Acta Universitatis Carolinae. Mathematica et Physica

Tomas Kepka; Milan Trch
Groupoids and the associative law III. (Szasz-Hajek groupoids)

Acta Universitatis Carolinae. Mathematica et Physica, Vol. 36 (1995), No. 1, 17--30

Persistent URL: http://dml.cz/dmlcz/142668

Terms of use:

© Univerzita Karlova v Praze, 1995

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to
digitized documents strictly for personal use. Each copy of any part of this document must
contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped
O with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://project.dml.cz


http://dml.cz/dmlcz/142668
http://project.dml.cz

1995 ACTA UNIVERSITATIS CAROLINAE —MATHEMATICA ET PHYSICA VOL.36, NO. |

Groupoids and the Associative Law III. (Szasz—Hajek Groupoids)

TOMAS KEPKA AND MILAN TRCH

Praha*)

Received 10. October 1994

This paper deals with groupoids possessing just one non-associative triple of elements. The triple is
of the form (a, a, a).

Clinek se zabyvd grupoidy. které maji pravé jednu neasociativni trojici prvki. Tato trojice je
tvaru (a. a, a).

In this paper (which is a free continuation of [3] and [4]), Szasz-H4jek
groupoids (i.e., groupoids with just one non-associative triple) are studied in more
detail.

ITI.1 Introduction

1.1 A groupoid G will be called an SH-groupoid (Szasz—Haéjek groupoid) if
ns(G) = 1, i.e., if G possesses just one non-associative triple (see I.1.1). If this is
so and if (a, b, ¢) is that triple, then exactly one of the following five cases takes
place:

a = b = ¢ (and then we shall say that G is an SH-groupoid of type (a, a, a));

a = b * c (type (a, a, b));

a + b = ¢ (type (a, b, b) — this type is dual to (a, a, b));

a = c¢ #* b (type (a, b, a));

a + b *+ ¢ * a(type (a, b, ¢)).

1.2 Proposition. Letr G be an SH-groupoid and let a,b,ce G be such that
a.bc # ab.c. Then:
(i) Ifx,y€ G are such that xy = a (xy = b, xy = c), then either x = a (x = b,
x=clory=a(y=by=c
(ii) If A is a non-empty generator. set of G, then {a, b, c} c A
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(iii) If H is a subgroupoid of G, then either {a,b,c} < H and H is an
SH-groupoid of the same type as G or {a,b, c} & H and H is a semigroup.

(iv) If r is a congruence of G, then either (a.bc, ab.c)¢r and G/r is an
SH-groupoid of the same type as G or (a . b, ab . ¢) € r and G/r is a semigroup.

Proof. (i) If x + a + y, then a.bc = xy.bc = x(y.bc) = x(yb.c) = (x.yb) c =
= (xy. b) ¢ = ab . c, a contradiction. The other cases are similar.
(i1) Let W be an absolutely free groupoid with a free basis X such that there exists
a bijection f:X — A. This bijection can be uniquely extended to a projective
homomorphism g: W — G. Now, suppose that a ¢ A and take t € W such that the
length 1(¢) of ¢ is minimal with respect to the property that g(tf) = a. Since a ¢ 4,
t¢ X and t = rs for some r,s€ W. We have I(r) < 1(t), I(s) < I(t) and either
f(r) = aor f(s) = a(see (i), which is a contradiction. We have proved that a € 4.
Quite similarly, b, c € A.
(i1i) and (iv). These two assertions are obvious.

1.3 An SH-groupoid G is said to be minimal if every proper subgroupoid of G is
associative (i.e., if no proper subgroupoid of G is an SH-groupoid).

1.4 For a groupoid G, let o(G) denote the smallest cardinal number o such that
there exists a generator set 4 of G with card(4) = «. We have 0 < o(G) and
o(G) = 0 iff G contains no proper subgroupoid. Groupoids with o(G) < 1 are
sometimes called cyclic.

