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Local Return Rates in Sturmian Subshifts 

MICHAL KUPSA 

Praha 

Received 6. March 2003 

The local return rates have been introduced by Hirata, Saussol and Vaienti [7] as a tool 
for the study of the asymptotic distribution of the return times to cylinders. We give 
formulas for these rates in Sturmian subshifts. 

1. Introduction 

The lower and upper local return rates have been introduced by Hirata, Saussol 
and Vaienti in [7] as a tool for the study of the asympotic distribution of the return 
times to cylinders in a class of non-uniformly hyperbolic dynamical systems. They 
are functions R^ R%: X -> [0, oo] defined for an arbitrary topological dynamical 
system (X, F) and a finite partition £ of X. For a subshift X _l AN and the 
canonical partition {[a] | a e A) we can reformulate the definition as 

R(x) = lim inf VL v )V 

n—•oo Yl 

-FT/ \ ,. T(rx(rc)i) 
R(x) = lim sup VL v n). 

n->oo Yl 

Here x(n) = x0Xi... xn_x is a prefix of x e Z of length n, [x(n)] is its cylinder and 
r([x(n)]) is the Poincare return time of [x(ft)]. 

For an arbitrary dynamical system (X, F) the functions R%, R% are subinvariant, 
i.e., RfiO F < R{ and R% O F < R^. Moreover, if \x is an F-invariant Borel 
probability measure and ^ is a measurable partition of X, then R and R are 
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invariant allmost everywhere. In particular, if (X, F, fi) is ergodic, then by the 
Birkhoff ergodic theorem there exist constants r0, r t e [0, oo] such that for almost 
all x e X, R^(x) = r0 and R^(x) = r^ 

The ergodic case has been treated in several more papers. Saussol et al [9] (see 
also [1]) show that if the entropy of JJL is positive, then r0 > 1. Cassaigne et al [2] 
show that this inequality is not satisfied for systems with zero entropy. In particular 
for the Fibonacci shift obtaind from the golden angle rotation, the lower local rate 
assumes the value r0 = ^ - - < 1. Afraimovich et al [1] show that r0 = 0 for some 
rotations of the circle whose parameter has unbounded continued fraction expan­
sion. It follows that the same result holds for the corresponding Sturmian subshift. 
Kurka [8] treats the case of substitutive subshifts and obtains a formula for r0 and 
r^ In this case both r0 and rx are positive and finite. 

In this paper we will discuss completely the situation in the Sturmian shifts. One 
can easy check that the result of Afraimovich et al considered for corresponding 
Sturmian shifts and the result of Cassaigne et al for Fibonacci shift follows 
immediately. We give formulas for r0 and î  in terms of the convergents qk 

obtained from the continued fraction expansion of the parameter a = [0, au a2,...]. 
If ak are bounded, then r0 and rj are positive and finite. If ak are unbounded, then 
r0 = 0 and r2 = oo. This result, that r0 = 0 iff fY = oo iff the continued fraction 
expansion is unbounded, has been obtained by a different technique by Chazottes 
and Durand in [3]. 

2. Sturmian shifts 

A dynamical system is a pair (X, F), where X is a compact metric space and F is 
a continuous function from X to X. The Poincare return time of a subset M _l X is 

T(M) = min{k > 0|F*(M) nM 4= 0}. 

Let A be a finite alphabet, and AN the space of all infinite sequences of letters from 
A with the product topology. The set A* consists of all words (finite sequences) over 
A. For a word u = UQU2... un_x e A*, denote by \u\ = n its length. The set An consists 
of all words of length n. The shift map o : AN -> AN is defined by Gt(x) = xi+1. 

A subshift is any subsystem (E, o) of (AN, o), where E _l AN is nonempty, closed 
and cr-invariant. For a subshift E and for a word u = w0w1... un_x e A* we denote 
by [u] = {x e S | Vi < n : x, = u,} the cylinder of u. The language of a subshift is 
the set of words which have nonempty cylinders, i.e., J£?(E) = {u e A* | [u] =f= 0}. 
The set ^"(E) consists of all words of the language of length n. If we denote by 
x(n) = x0x1... xn_i the prefix of x e S of length n, then J§?"(Z) = {x(n) \ x e Z}. 

