optimization minimizing the action of the added actuators. Partly stable
controllers derived using the dynamic model of the manipulator in order to employ
them under an optimal switching sequence is presented in [7]. Energy based approach



224 Z. NEUSSER AND M. VALÁŠEK

used in the design of stabilizing controllers is in the book [2]. The friction forces are
used in energy control strategy in [3]. Another approach is to use exact input-output
linearization within certain submanifold (direction) in which the system is controllable
and the zero-dynamics is stable.

Work [10] presents the way of the feedforward control strategy combined with input-
output linearization. After this transformation the system acquires new input variables
that are suitable to control the actuated part together with the underactuated one.
However, the system can be controlled by this new input only if the input functions are
from the certain admissible class of functions. One way of finding such admissible class
of functions is cyclic control described in [8] as periodic invariant (with respect to the
actuated variables) functions without details.

This paper describes another way of finding suitable admissible functions for the
control of the underactuated systems between equilibrium positions across singularity
areas in the gravity field. These suitable admissible functions are based on the inversion
of the so-called natural motion or on the reuse of specific knowledge gained from these
natural motions. Shortly, the natural motion is a motion of the system without control.

2. UNDERACTUATED MECHANICAL SYSTEMS

As mentioned above, there are some uncontrollable states between equilibrium states.
Standard control algorithm fails to get the mechanism through these singular positions
to reach the upper position. Situation is indicated in the Figure 1.

In this figure on the left-hand side the pendubot is described in the upper unsta-
ble equilibrium position, then in the middle singular position and in the lower stable
equilibrium position. On the right-hand side the same three positions are depicted for
the cart-pole system. The middle part of the Figure 1 describes the general path from
equilibrium position 1 across the singular positions to the equilibrium position 2. The
singular positions are in the middle row of the Figure 1 for zero velocities. Equilib-
rium positions can be successfully controlled by some type of nonlinear control. In this
paper a nonlinear quadratic regulator is used (NQR or SDRE, see [6] and [11]). The
main goal is to move the mechanism from one equilibrium point to another one and
successfully pass through the singular positions. Singular positions are positions where
the control strategy fails and controllability matrix has lower rank than the number of
states. Here the control strategy of NQR is used. This control strategy is capable to
stabilize the system in the large area around the equilibrium positions. However, the
computation of this control based on the solution of Riccatti equation completely fails at
the singular positions, see Figure 1. The controllability of the investigated systems is in
general judged using the controllability matrix within the NQR algorithm, besides the
direct analysis of the equations of motion of systems under consideration at the singular
positions described in the equations (28) and (34).

To construct such control strategy, that is able to take the system across the uncon-
trollable area, it is necessary to gain some knowledge about the behavior of the mech-
anism when passing through such singularities. It is possible to get this information
within so-called natural motion described further.
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Fig. 1. Stable positions with pointed singular configurations.

3. EXACT INPUT-OUTPUT FEEDBACK LINEARIZATION

The linearization is derived in [10]. A modified version is used and described further in
this section. Let us consider a dynamic system

M(q) · q̈(t) = F (q, q̇) + B(q) · u(t) (1)

where matrix M [n×n] is a inertia matrix, q[n×1] are coordinates describing the system,
q̇ and q̈ their derivatives, F [n × 1] is matrix containing forces dependent on velocities
and external forces besides control inputs, B[n× k] is control input distribution matrix
and the vector u[k × 1], k < n contains the control inputs.

The goal is to move this system from the initial position q(0) to the desired final
position qd(T ) in the time T with zero velocities on both ends.

3.1. Choice of qm

Vector q could be written without loss of generality in the following way:

q =
[

qm

qz

]
(2)
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where qm has the same dimension as the rank of matrix B. Remaining z coordinates in
vector qz represents not directly actuated states, but this cannot be physically intuitively
decided. This division of coordinates q is defined by the condition that the matrix Bm is
the largest regular sub-matrix of the matrix B. According to the division of coordinates
in (2) the equation (1) could be rewritten in the following form:

M I
mm(q) · q̈m(t) + M I

mz(q) · q̈z(t) = F I
m(q, q̇) + Bm(q) · u(t) (3)

M I
zm(q) · q̈m(t) + M I

zz(q) · q̈z(t) = F I
z (q, q̇) + Bz(q) · u(t). (4)

There exists the inversion of the matrix Bm.