1.5 Proposition. Let G be an SH-groupoid.
(i) If G is of type (a, a, ), then o(G) > 1 and G is minimal iff o(G) = 1.
(ii) If G is of type (a, a, b) (or (a, b, b), (a, b, a)), then 6(G) > 2 and G is minimal
iff o(G) = 2.
(iii) If G is of type (a, b, ¢), then (G) > 3 and G is minimal iff o(G) = 3.

Proof. (i) Let a € G be such that a. aa # aa . a. Put b = aa. Then b + a. Now,
let A be a generator set of G. If A = @, then {b}is also a generator set, and hence
ae {b}by 1.1(ii) and a = b, a contradiction. Thus 4 # @, a€ 4 and card(4) >1.
This means that 6(G) > 1. If o(G) = 1, then G possesses a one-element generator
set, and therefore {a}is a generator set of G (again, by 1.1(ii)). In this case, if H is
a proper subgroupoid of G, then a ¢ H, and so H is associative. We have proved
that G is minimal. Conversely, if G is minimal, then G is generated by a, so that
o(G) = 1.

(i1) and (iii). We can proceed similarly as in the proof of (i).

1.6 Proposition. Let G be an SH-groupoid, let a,b,ce G be such that
a.bc # ab.c and let H be the subgroupoid generated by {a,b,c}. Then H is
a minimal SH-groupoid and H is of the same type as G.

Proof. Obvious.
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III.2 Basic arithmetic of SH-groupoids of type (a, a, a)

2.1 Throughout this section, let G be an SH-groupoid of type (a, a, a). Further,
let ae G be such that a.aa # aa.a and put b = aa, ¢ = ab, d = ba, e = ac,
f=ad.

2.2 Lemma. (i) If x € G, then ax = a iff xa = a.
(it) If x,y€ G are such that a = xy, then either x = a and ay = ya = a or
=aand ax = xa = a.
(iii) If x,y,z€e G are such that a = ax (resp. a = xa) and x = yz, then
a=ax =xa=ay=ya=az=zaand x ¥ a,y * a,z * a.

Proof. (i) Let ax = a + xa. Then x + a (otherwise aa = aand a.aa = a
=aa.a) and aa.a = (a.ax)a = (aa.x)a = aa.xa = a(a. xa) = alax . a) =
= a.aa, a contradiction. Similarly, if ax + a = xa.

(i) If x +a=+y, then aa.a = (a.xy)a = (ax.y)a = ax.ya = a(x. ya) =
= a(xy . a) = a. aa, a contradiction.

(iii) By (i), ax = xa = a, and hence x ¥ a, b (otherwise a.aa = aa.a). This
implies that either y + a or z + a. If z=a, then y + a and yb = y.aa =
= ya.a = yz.a = xa = a, a contradiction with (ii) (since y + a + b). Hence
z % aand, similarly, y % a. Further, ay.z = a.yz = ax = aand ay = a by (ii).
Similarly, za = a. The rest is clear from (i).

2.3 Lemma. (i) a, b, c, d are pair-wise different elements of G.
(ii) b=aa,c=ab=a.aa,d = ba = aa.a.
(iii) e = ac = da = bb = a(a . aa) = (aa.a)a = aa.aa and e * a, b.
(iv) f=ca=ad = (a.aa)a = a(aa.a) and f * a,b.

Proof. (i) Since ¢ = ab = a.aa #+ aa.a = ba = d, we have ¢ + d and also

a %+ b. If ¢ = a, then d = a by 2.2(i), and so ¢ = d, a contradiction. Thus a ¢
and, similarly, a + d. If bb = b, then ¢ = ab = a.bb = a(aa.b) = a(a . ab) =
=a.ac=aa.c=bc=b.ab=ba.b=db=d.aa=da.a=(ba.a)a =
= (b.aa)a = bb.a = ba = d, a contradiction. Hence bb #+ b and, if ¢ = b, then
b=ab=a.ab = aa.b = bb, a contradiction. Thus b * ¢ and, similarly, b * d.
(ii) This is clear from the definition of b, ¢, d.