A Sturmian shift is a coding of an irrational rotation of the unit circle (Hedlund 
and Morse [6]). This is a dynamical system (T, Fa), where T = [0, 1[ is the circle 
with the metric d(x, y) = min{|x — y\, 1 — |x — y\) and Fa(x) = x + a mod 1, 
where a e U. We consider only irrational angles from the open interval ]0, 1[. 
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There is the canonical partition J = {/0, Ii} of T, where I0 = [0, 1 — a[ and 
I! = [1 — a, 1[. For u e 2*, set 

\u\-\ 

h= f lMU 
fc = 0 

Any 7M is either a semiopen interval or the empty set. The associated Sturmian 
subshift (Sa, o) is defined by its language J.?(Ea) = {u e 2* | Iu 4- 0}. In other words, 

S a = { f e 2 N | V n 6 N , / 3 c ( l l ) = N 0 } . 

If a e ]0,1[ is irrational, both the rotation (T, Fa) and the Sturmian subshift (Sa, o), 
are minimal and uniquely ergodic. Moreover, if u e JSf(Za), then 

MM) = W> *(M) = *W> 
where \IU\ is the length of the interval Iu. It follows that the local return rates can 
be computed from the return times of intervals. 

R(x) = lim inf 
л-юo 

R(x) = lim sup 

л-юo П 

T ( J *(*)) 
W-ЮO n 

The description of the intervals Iu is obtained from the continued fraction ex­
pansion of a. There exists the unique sequence \ak}k_x of positive integers such that 

a = [0, au a2,...] = 0 H 
i 

öi + a2 + ... 

The convergents of a are the sequences {&}.?=-i> {&}?=-I defined by p_x = 1, 
«-i = 0, p0 = 0, q0 = 1 and 

<Zfc+i = ak+\qk + 4/c-i? Pfc+i = ak+\Pk + Pfc-i-

By the Klein theorem (see Hardy and Wright [5]), the closest returns of the iterates 
Fa

n(0) to zero happen at times qk. We have d(0, F^(0)) = r\k = ( - If (qka - pk) and 
for qk < n < qk+l, d(0, Fn(0)) > rjk. In particular r\_x = 1, rj0 = a and 

rJk + \ = ak+\r\k ~~ 'lfc-l-

The sequence {^}r=-i is positive, decreasing and converges to zero. It follows that 
if I = [a, b[ is a semiopen interval, then 

rjk+\ < \I\ < r\k => T( / ) = qk+l. 

The return times of intervals from Jn are therefore convergents qk. We determine 
times when return times jump from some qk to a higher qk+l (or qk+2) and obtain 
a formula for the local return rates. 
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3. Jumps of the return time 

Proposition 1. For x e Ea, k > — 1, define the k-th jump of the return time as 
rk(x) = min {ne N \r(lx{n)) > qk+1}. 

Then r_{(x) = 0 and the following equalities hold for x e _.a. 

R(x) = lim inf —p- = 1/lim sup -------
k-Kx> rkix) k-Kx> qk 

R(x) = lim sup %t» _ i/iim i n f _ _ ! 
fc-oo r^Xj fc-oo qfc+1 

Proof. For x e 2a, denote S = {fee N | rk_i(x) < r^x)}. The set is infinite and 
we can order it into increasing sequence {/q}£L0- If

 rkl*) < n < rk.+l(x), then 

x(L(n)) = qkl+i and if *, < fc < ki+1, then - ^ > ^ , - - * _ < ^ . 

K(x) = lim inf - - - = lim inf f min - - -
n->co ft i-oo \rki{x)<n<rk.+ l(x) n / 

Thus 

= lim inf ^гт^—г = Hm inf —гЧ = lim inf; 
1kí+ì 

""»" rki+í(x) - 1 "i"«" r*.(x) "*"«" r*(*) 

Ďt ^ r Z 7 T(7*wA r Qk+Í 

Rlx) = hm sup max v' = lim sup / \ • 
í-°o \rki(x)<n<rki (x) n / fc-oo rk[X) 

D 

a2 «3 

Figure 1. The symbolic space Xa 

To compute the jumps of the return time, we construct another symbolic 
description of Sturmian subshifts. The partition Jn = {lu \ u e <_?"(.Ea)} consists of 
semiopen intervals on the unit circle divided by cut points 

Cut(n) = {<i>|i = 0,l,...,n}, 
where <f> = Fa

_I(0) = (ioc) mod 1. The structure of J>n is described by the Three 
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length theorem (Sos [10]) which says that Jn contains intervals of at most three 
lengths. For some n, however J>n contains only intervals of two lengths. This 
happens in particular at times n = qk—\, when the intervals of •/" have 
lengths r\k_x and r\k_x + r\k. To describe the partitions Jqk~l we consider a new 
symbolic space Xa which consists of paths in the infinite graph in Figure 1. It looks 
like Bratelli diagram ([4]), but the dynamics on Xa is far more complicated. The 
main reason for introducing the space Xa is to obtain a simple formula for rk(x) in 
Proposition 3. 