3.2. Elimination of u

Control input u can be derived from (3):

u(t) = B−1
m (q) ·

(
M I

mm(q) · q̈m(t) + M I
mz(q) · q̈z(t)− F I

m(q, q̇)
)
. (5)

Equation (5) is substituted into the equation (4) and results in:(
M I

zm(q)−Bz(q)B−1
m (q)M I

mm(q)
)
· q̈m(t)

+
(
M I

zz(q)−Bz(q)B−1
m (q)M I

mz(q)
)
· q̈z(t) = F I

z (q, q̇)−Bz(q)B−1
m (q)F I

m(q, q̇).
(6)

The dynamic system could be rewritten according to equations (3) and (6) as a new
system:

M II
mm(q) · q̈m(t) + M II

mz(q) · q̈z(t) = F II
m (q, q̇) + Bm(q) · u(t) (7a)

M II
zm(q) · q̈m(t) + M II

zz (q) · q̈z(t) = F II
z (q, q̇) (7b)

where

M II
mm(q) = M I

mm(q)
M II

mz(q) = M I
mz(q)

F II
m (q, q̇) = F I

m(q, q̇)
M II

zm(q) = M I
zm(q)−Bz(q)B−1

m (q)M I
mm(q)

M II
zz (q) = M I

zz(q)−Bz(q)B−1
m (q)M I

mz(q)
F II

z (q, q̇) = F I
z (q, q̇)−Bz(q)B−1

m (q)F I
m(q, q̇).

Now the control input u is present only in the first equation of (7a) – (7b).

3.3. Exchange y and qm

Let us consider such output y of the same dimension as the vector qm

y = f(q) (8)

that there exists such inversion of the function f , that the coordinates qm can be uniquely
determined from equation (8), so that

qm = f−1(y, qz). (9)
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It is equivalent to the condition that rank of ∂f/∂qm equals dimension of qm in each
position. One choice could be y = qm but for more general problems like the motion of
flexible robot on the prescribed trajectory it is suitable to use the general relation (8).

Differentiating the equation (9) it is obtained

q̇m = Jmẏ + Jz q̇z (10)
q̈m = Jmÿ + Jz q̈z + R(y, ẏ, qz, q̇z). (11)

Next step is the substitution of q̈m, q̇m, qm into the system of equations (7a) and (7b):

M II
mm(y, qz)Jm · ÿ +

(
M II

mz(y, qz) + M II
mm(y, qz)Jm

)
· q̈z

= F II
m (y, qz, ẏ, q̇z)−M II

mm(y, qz)R(y, ẏ, qz, q̇z) + Bm(y, qz) · u(t)
(12a)

M II
zm(y, qz)Jm · ÿ +

(
M II

zz (y, qz) + M II
mm(y, qz)Jm

)
· q̈z = F II

z (y, qz, ẏ, q̇z). (12b)

By this way any desired output coordinates can be introduced. But the vectors ÿ, ẏ, y
are renamed by q̈m, q̇m, qm for convenience and there are created new matrices.

Mmm(q) · q̈m(t) + Mmz(q) · q̈z(t) = Fm(q, q̇) + Bm(q) · u(t) (13a)

Mzm(q) · q̈m(t) + Mzz(q) · q̈z(t) = Fz(q, q̇) (13b)

where

M (13a)
mm (q) = M II

mm(y, qz)Jm

M (13a)
mz (q) = M II

mz(y, qz) + M II
mm(y, qz)Jm

F (13a)
m (q, q̇) = F II

m (y, qz, ẏ, q̇z)−M II
mm(y, qz)R(y, ẏ, qz, q̇z)

M (13b)
zm (q) = M II

zm(y, qz)Jm

M (13b)
zz (q) = M II

zz (y, qz) + M II
mm(y, qz)Jm

F (13b)
z (q, q̇) = F II

z (y, qz, ẏ, q̇z).

There is necessary to ensure that matrix Mzz from the system of equations (13a) –
(13b) is full rank. This system of equations is now used without loss of generality as the
description of the system to be controlled.