(ii1) We have e =ac =a.ab =aa.b =bb =b.aa = ba.a = da. If e = q,
then bb = a, a contradiction with 2.1(ii). The inequality e = bb + b was already
proved in (i). )

(iv) We ‘have f=ca=ab.a=a.ba=ad If f=a, then ca =a = ac by
2.2(i), a contradiction with (iii). If f = b, thenc =ab =af =a.ca=ac.a =
=ea=da.a=d.aa=db=ba.b=b.ab=bc=aa.c=a.ac =
=a(a.ab) = alaa.b) =a.bb-=ab.b=cb=ca.a = fa=ba=d, a con
tradiction.

2.4 Lemma. (i) cx = dx, xc = xd, ex = fx and xe = xf for every x€ G,
such that x + a + ax.
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(i) bx =b=xb,cx=c=xc,dx =d=xd, ex =e=xeand fx = f = xf
for every x € G such that a = ax.
(iii) ea = fa = ae = af.

Proof. (i) We have cx = ab.x = a.bx = a(aa.x) = a(a.ax) = aa.ax =
=b.ax = ba.x = dx and similarly, xc = xd. Further, ex = ac.x = a.cx =
=a.dx = ad.x = fx and, similarly, xe = xf.

(ii)) We have x # a and the rest is clear.

(iii) We have fa=ad.a=a.da=ae=a.bb=alaa.b)=a(a.ab) = aa.ab =
=b.ab=>ba.b=ba.aa =(ba.a)a=(b.aa)a=bb.a=ea=ac.a=
= a.ca = af.

2.5 Lemma. (i) c = e iff c = f.
(ii) d =eiffd = f.

Proof. (i) If ¢ = e, then ¢ = e = ac = ae = ea = ca = f (use 2.3(iii), (iv)
and 2.4(iii)). Similarly, if ¢ = f,thenc = f = ca = fa = af = ac = e.
(i) This is dual to (i).

2.6 Lemma. (i) xc = xd = d for every x € G such that xb = b and ax *+ a.
(ii) ¢x = dx = c for every x € G such that bx = b and ax * a.

Proof. (i) By 2.4(i), xc = xd. However, xd = x.ba = xb.a = ba = d.
(ii) This is dual to (i).

2.7 Lemma. Suppose that there exists an element ue G such that ub = b
(bu = b) and au * a. Then bx * b (xb +b) whenever x € G and ax * x.

Proof. Let, on the contrary, bv = b for some v € G such that av + a. Now, by
2.6,c =dv=uc.v=u.cv=uc = d, acontradiction.

2.8 Put An(G) = {ue G;au = a} = {ue G;ua = a} (see 2.2(i)), Bn(G) =
= {ue G;ub = b} and Bn(G) = {ue G; bu = b}.

2.9 Proposition. (i) An(G) (resp. Bn(G), Bn,(G)) is either empty or a sub-
groupoid of G.
(ii) An(G) = Bn(G) n Bn/(G).
(iii) If Bn(G) % An(G), then Bn(G) = An(G).
(iv) If Bn(G) #+ An(G), then Bn,(G) = An(G).

Proof. (i) Ifu,veAn(G), thenu+a+vanduv.a=u.va=u.a = a.
(ii), (iii) and (iv). Apply 2.4(ii) and 2.7.

2.10 Lemma. Suppose that G is minimal. Then a + xy for all x, y € G.

Proof. Let W be an absolutely free groupoid with a one-element free basis {w}
and let f: W — G be the projective homomorphism such that f(w) = a (the
groupoid G is generated by a). Suppose, on the contrary, that a = xy for some
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x, y € G. In view of 2.2(iv) we can assume that x = a. We have y = f(t) for some
te W and we can also assume that the length 1(t) is minimal with respect to
a= af(t.). Since a+b=uaa, t+x and t=1rs, r,se W. Then a =a.uy,
u = f(r), v = f(s) and, by 2.2(iii), a = au = av, a contradiction with the minima-
lity of 1(2).

2.11 We shall say that G is of subtype (a) (resp. (B)) if e = f (resp. e * f).
Hence, if G is of subtype (a), then G contains at least four different elements
(namely a, b, ¢, d) and, if G is of subtype (B), then G contains at least six different
elements (namely a, b, ¢, d, e, f).