Definition 1. For an irrational a = [0, ah a2,...] set 

Xa = \xe fl{0,l,..., ak}\xl 4= 0, (xfc+1 = 0 => xk = ak)\ 

&n(X^ = \ue fl{0,l,..., ak}\ ui 4= 0, (uk+l = 0 => uk = ak)> 

if(xa)= U^W-
« > i 

We construct a system of intervals {Ju\ue J_?(Xa)}. If 1 < ux < ax set 

JU1 = 
<ц>, <ą - 1>[ if щ < ax 

<0>,<ą - 1>[ if щ = ai 

IfueSЄ\X^,k > 1, Ju{k_l} = (-lf~2 [(a),(b)[, and if щ^^ < ak_^ set 

т = Я - l ) * - 1 [<Чt9fc-i + a>> <K - l}«fc-i + a)[ if 1 < щ < ak - 1 
ü - l ) * " 1 [<*>>, <(<* - l)<ћ-i + a>[ if Щ = Щ 

IfЩ-\ = ak_i set 

j = í ( - l ) ' ' " 1 [<(«* + 1> Чk-i + a), <(адfc_i + a>[ if 1 < щ < ak - 1 
U-i)*"1 [<ь>,<(ц.„-i + ->[ if щ = щ 

J2 Ą 

<o> Io <1> J! 
1-

«^20 
Ч h 

Л i J22 
Ч h-

J23 Ju 
1 h 

«I12 
1— 

•Лз 
V 

/r\\^001010 /^v^oiooio /.v-VoroO/^v -Voioi / 1 X ^100101 /-j\A01001 /Z\ Aoioio <0> <2> <4> <6> <1> <3> <5> 

Figure 2. Partitions of the circle 

Here (— 1) [b, a[ = [a, fe[, where 0 < a < b < 1, is a semiopen interval of the 
circle. We identify also [a, 0[ = [a, 1[ = (— 1) [0, a\_. If x e Xa, we denote by 
x(n) = Xi... xn the prefix of x of length n. Figure 2 we can see the partitions of 
the circle for a = [0, 2, 3,...]. 
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Proposition 2. Ifu e £Ck(Xx), k > 1, then 

\r\k-\ if "it < ak \Ju\ = . ., 
l»7fc—i + r\k if «k = a* 

and 
J ^ = {ju\ue<?k(Xa)} 

= {(-If-1 [<i+ ft_i>, <i>[| i = 0,1, . . . , gfc - g,_i - l } u 

{(-If-1 [<i>,<* + qk - ft_i>[ | i = 0,1,..., qk_, - 1}. 

Moreover, Su = {Jv \ v e JS?*-1"1^) \ v(k) = u} is a partition of Ju and 

ussek(xa) 

Proof. If u e <~?k(Xa), k > 1, uk < ah then JM is an image of ( — l)k _ 1 [<(jfc_i>, 0[ 
in a rotation. By the Klein theorem, |/tt| = t]k_x. 

We have 1 > <1> > <2> > ... <ai - 1> > 0, so {JM1 \\ < ux < a,} = J^1"1 

and |Jai| = 1 — (a{ — 1) rj0 = rj0 + r\x. Assume that the first part of the proposition 
holds for k > 1. Let u e ££k(Xa). Intervals from M = {Juj j < ak+l} coincide and 
we have proved that its length is rjk. Denote J = (jM. If uk < ak then 
\J\ = (ak+i ~ 1) *lk -n- -f uk = ak then |J| = ak+lrjk. In both cases, |J| < |JM|, 
Juak+l = Ju- J and \Juak+l\ = Vk-i - (ak+i - 1 ) ^ = rjk + r\k+l. Thus /M is 
a partition of JM. Because {Ju \ u e J?k(Xa)} is a partition of T, then also 