3.4. Feedback linearization

The new input is chosen as w in order to linearize by feedback the system (13a):

q̈m = w. (14)

Using equation (13b) it can be derived

q̈z(t) = M−1
zz (q) · (Fz(q, q̇)−Mzm(q) · q̈m(t)) . (15)

Input torque is the function of w and its behavior comes from equations (13a), (14)
and (15): (

Mmm(q)−Mmz(q)M−1
zz (q)Mzm(q)

)
· q̈m(t)

= Fm(q, q̇)−Mmz(q)M−1
zz (q)Fz(q, q̇) + Bm(q) · u(t)

(16)
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u = B−1
m (q)

(
Mmm(q)−Mmz(q)M−1

zz (q)Mzm(q)
)
· w

+B−1
m (q)

(
Mmz(q)M−1

zz (q)Fz(q, q̇)− Fm(q, q̇)
)
.

(17)

Zero dynamics is in the following equation:

q̈z(t) = M−1
zz (q) · (Fz(q, q̇)−Mzm(q) · w) . (18)

Using the input u from (17) the system (13a) – (13b) is transformed into the system
(14) and (18).

3.5. How to get the new input w?

The question is, how to get a new input w to ensure that qz ends in the desired position
together with qm. To find such w, which controls qm is easy, but to find such w which
controls qm and qz simultaneously is not trivial. The new input w contains two parts
according to [8], it consists of the active part wA which moves the qm coordinates from
the initial position qm(0) to the desired final ones qmd(T ) in time T from the equation
(14) and the invariant part wI which is invariant to the final position of the motion of
qm, but due to the dynamic connection through zero dynamics influences qz in such a
way that moves qz from the initial positions qz(0) to the desired final ones qzd(T ) in
time T .

w = wA + wI . (19)

The invariant wI is such that ∫ T

0

wI dt = 0∫ T

0

∫ t

0

wI dtdt = 0.

(20)

Substituting (19) into (14) and integrating the equation twice from t = 0 to t = t it
is obtained

q̇m(t)− q̇m(0) =
∫ t

0

wA dt +
∫ t

0

wI dt

qm(t)− qm(0) =
∫ t

0

∫ t

0

wA dt +
∫ t

0

∫ t

0

wI dt.

(21)

Integrating now in the equations (21) from t = 0 to t = T and using the first
conditions (20) it is obtained

q̇m(T )− q̇m(0) =
∫ T

0

wA dt +
∫ T

0

wI dt =
∫ T

0

wA dt

qm(T )− qm(0) =
∫ T

0

∫ t

0

wA dt +
∫ T

0

∫ t

0

wI dt =
∫ T

0

∫ t

0

wA dt.

(22)

It is clear that the motion of qm in the final velocity and position is influenced only
by the active part wA of the control (19). This control is chosen arbitrarily just for the
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fulfillment of the desired final values of position and velocity of qm. When the active
part wA is chosen, it is a given function of time wA(t) and substitution of (19) into (18)
results into

q̈z(t) = M−1
zz (q) · (Fz(q, q̇)−Mzm(q) · (wA(t) + wI)) . (23)

Now the motion of qz can be controlled by the choice of wI just fulfilling the conditions
(20). For the invariant motion it is used so-called natural motions and its frequencies
fi,

wI =
∑

i

Ai sin (2πfit + Φi) (24)

where amplitudes Ai and phases Φi are some constants as a result of optimization. The
frequencies fi are chosen and the amplitudes Ai and phases Φi are optimized in order
the coordinate qz reaches the desired position and velocity at the chosen settling time.

If it holds
2πfiT = 2Kiπ (25)

for some natural number Ki, then the functions (24) satisfy the conditions (20). How
to determine suitable frequencies is explained in the next section.

4. NATURAL MOTION

The natural motion is the motion of the investigated mechanical system moving in the
gravity field with zero or constant inputs (drive torques), usually from the unstable
equilibrium position to the stable equilibrium position. To reach the desired quiescent
motion, it is necessary to add passive members (dampers) into the positions of actuators.
Underactuated part moves freely, but due to the overall energy flow into the passive
parts, it stabilizes around the equilibrium point. The damping term (added passive
members) is chosen small just in order to take out the difference of potential energy
between the equilibrium positions. The value of the damping term is optimized with
respect to the settling time. Later they are important just the eigenfrequencies of the
natural motion and they are not influenced by the damping if it is small. The frequencies
must be the eigenfrequencies in order to excite the system sufficiently.