2.12 Proposition. Let s; denote the least congruence of G such that the
corresponding factor is associative.
(i) If G is of subtype (o), then s; = idg L {(c,d), (d, ¢)}.
(ii) If G is of subtype (B), then s¢ = idg U {(c,d), (d, c), (e, ), (1, ¢)}-

Proof. Put r = idg U {(c,d), (d, c), (e, /), (/. e)}. It follows from the preceding
results that r is a congruence of G. Clearly, G/r is associative, and hence s; Sr.
On the other hand, (¢, d) = (a.aa, aa . a) € s; and (e, f) € sg. Thus r = sg.

IIT.3 Construction of some SH-groupoids of type (a, a, a)

3.1 Let G be an SH-groupoid of type (a, a, a) and of subtype (o) and let
a,b,c,d, e be as in 2.1 (we have e = f). Further, assume that the following
condition is satisfied:

(SH1) If x, ye G are such that xy = b, then either x = y = a or y = b and
ax = a.

Now, define a binary operation * on G by x x y = xy if (x, y) & (b, a) and
b*a = c. We are going to check that G() is a semigroup. For, take x, y,z€ G
and consider the following cases:

(1) (3 2) # (b,a)and x & b. Then x x (y *z) = x. yzand (x * y) * z = xy = z. If
xy % b, then (x, y) # (a,a) and x.yz = xy.z = xy x z. If xy = b, then either
y=b z+aand x.yz=xy.z=xyxz or x=y=a. If x=y=a and
z#%a, then x.yz=xy.z=xy*z. If x=y=2z=a, then x.yz=c¢c =
=bxa=xyx*z

() (y,z) # (b,a) and x = b. Then x *(y*z) = bxyz and (x x y)xz = (b* y) * z.
Ifyz=a=y thenbxyz=bxa=c=cz=cxz=(bxy)*z. If yz=a+y,
thenz=aand bxyz=c=bxa=byxa=(bxy)xa=(b*y)xz If yz +
+a=y, then bxyz=byz=baz=dz=cz=c*z=(bxa)xz=(bxy)*z.
If yz+a+y and by +b, then bxyz=byz=byxz=(b*xy)*z. If
yz+a+ yand by = b, thenay =a,z+aand b* yz =byz =bz=bx*z =
=(b*y)*z
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(3) (3, z) = (b,a). Then x*(y*z)=x*c=xc and (x*xy)*xz = (x*xb)xa =
=xbxa. If xb +b and x #+ a, then xa + a and xc = xd = xba = xb * a.
If xb=0b, then xa=a and xc=c=bxa=xbxa. If x =a, then
xc=ac=e=f=ca=cxa=abxa = xbx*a.

We have proved that G(x) is a semigroup. Clearly, G = G(*) [b, a, d] (see 11.2.1)
and sdist(G) = 1 (see IL.1.1).

3.2 Let G be a semigroup containing two elements a, d such that the following
conditions are satisfied:
(@ a*+a+adanda*+d=+d.
(b) If x € G, then ax = a iff xa = a.
(c) If x, ye G and a = xy, then either x = aor y = a.
(d) If x, ye G and xy = @’ then either x = y = a or x = a’ and ax = a.
(e) If xe G and ax # a, then xd = xa’ and dx = a’x.
() If xe G and ax = q, then xd = dx = d.

Now, put G(®) = G[a’, a, d] (see 11.2.1). Then Ns(G(®)) = {(a,a, a)}, and so
G(®) is an SH-groupoid of type (a, a, a) (compare with 3.1). Clearly, G(®) is of
subtype (o) and sdist(G(®) = 1.

3.3 Let G be an SH-groupoid of the type (a, a, a) and of subtype (B) and let
a,b,c,d,e, f be as in 2.1. Further, assume that the following two conditions
satisfied:

(SH1) from 3.1
(SH2) If x, y e G are such that xy = c, then either x = a, y = b or x = ¢ and
ay =aory=cand ax = a.