/ = {Jv\ve^\Xa)}= U Su 
ue&k(Xa) 

is. It is not difficult to prove that the endpoints of intervals from / belong to 
{</>| 0 < i < qk+l — 1}. The partitions / and t/«

fc+1_1 contain intervals of two 
lengths r\k and r\k + r\k+l, hence / = jf^+i-1. For the partition 

/ ' = ( ( - lf [<*' + -*>> <*>[| i = 0, 1,..., qk+l - qk - 1} u 

{(-lf[Q>,<i + qk+i - &>[| i = 0, 1,..., ak - 1} 

we prove the equality ^ + 1 - 1 = , / ' similarly. • 

For each k > 1 we have thus an one-to-one map yk: J_^fc-1(_.j -• J£?fc(Xa) given 
by Jyk(M) = Iu. For the corresponding symbolic spaces we get a homeomorphism 
y : Za -> Xa given by y(x) (k) = yk(x(qk — 1)). The local return rates, as well as the 
functions of the return jumps are carried over to the space Xa. By the abuse of 
notation we keep for them the same symbols R, R : Xa -• [0, oo], rk: Xa -• N. 
We now obtain a recursive formula for rk. 

Proposition 3. For x e Xa we have r_x(x) = 0 and 
k 

rk(x) = xk+1qk + rk_i(x) = X>;+i<11-
; = 0 
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Proof. Assume y e _.a, x = y(y) e Xa and k > 0. We show first that if Jx(fc) = 
(" 1 ) f c" 1 [<<*>><£>[> t h e n rk-i(x) = b + qk_x. If xk < ak, then Jx{k) = 1^. Since 
Iy(a-i) + Iy(a), \Iy(a-i)\ > Vk-i and rfc_i(x) = a = b + qk_x. Let xfc = afc. Since the 
form of partition {JM | u e _Sf fc+1(Xa), u(k) = x(k)} of Jx(fc) we get Jx(fc) = I{ u I2 where 

h = (-1)""1 [<a>,<a + _*>[, /2 = (-If-' [<a + _„>, <A + _* " _*-!>[, 

/_, 72 e ./fl+*fc, |Ii| = rjh \I2\ = i/fc__ and /><_,+.̂ -l) = 4c(*) and either Iy{a+qk) = Ix or 
7><a + ̂ ) = [2' H e n e e |Jj<a+_fc)l -̂  1k-l, l*y(«+_fc-l)l > 1k-l and rfc_i(x) = a + qfc = 
b + qk-i-

Assume now that Jx(fc+_) = (— if [<c>, <d>[, so rfc(x) = d + qk. Put j = 1 if 
** = ah j' = 0 otherwise. It follows d = a + (xk+1 — 1) qk + jqk and a = 
6 + qfe-i - j q > Thus 

rfc(x) - rfc_i(x) = (d + qk) - (b + qk_{) = (a + xj+1qk +jqk) - a + jqk) = xk+1qk. 

• 
Proposition 4. For every xe Xawe have qk < rk(x) < qk+1 + qk — 1. 

Proof. Clearly q_x = 0 = r_i(x) = 0 = q0 + q_x — 1, qi = 1 < ri(x) < ai = 
qi + qo — -• Assume that the statement holds for all integers less that k. Then 

rk(x) = xk+1qk + rfc_i(x) < afc+iqfc + qk+1 - \ = qk + qk+1 - 1 

If xfc+i > 1, then rfc(x) = xk+1qk + rfc_i(x) > qk. If xfc+i = 0, then xfc = ak and 

rk(x) = r,t-i(x) = dkqk-i + rk_2(x) > akqk_x + qk_2 = qk. • 

Proposition 5. Define the points b,c9de Xa by 

b = (al9 a2, a3,...), c = (1, a2, 0, a4, 0, a6,...), d = (au 0, a3, 0, a5,...) 

Then 
min R = R(b) = lim inf = r0 

„->» <_fc+i + qk - 1 

min i? = R(b) = lim sup — 
*->«> <_fc+l + <_*fc ~ 1 

max i? = max (R(c), R(d)) = lim sup ----- = r_. 
fc-00 qfc 

Proof. It is easy to see that for k e N, 

k 

rk(b) = __a
j+iqj = qk+i + _* - 1 

j=o 

r2fc-l(c) = r2k(c) = 1 + Yaa2ft2j-1 = qik 
1=1 

M r f ) = V2k+l(d) = }_a2j+l<l2j = «2*+l-
1 = 0 
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By Proposition 4 we obtain the bounds for the limits in the right hand sides. The 
following formulas complete the proof. 