During the simulation all states are recorded. Designed feedforward control is con-
structed from this natural motion.

The eigenfrequencies of the natural motion describe the vibrational motion of the vari-
ables q that ends at the equilibrium where all swings meet at the final time. Therefore
the conditions (25) are satisfied. On the other side in fact the determined eigenfrequen-
cies are rational numbers and therefore the natural numbers Ki at the final time T for
any set of eigenfrequencies fi exist. Finally the conditions (25) from the natural motion
are to be satisfied just approximately in order to move the mechanical system into such
vicinity of the upper equilibrium that the NQR control can stabilize the motion.

The excitation of the system at its eigenfrequencies enables to cause large motion of
the system based on resonance. Therefore the Fourier analysis of the natural motion
is applied in order to determine the eigenfrequencies of the nonlinear system under
consideration. The eigenfrequencies allows exciting the mechanism with less input energy
than other frequencies as the excitation by eigenfrequencies enables to accumulate the
energy in the system.
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The system is nonlinear and the determination of the eigenfrequencies is not easy.
Therefore the usage of natural motion is helpful.

5. SIMULATION OF DOUBLE INVERTED PENDULUM

On the Figure 2 it is the scheme of double inverted pendulum.

Fig. 2. Scheme of double inverted pendulum with coordinates,

parameters and torque.

It consists of two links and one actuator placed between the first link and the base
frame. Using Lagrange equations of the second type the dynamic equations of double
inverted pendulum (26) can be formulated according to the equations (13a) and (13b).

M =

[
I2 + m2l2

2

4 + m2l1l2 cos(ϕ2)
2 I1 + I2 + m2l1(l1 + l2cos(ϕ2)) + m1l1

2+m2l2
2

4

I2 + m2l2
2

4 I2 + m2l2
2

4 + m2l1l2cos(ϕ2)
2

]

F =

[
m2l1l2 sin(ϕ2)(

ϕ̇2
2
2 + ϕ̇1ϕ̇2)− g m2l2

2 cos(ϕ1 + ϕ2)− gl1(m1
2 + m2) cos(ϕ1)

−m2l1l2 sin(ϕ2)
ϕ̇2

1
2 − g m2l2

2 cos(ϕ1 + ϕ2)

]

M(ϕ2)
[

ϕ̈2

ϕ̈1

]
= F (ϕ1, ϕ̇1, ϕ2, ϕ̇2) + u(t)

[
1
0

]
. (26)

These equations are immediately in the form (13a) and (13b). Matrix M in (26) is
inertia matrix and vector F contains forces dependent on velocities and external forces
besides the control inputs. Actuator u is rotational element acting between the base
frame and the first link. It is chosen that ϕ1 corresponds to qz and ϕ2 to qm from
equation (2). The matrix Bm from (13a) equals one and Mzz from the equation (13b)
equals I2 + m2l2

2

4 + m2l1l2 cos(ϕ2)
2 , which must be nonzero and for chosen parameters it is.

The sequence of variables in the state vector is chosen to fit with the system of equations
(13a) and (13b).

Based on the physical intuition the ϕ1 is actuated and should be equal to qm. But
based on the system of equations (3) – (4) it is an arbitrary choice the splitting of q
into qm and qz upon the fulfillment that Bm is full rank and subsequently Mzz is full
rank. Based on the results of [8] it is suitable (powerful) to control the motion of the
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underactuated system by the control of the intuitively not actuated variable (here ϕ2)
as the motion of the system is more sensitive to its motion.

In our case ϕ1 was chosen as qz and ϕ2 as qm. The choice could be changed into ϕ1

as qm and ϕ2 as qz based on the first equation in (26).
For the simulation the following parameters are used: inertia of the first and second

link is 0,1 kg, their moments of inertia are 0,01 kg/m2 and length of each part is 1 m
with the center of gravity in the middle of each part.