Now, define a binary operation * on G by x * y = xy if (x, y) % (b, a), (c, a) and
bxa=c, cxa=bhb Then G(x) is a semigroup (it requires just a tedious
checking), and so sdist(G) < 2. We show that sdist(G) = 2, provided that g = b
whenever g € G and gb = by = e.

Let, on the contrary, G(~) be a semigroup such that dist(G, G(o)) = 1. Then
uov = w % uv for just one ordered pair (i, v). If (u, v) ¢ {(a,a), (a, b), (b, a)}, then
a.aa =daca)=ac(aoa)=(aca)oa =(aca)a = aa.a, a contradiction.
If (u,v) = (a,a) and g =aoa, then h.g=hog=bo(aca)=(boa)oa =
= (ha)oa=ba.a=c¢=bb=aa.b=ua.ab=alaob)=ao(aob)=
=(aca)ob =gob = gbh. According to our hypothesis, g = b, and therefore
ava = aa, a contradiction. If (u,v) = (a,b) and aob =g, then g =aob =
=ao(aca)=(aca)ca=boa=ha=d and e=bb=bob=(aca)ob=
=ao(aob)=aog =aod = ad = [, a contradiction. Similarly, if (u,v) = (b, a),
theng = boa = (aca)oa=ao(aca)=aob=ab=cande = ac = ag =
=aog=ao(boa)=(aob)oa=ab.a = ca = f, acontradiction.

3.4 Let G be a semigroup containing three elements a,d,f such that the
conditions (a), (b), (¢), (d), () from 3.2 are satisfied and, moreover, the following
are true:
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(€)If xe G, x + a and ax = a, then xd = xa’ and dx = a*x.
(g) ad = f and da = a*.
(h) f =+ a
(i) If x,ye G and xy = a’, then either x =a, y=a*> or x =da% y=a or
x=ad,ay=aory=ad ax = a
() If xe G and ax + a, then xf = xa* and fx = a'x.
(k) If xe G and ax = q, then af = f = fa.

Now, define a binary operation ® on G by x ® y = xy if (x, y) * (d’ a), (¢’ a)
and @’ ® a = d, @’ ® a = f. Then G(®) is an SH-groupoid of the type (a, a, a)
and subtype (p) (compare with 3.3).

III.4 A variety of “almost” associative groupoids

4.1 Denote by £, the variety pf groupoids satisfying the following identities:
(xy.u)v=xy.uv, x(y.uw) = xy.uv, (x.yu)v = x(yu.v).

Clearly, & < #,, where ¥ denotes the variety of semigroups.

4.2 Throughout this section, let W be an absolutely free groupoid with a free
basis X.

4.3 Lemma. Let t € X be such that I(t) > 4. Then there are x€ X and g€ X
such that the identity t = xq is satisfied in A,.

Proof. We have t = rs for some r, s € W and we can assume that r ¢ X. Then
r=uv, uyve W. If ue X, then either v = wz and t = (u.wz)s = u(wz.s) =
= u.vs is satisfied in #, or ve X, s=wz and t = uv.wz = ulv.wz) = u.vs
is satisfied in £,, too.

4.4. Lemma. Let r,s € W, |(r) > 5. Then the identity r = s is satisfied in R, iff
it is satisfied in <.

Proof. Assume that r = s is true in &. Then I(s) = 1(r) > 5 and we shall
proceed by induction on l(r). By 4.3, there are x, x' € X and ¢, g’ € W such that
the identities r = xq and s = x'q’ are satisfied in #,. Then these identities are
satisfied in %, and hence x = x’ and q = ¢’ is satisfied in % (take into account
that free semigroups are cancellative). If I(g) > 5, then g = ¢’ is true in £, by the
induction hypothesis, and so r = xq = xq' = s are satisfied in %,. Now, the
remainig case is l(g) = I(q') = 4. Then there are y,u,v,z€X such that
4,4 € {Yu.vz), y(uv.z), yu.vz, (yu.v)z, (y.uv)z} and xgq,xq € {x(¥(u.vz)),
x(y(uv . 2)), x(yz . vz), x((yu . v) z), x((y . uv) z)}. However, using the three identities
from 4.1, it is easy to show that the following identities hold in 2,: x((yu .v) z) =
= x(yu.vz) = x(y(u.vz)) = (xy) (u.vz) =2 (xy.wv)z = (xy.u)z =
= (xy) (uv.z) = x(Wuv. 2)) = x((y . uv) 2).