R(b) = lim inf —£- = r0 
/c-oo rk(b) 

R(b) = lim sup -^\ = lim sup — -
k-oo rk(b) /c-oo qk+i + qk — 1 

max (R(c), R(d)) > max (lim sup ^ ± 1 , lim sup ^-f* 
\ fc-oo r2/c(c) fc-oo r2fc-l(«) 

^ / , . fe+i -. #2fc 

> max I lim sup , lim sup 
\ fc-oo r2k /c-oo r2fc-l, 

> lim sup = r0. n 
fc—OO qfc 

We have not been able to obtain a formula for min R. Our results, however are 
sufficient to get formulas for r0 and r-. Now, put some bounds for the values r0 

and r-. 

Proposition 6. Let cc = [0, au a2,...] be irrational, M = lim sup ak, y = 2^. 
If the continued fraction expansion of a is unbounded, then r0 = 0 and rx = 00. 
Otherwise, rl = — — 1 and 

ro 

1 
< r0 < y~2 < y < Г! < M + 1 

M + 2 

Moreover, rx = y (resp. r0 = y~2) if and only if M = 1. 

Proof. Let a = [0, ai9 al9...] be irrational, M = lim sup ah y = :

2~. Denote 
Bk = ^--. Then ak < Bk < ak+l + 1 and r! = lim sup Bk. 

r o „ l i m i n f ! _ ^ , l i m l n t » 

* + i-i 

If the continued fraction expansion of a is unbounded, then also {5k}^=0 is. 
Hence r0 = 0 and r! = 00. 

Let M G N. Then M < r0 < M + 1. If M > 2, then y < M < r0. If M = 1, 
then there exists n0 e N, such that for every n > n0, an = 1. Hence 

lim sup £k = 1 + -—. , lim inf Bk = 1 + — 
lim inf Bk' lim sup Bk 

It implies that r0 = 1 + T+J~~7y This equality have just one positive solution 
r0 = y. All properties of rj is given by the equality r0 = ---j. D 
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4. The measure 

We are going to show that the constants r0 and rY are assumed by R and R 
almost everywhere. The unique invariant measure \i on Za is carried over to the 
space Xa using the length of associated intervals. If u e 5£k{Xa), then the measure 
of the cylinder of u is fi{x e Xa | x(k) = u) = |JJ. Define the projections Wk: Xa -> 
{0,1,..., ak] by Wk(x) = xk. Then Wk are random variables and (Wj^i is a non-
stationary Markov chain. Using Proposition 2 we get the transition probabilities. 

n[Wi =j~\ = rj0 = a for 1 < ; < ax 

v\Wi = j] = ô + /̂i for ; = ax 

n[Wk+l =j\Wk< ak] = -jL- for 1 < j = ak+l 
Vk-i 

fi[Wk+l = j | Wk < ak~\ = — for j = ak+1 

Vk-i 

li[Wk+l = j | Wk = ak] = for 0 < ; < ak+l 
*lk-l -r *\k 

»[Wk+1=j\Wk = ak-] = ' ± ± ^ for j = ak+1 

*1k-i H" *\k 
Theorem 7. If the continued fraction expansion is unbounded, then R(x) = 0, 

R(x) = oo almost everywhere. 

Proof. For every x e Xa we have 

. Xfc+igfc + rk-i{x) _ rk{x) 
xk + l -^ — 

Qk Qk 

Given m > 1 then Cm = {k> 11 ak > m} is an infinite set. Assume that k + 1 e C2w+i. 
We have 

r i -. mnk mrjk m 1 
li[Wk+l < m \Wk < ak] = —± = £ < < -

rik-i Vk+tfk + ifc+i ak+l 2 
r i -> (tn + 1) nk m + 1 1 

It follows that /i[Wfc+i < m\ Wj = i] < 2 for any j < k and any i e {0,1,..., a,}. 
Given k0 > 0 let k0 < ki < ... fc„ be a sequence of integers from C2m+i- Then 

li[Wkl < m,..., W^ < m] = 
/ / [ V V ^ m ] - / ^ ^ 

It follows 

/x<xGKa - ^ < m, 1 < i < n> < /i{xeX a |xk . < m, 1 < i < n) < 2"n + 1 

I I #*, J 
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so fi(x e Xa | R(x) > £} = 0 and R(x) = 0 almost everywhere. We prove now the 
statement for R. Given £ e ]0 ,1[ , let m be an integer with 1— e + - = S < I. 
Assume that k + 1 e Cm and let x e Xa be such that rk(x)/qk+i > e. Then 