Natural motion is illustrated in Figure 3. The natural motion is achieved by the
simulation of the equations of motion (26) with zero control and damping instead of it,
u(t) = −b · ϕ̇1 from the upper position to the lower position. The outer line represents
end point of the second link, inner dotted line is trajectory of the first link. It starts in
upper position with a little deflection in the first angle ϕ1 and zero velocities. It falls
down into the bottom stable position with quiescent motion. This behavior is caused
by damping force acting between the first link and the base frame, where the actuator
is later placed. The damping coefficient (b = 0.357Nms/rad) is received by optimization
with respect to the settling time. The behavior of whole states including accelerations
is recorded.

−2 −1.5 −1 −0.5 0 0.5 1 1.5
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

x [m]

y 
[m

]

 

 

end of the first link
end of the second link

Fig. 3. Motion of double pendulum from its upper position into the

bottom position with damping between the first link and the base

frame.

The behavior of double inverted pendulum was obtained and now it is used to de-
sign the control of the system. It is necessary to apply exact input-output feedback
linearization to use data from the natural motion of the pendulum. Second derivative of
coordinate ϕ2 is selected as a new control variable w (which corresponds to the equation
(14)). The remaining coordinate ϕ1 could be expressed directly from the equation (26)
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and the zero dynamics (see corresponding equation (18)) is the equation (27b).

ϕ̈2 = w (27a)

ϕ̈1 =
F2 −M22 · w

M21
(27b)

where

M =
[

M11 M12

M21 M22

]
F =

[
F1

F2

]
.

The singular positions corresponding with the Figure 1 are for the ϕ2 = ±π/2 and
other states zero. The system of equations (27a) – (27b) get the following form:

ϕ̈2 = w

ϕ̈1 = w
(28)

where both links are moving in the same manner, control can’t distinguish between
links and becomes singular. The equation (28) shows just the singular position of the
mechanism at some points and proofs the uncontrollability.

The expression for actuator u is according to (17) following:

u(t) =
M11F2 −M21F1 − det(M) · w

M21
. (29)

Data from the natural fall down motion are used now. First frequencies from the
first link angular acceleration create the basis for the new input variable for swing-up
motion (Figure 4).

Input variable w consists of active and invariant part (according to equation (19)). In
this case active part is zero, because variable ϕ2 has the same initial and final position.
Sinusoidal behavior of invariant part has frequencies from the first link movement, be-
cause w directly influences ϕ1 through zero dynamics in equation (27b). Amplitudes are
proportional to the difference in potential energy between initial and final mechanism
position, but their value is the result of optimization.

Ep = m1l1g + m2(2l1 + l2)g. (30)

All parameters and behavior of the control variable w are in the equation (31).

A =
[

m1·g·l1+m2·g·(2l1+l2)
2

m1·g·l1+m2·g·(2l1+l2)
4

]
Φ =

[
−π

2
π
2

]
f =

[
0, 38147 0, 85831

]
ϕ̈2 = w

wA = 0

wI =
2∑

i=1

Ai · sin(2π · fi · t + Φi)

w = wA + wI . (31)
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Fig. 4. Accelerations (left) and its Fourier transformations.

Frequencies for the first link angular acceleration are: 0.38147,

0.85831, 1.5736, 2.861, 4.0054 and 5.1498Hz and frequencies for the

second link angular acceleration: 0.76294 (= 2× 0.38147), 1.5259,

2.9087, 4.1008 and 5.1498Hz.

Because the control near the upper position is switched to the NQR, the condition (25)
is fulfilled only approximately, but it holds T = 4

f1
= 9

f2
= 10.48575 s, K1 = 4, K2 = 9.

It is interesting that the frequencies determined from the natural motion (see Figure 4)
satisfies the artificial invariant condition (25). The usage of these frequencies is probably
efficient because they are the eigenfrequencies and the system is sensitive to the input
on these frequencies.

Simulated swing-up motion guided by relative angular acceleration ϕ̈2 = w between
the first and the second link described in the equation (31) reaches the unstable equilib-
rium position (see Figure 5) and it is necessary to switch to another stabilizing controller
nearby the upper unstable position.