4.5 (i) Let F with a free basis A be a free groupoid in £,. Denote by sr the
smallest congruence of F such that F/sp is a semigroup and let f: F — F/sg be
a natural projection. Then F/s, is a free semigroup, f(A) is its free basis and f| A4
is injective.

Let a€ A and let g be the endomorphism of F such that g(4) = {a}.Then g(F)
is a free Z,-groupoid of rank 1 and s N ker(g) = idy. This implies that F can be
imbedded into the cartesian product g(F) x F/s.

(ii) Let F be a free #-groupoid of rank 1. It follows from (i) that the variety £, is
generated by ¥ U {F}.

4.6 Consider pair-wise different elements a, b, ¢, d, ¢, f, gs, g¢, g7, ... and define
a grouipoid R(o) by the following multiplication table:

Rl(o) a b ¢ d e f 95 9 91 9s

b e f g5 g5 g 91 g8 Gy -
d gs g9s Yo G 91 Gs 9o 9o ---
f gs 9o ()3 g7 g7 gs 9o dio 9du ---
e gs 9o 9o g7 g1 Js 99 dio 9Gu ---
gs Yo g7 g7 gs - Js 9o Jdio 9Iu Y2 ---
9o 97 g7 gs gs 9y Jo YGu G2 ---
g1 9s 9s 9o 9o G0 Ju Yz Y13 ---
6| 91 Y98 9o 9o Gio G0 9Iu Gz Gz G4 ---
71 98 99 G Yo 9Iu Iu G2 9z G G5 ---
gs 99 _glo {Jn Qn le an Qm QM 915 916

QQ;Q\N QU O o9
Q@ «Q
SN W

It follows easily from 4.4 that R (o) is a free %,-groupoid of rank 1; {a}is the only
basis of R,(o).

4.7 Let S be a free semigroup with a free basis X. Put F = {(a,x); xe X} U
U {(b, xy); x, y € X} U {(c, xyz), (d, xyz); x, y, z € X} U {(e, xywv), ( f, xyuv);
x,p,u,ve X} U{(g,r);reS}, Ir)=1i>5. Then F is a subgroupoid of the
cartesian product R,(0) x S, F is a free 2,-groupoid and {(a, x); x € X} is its free
basis.

4.8 Denote by 4, the subvariety of %, determined in £, by the identity
xy.uv = x(yu.v).

4.9 Lemma. Let r, s€ W, I(r) > 4. Then the identity r = s is satisfied in R, iff
it is satisfied in &.

Proof. Easy (use 4.4).
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4.10 Consider the following groupoid Ry(o):

Ry(0)| a b c d g5 95 95 91 s

a |b ¢ gi 9« 95 95 91 9z Go -
b |'d gs 95 9s 9o 91 9s 95  Gio -
c ga gs e e g7 Js 9o Jio 9 ---
d ga 9gs ge I3 [’F} Jgs 9o Jdio 9 ---

ga | Gs g 91 91 Js 99 Jo 9u Gz ...
gs 9e g7 g9s 9z 9o Jio 9Gu Gz Gz .-
gs | 97 98 9o g9 G 9Iu Gz Gz Ga -
97| 98 99 G G 9u YJGi2 93 YGuu  Gis -
_gs g9 glo Qn gll gIZ _gm 914 le 916

Then Rz(o) is a free #,-groupoid of rank 1.

4.11 Proposition. Let G be a groupoid such that o(G) < 1. The following
conditions are equivalent:
(i) G is an SH-groupoid of type (a, a, a) (and then G is minimal).
(it) G is non-associative and G € AR,.