. *k+i + rk_i(x) xk+lqk + qk + qk-i xk+l + 2 
£ < < < 

Qk+iqk + qk-i ak+iqk
 ak+i 

xk+i > eak+i — 2 = ek 

The probability of this event is bounded away from one. For any j < ak we have 

((1 - £) ak+1 + 3)rjk + rjk+l џ[Wk+1 _ek+1\Wk=j] < 
Цk-i 

((1 - є)ak+1 + 4)ift ^ 

ak+1rik ~ 

fi<xeXa 

It follows that ^[Wfc+1 > £fc+11 Wj = i] > 5 whenever j < k and i e {0,..., a,}. 
Given k0 > 0, let k0 < kx < k2 < ... < kn be an incresing sequence of indices 
from Cw. Then fi[Wkl > ekl,..., Wkn > ekn] < 5n. It follows 

fi\xeXa ----- > £, 1 < i < n\ < ft[x e Xa \ xk. > ek., 1 < i < n\ < Sn 

I <lki+l J 

so fi{xe Xa: R(x) < 7} = 0 and R(x) = 00 almost everywhere. • 

Proposition 8. If a have bounded coeficients in its continued fraction, then 
R(x) = r0, R(x) = r t almost everywhere. 

Proof. Proposition 5 says that min R = R(b), where b = (au a2, a3,...). We are 
going to prove that 

lim sup -"-^ < lim sup -~-^-\ = 1. 
Jc-00 qk k-+oo qk J 

Fix m > 1. There exists an integer sequence {nfc}?Lo such that n0<m,nk — nk_x> m, 
for k > 1 and 

lim sup rM- lim -M. 
w-00 qn fe-»oo qnk 

For keN, set 

Dk = [xe Xa I xn/c = bnic, xn/c_1 = bn/c_v ..., xn/c_w+1 = DM / C_W + 1) . 

and D = f]]ll \Jk_jDk. We show fi(D) = 1. Let M be a bound for the continued 
fraction expansion, so ak < M for every k. Then for any i < ak,j < ak+1 we have 

1- . -1 r\k 1 1 

li\Wk+l =j\Wk = i] > > > — 
ML + J ' J rjk + rjk+i ak+l + 2 M + 2 
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If follows fi(Xa\Dk) < 1 — (M\2)
n a nd 

( 00 00 \ 

(J ()(Xa\Dk) = 1 - 0 = 1 . 
7 = 1 k = i / Given x e D , there exists an increasing integer sequence {̂ }j=i such that x e Dnk. 

For each j , we have 

rnkj{b) - rn,.(x) = £^+1(2;- Xx I + 1^ = £ 6i+ifc- Z ^ + i * 
i = 0 i = 0 i = 0 i = 0 

= rnkj-m\P) ~ rnkj-m{X) ^ Qnkj-m+l + <lnkj-m ~ 1 ~ Qnkj-m ^ (Zn̂ — m+1 « 

Since 4„+2 = a„+2<?n+i + <?* > 2<?„, we get 

y b ) _ y x ) ̂  ^_w+1 ^ 2-^-D/%fe/ = 2_L(m_1)/2Ĵ  
*?"*, ^«fc, ^n^- ^"fc, 

and 

lim sup ^ > lim sup ^ - 2"U—^J = lim sup ^ - 2-«-1V2J. 

It follows 

^ X E X a lim s u p
 rM > i im sup ^ - 2"L(—^j) = 1 

fc-oo qk fc-oo ^ J 

so .R(x) = r0 almost everywhere. The proof for R is similar using the points c or 
d instead of b. • 

Corrolary 9. Given an irrational a = [0, ah a2,... ] w/fA convergents qh y = ^y1^, 

r0 = lim inf - , rx = lim sup 
fc-^oo qk+i + qk — \ fc-oo ^ 

77ien r0 < R(x) < R(x) < Fj for every x e Sa and .R(x) = r0, R(x) = F! almost 
everywhere, 

Tjf {flk}*°=o w unbounded, then r0 = 0 and rx = oo. In the case of bounded {ofc}£°=o> 

< r0 < y~2 < y < rx < M + 1 
M + 2 

w/*ere M = lim sup ak. Moreover, rx = y (resp. r0 = y~2) if and only if M = 1. 
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