The control algorithm NQR controls the system from the position in the surrounding
of the upper unstable position to this unstable equilibrium. But the region of attractivity
of this control is also limited. It could be found that for the system under consideration
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Fig. 5. Swing-up motion controlled by angular acceleration; left

mechanism end points in the working plane, right input angular

acceleration behavior.

the controllability matrix in NQR algorithm is independent on relative angular velocity
of the second link but it is dependent on the angular position of the both links and quite
strictly on the angular velocity of the first link. The controller NQR calculates every
time step the input torque u at the first link. Therefore the input variable u is plotted in
the same figure based on the angular acceleration (29) and based on the NQR algorithm
in the vicinity of the unstable equilibrium.
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Fig. 6. Final swing up motion for double pendulum; left motion in

the plane, right input torque acting on the first link.

The control algorithm NQR starts at time 4.72 s. There is visible big step in the
input torque when changing between the control strategies on the Figure 6, left. For
the illustration you can see on the Figure 7 behavior of ϕ1 and ϕ2 coordinates and their
velocities.
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Fig. 7. Upwards movement of double inverted pendulum, angular

positions and velocities.

6. SIMULATION OF INVERTED PENDULUM

The same approach has been applied to the inverted pendulum on the cart, see the
Figure 8.

Fig. 8. Inverted pendulum with coordinates, parameters and acting

force.

This mechanism consist of the cart moving horizontally, the link rotationally con-
nected with the cart and there is a force acting on the cart. The following dynamic
equations are obtained using Lagrange equations of the second type.

M =
[

m1 + m2 −m2l2 sin(ϕ2)
−m2l2 sin(ϕ2) I2 + m2l2

2

]
F =

[
m2l2 cos(ϕ2)ϕ̇2

2

−gm2l2 cos(ϕ2)

]
M(ϕ2)

[
ẍ1

ϕ̈2

]
= F (x1, ϕ2, ẋ1, ϕ̇2) + u(t)

[
1
0

]
. (32)

These equations (32) are also immediately in the form (13a) and (13b). Matrix M in
(32) is inertia matrix and vector F contains forces dependent on velocities and external
forces besides the control inputs. The coordinate ϕ2 corresponds to qz and x1 to qm
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from the equation (2). The matrix Bm from the equation (13a) equals one and Mzz

from the equation (13b) equals I2 + m2l2
2, which is nonzero. Actuator u is transversal

force element acting on the cart.

Simulation parameters are: the weights are 0.1 kg and 0.1 kg for the cart and pendu-
lum respectively, the moment of inertia of the pendulum is 0.01 kg/m2 and the pendu-
lums’ length is 1 m.

Natural motion of the pendulum with the cart is on the Figure 9. The natural mo-
tion is achieved by the simulation of the equations of motion (32) with zero control and
damping instead of it, u(t) = −b · ẋ1 from the upper position to the lower position. It
starts with pendulum slightly deflected from the upper position with zero velocities and
falls down due to the gravity to the bottom equilibrium position. Damping force takes
effect on the cart as horizontal force and the damping coefficient (b = 0.79147 Ns/m) is
received by optimization with respect to the settling time. All states including acceler-
ations are recorded.
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Fig. 9. Motion of inverted pendulum with damping between cart and

base frame. Outer line represents movement of the ending point of the

link.

From the behavior of the pendulum on the cart it is designed the control of the
system. Exact input-output linearization is applied and as a new control variable is
selected ẍ1, because the inertia matrix M from the equation (11) is not suitable for
using the ϕ̈2 as a control variable – for the ϕ2 equals zero or straight angle, in the zero
dynamics according to the equation (18) is division by zero. In this particular case it is
possible to use directly actuator u as a new input. The ϕ̈2 is derived from the equation
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(32) and represents zero dynamics (see equation (18)).

ẍ1 = w (33a)

ϕ̈2 =
F2 −M21 · w

M22
(33b)

where

M =
[

M11 M12

M21 M22

]
F =

[
F1

F2

]
.

The singular positions corresponding with the Figure 1 are for the ϕ2 = [0, π] and
other states zero. The system of equations (33a) – (33b) get the following form:

ẍ1 = w

ϕ̈2 =
F2

M22

(34)

where control variable can’t influence the link and control becomes singular. The singular
position of the mechanism at some points is shown in the equation (34) and proofs the
uncontrollability.