Proof. (i) implies (ii). Let a € G be such that a.aa % aa.a. Then xy, uv, yu * a

for all x, y, u, ve G (see 2.10), and hence xy.uv = (xy.u)v, xy.uv = x(y . uv),
x(yu.v) = (x. yu) v. This means that G € £,.
(ii) implies (i). There is an element a € G such that G is generated by {a}.Let
f:W — G be the projective homomorphism such that f(X) = {a}. Now, take
u,v, we G. There are r,s,te W with f(r)=u, f(s)=v and f(t) =w. If
I(r) + 1(s) + 1(t) > 5, then the identity r.st = rs.t is satisfied in £,, and hence
u.ow = uv.w. Assume that n = 1(r) + I{s) + 1) < 4. Clearly, 3 < n and if
n =3, then r,s,te X and u = v = w = a. Finally, assume that n = 4. If
I(r) =2, then I(r) =2,1(s)=1(t) =l,u=aa,v=w=aand u.vow = aa.aa =
= (aa. aa)a = uv . ww, since G € #,. The other two cases are similar and we
have proved that u.vw = uv.w except, possibly, for the case u = v = w = a.
Since G is non-associative, a.aa % aa.a and G is an SH-groupoid of type
(a, a, a).

4.12. Proposition. Let G be a groupoid such that o(G) < 1. The following
conditions are equivalent:
(i) G is an SH-groupoid of type (a, a, a) and of subtype (q).
(ii) G is non-associative and G € R,.

Proof. This follows easily from 4.9 and 4.11.
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IIL.5 Minimal SH-groupoids of type (a, a,a) and of subtype (a)

5.1 Proposition. The following conditions are equivalent for a groupoid G:
(i) G is a minimal SH-groupoid of type (a, a, a) and subtype ().
(ii) G is non-associative and G is a homomorphic image of the groupoid Ry(o)
(see 4.10).

Proof. (i) implies (ii). We have G(G) = 1 and G € #, by 4.12. However, Rz(o)
is free of rank 1 in #,, and so G is a homomorphic image of R,.
(i1) implies (i). Clearly, cs(G) < l-and G € #,. Now, it suffices to use 4.12.

5.2 Lemma. Let G be a minimal SH-groupoid of type (a, a, a) and of subtype
(o). Let @' € G be such that a' . (a' . d') + (a' . d').d. Then x = y = d’, whenever
x,yeGand xy =b =4d .d.

Proof. Let b' = d'.a', ¢ =d .b'. d" = b".a and let ¢: Ry(0) » G be a pro-
Jjective homomorphism (see 5.1). The elements ', b', ¢, d’ are pair-wise different
and p(a) = a, @(b) = b, ¢(c) = ¢, ¢(d) = d'. Further, there are u, ve R, with
@(u) = x and @(v) = y. Then @(uov) = ¢(u) @(v) = xy = b, and so uov *
+ a,c,d. If uov = g, for some i > 4, then ao(uov) =g, = (uov)oa, and
therefore ¢’ = a'.b" = @(a) (i o v) = @(a o(u o v)) = @(gi1) = p((uov)oa) =
= @(ucv)pa) =b".a =d, a contradiction. Thus uov=>b, u=v=a and
Xx=y=d.

53 let3<m<nand R,, = {a. b,c,d, gs ..., g,,} (n + 1 pair-wise different
elements). Define a structure of a semigroup on R, ,, as follows: b = a? ¢ = d’,
gi=d for 4 <i<n, @' =a" and dx = a’x, xd = xa’* for every xe R, .
Clearly, R, ,, becomes a semigroup and R, ,, is not cyclic; every generator set of
R, ,, must contain the elements a and d. Moreover, the conditions (a), (b), (c), (d),
(e) and (f) from 3.2 are satisfied. Now, put R, ,(®) = R, .[b, a, d] (see 3.2), so
that R,,.,,,(®) is a minimal (n + 1)-element SH-groupoid of type (a, a, a) and of
subtype (o).