The expression for actuator u is according to (17) following:

u(t) =
M12F2 −M22F1 + det(M) · w

M22
(35)

The behavior of new control variable ẍ1 is based on the angular acceleration of the
pendulum, because ẍ1 directly influences ϕ̈2 through the zero dynamics (equation (33b)).
The control variable has two parts (according to equation (19)), zero active part and
invariant part with sinusoidal shape having the frequencies taken from the angular ac-
celeration of the pendulum during the natural motion. From the frequency content of
the angular acceleration are taken first two frequencies (Figure 10).

Amplitudes are proportional to the potential energy needed to move the link from
the lower position into the upper stable position, the value used for control is the result
of optimization.

Ep = 2l2 · g ·m2. (36)

All parameters and overall equation for the control variable w are in (37).
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Fig. 10. Accelerations (left) and its Fourier transformations.

Frequencies for the cart acceleration are: 0.47684, 1.3351, 2.1458,

2.9564 and 3.767 Hz and frequencies for the link angular acceleration:

0.47684, 1.3351, 2.1935, 3.0041 and 3.7193 Hz.

A =
[

6 · 2l2 · g ·m2 3 · 2l2 · g ·m2

]
Φ =

[
−π

2
π
2

]
f =

[
0, 47684 1, 3351

]
ẍ1 = w

wA = 0

wI =
2∑

i=1

Ai · sin(2π · fi · t + Φi)

w = wA + wI (37)

The condition (25) is fulfilled only approximately because the control near the upper
position is switched to NQR, but it holds T = 5

f1
= 14

f2
= 10.48575 s, K1 = 5, K2 = 14.
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The motion of mechanism which is controlled by new input variable w is on the
Figure 11. The mechanism is passing by the desired position (see Figure 11 left) and for
the stabilization around the upper equilibrium it is necessary to use the local stabilization
control. This motion is driven by sinusoidal force unlike damping force acting during
fall down motion on the Figure 9, so these (fall down and upwards) are two different
motions, therefore trajectories in Figure 9 and Figure 11 are different.
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Fig. 11. Swing-up motion controlled by cart acceleration; left

mechanism and right input cart acceleration behavior.

Stabilization of the system around the equilibrium is achieved by the NQR controller.
When the pendulum reaches the point, where it is controllable by NQR, it is switched
on and it leads the mechanism to the equilibrium. The control algorithm NQR starts
at 1.98 s. The entire trajectory of the end point of the pendulum and cart is on the
Figure 12 left, with starting and final position marked. On the Figure 12 right is the
behavior of the input force acting on the cart. There is one big peak in the force when
changing from the feedforward control to the NQR feedback control.

The pendulum and cart movements are displayed on Figure 13.

7. CONCLUSIONS

This paper has presented a new control of underactuated mechanical systems using
inspiration from natural motion of these mechanisms. This control method uses the
exact input-output feedback linearization. It demonstrates the method for finding the
trajectory going through singular positions. It is based on the falling trajectory (natural
motion) and on the trajectory constructed using the eigenfrequencies of this motion.
The method is applied to the double inverted pendulum and to the pendulum on the
cart (cart-pole system). For the feedforward control strategy the first two frequencies
are used taken from the natural motion. The calculated amplitudes correspond to the
energy needed for the system to change its potential energy in the field of gravity.
Another new fact is that the zero dynamics included in the underactuated mechanisms
could be controlled by frequencies added to the signal of the control variable.
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Fig. 12. Final swing up motion of the cart with pendulum.
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Fig. 13. Position and speed of cart and angular position and speed

of pendulum behavior during the swing-up motion.

There is a large potential to extend this approach into the field of underactuated
systems for feedforward control passing singular positions and to stabilize the unwanted
movements of the flexible structures. Next goal is to develop control theory for mecha-
nisms without any potential field.
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[5] J. Rub́ı, Á. Rubio, and A. Avello: Swing-up control problem for a self-erecting double
inverted pendulum. IEE Proc. – Control Theory App. 149 (2002), 2, 169–175.

[6] P. Steinbauer: Nonlinear Control of the Nonlinear Mechanical Systems. Ph.D. Thesis.
Czech Technical University in Prague, Prague 2002. (in Czech)

[7] L. Udawatta, K. Watanabe, K. Izumi, and K. Kuguchi: Control of underactuated robot
manipulators using switching computed torque method: GA based approach. Soft Com-
puting 8 (2003), 51–60.
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