54 Let4 < nand R, = {a,b, ¢ d, gy, ..., g,,,l}- (n pair-wise different elements).
Define a structure of semigroup on R, as follows: b = a* ¢ = d’, g; = d' for
4<i<n-—1,d=d"da" = a*" Clearly, R, is cyclic semigroup generated by
a and the condition (a), (b), (¢), (d), (e), (f) from 3.2 are satisfied. Now, put
R,(®) = R,[b, a,d] (see 3.2), so that R,(®) is a minimal n-element SH-groupoid
of type (a, a, a) and of subtype (o).

5.5 Theorem. (i) R;(O) is (up to isomorphism) the only infinite minimal
SH-groupoid of type (a, a, a) and of subtype (o).
(ii) Let n > 4. Then the n — 2 groupoids R(®), R,_, .(®) (3 <m,m <n —1)
are pair-wise non-isomorphic and they are (up to isomorphism) the only n-element
minimal SH-groupoids of type (a, a, a) and subtype (o).
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Proof. (i) Let G be an infinite minimal SH-groupoid of type (a, a, a) and of sub-
type (o). Let ae G be such that a.aa # aa.a and let b = aa, ¢ = ab, d = ba. The
groupoid G satisfies the condition (SH1) from 3.1 (see 5.2), and so we have the cor-
responding semigroup G(x). Proceeding similarly as in the proof of 5.2 and using the
fact that G is infinite, we can show that xy =+ d if (x, y) # (b, a). This shows that
H(x) is a cyclic semigroup generated by a, where H = G — {d}. The rest is clear.
(ii) Let G be an n-element minimal SH-groupoid of type (a, a, a) and of subtype
(o). Again, G satisfies (SH1) and we have the semigroup G(*) from 3.1. If
d + x.yforall x, y € G, then G(x) is not cyclic, H(*) is cyclic (H = G — {d})and
G is isomorphic to R,,«l.,,,(@) for some 3 <m < n — 1. Now, assume that
d = x * y for some x, y € G, i.e., d = uv for some u, v € G such that (u, v) * (b, a).
Then, G(x) is a cyclic semigroup generated by a and we have d = ax... xa
(k-times). From this a*xaxa*xa=axc=a*xd=ax..*xa (k+ 1-times)
and, since G possesses just n elements, necessarily k = n. Consequently, G is
isomorphic to R,(®).

5.6 Corollary. Let G be a minimal SH-groupoid of type (a, a, a) and of subtype
(o). Then sdist(G) = 1.

5.7 Example.

Rfc) |a b ¢ d Rijo)la b ¢ d

a b ¢ d d a b ¢ ¢ ¢

b d d d d b d ¢ ¢ ¢

c d d d d c c ¢ ¢ ¢

d d d d d d c ¢ ¢ ¢
R{o) |a b ¢ d g, Rij0)la b ¢ d g,
a b ¢ gs g4 d a b ¢ gs g4+ ¢
b d gs d d g, b d gs ¢ ¢ gs

¢ |9+ d g4 g4 d ¢ | 9s ¢ ga Ga

d gs d g4 g4 d d gs C g4 Ya
go |d gs d d g, go lc gs ¢ ¢ gs

S
o

9s 9Gs 9Ga

a
b

c 9s Ga 9Ga Gsa 9s
d gda 9s Ys Ga 9a
9a gs 9a Ga Ga 9Ya
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III.6 Minimal SH-groupoids of type (a,a,a) and subtype ()

6.1 Proposition. The following conditions are equivalent for a groupoid G:
(i) G is a minimal SH-groupoid of type (a, a, a).
(ii) G is non-associative and G is a homomorphic image of the groupoid R,(°)
(see 4.6).

Proof. This is an easy consequence of 4.11 (see the proof of 5.1).

6.2 Lemma. Let G be a minimal SH-groupoid of type (a, a, a) and or subtype
(B). Let a’ € G be such that a' .d'a’ + a'd’ . a'. Then:
(i) x =y =a, whenever x,ye G and xy = b' = d'a’.
(ii) x =a and y = b', whenever x,ye G and xy = ¢’ = a'b’.
(iii) x = b and y = a', whenever x,ye G and xy = d' = b'da’.

Proof. Let b’ = d'a, ¢’ = a'b',d =bd,e=b'b =dc =dda, f =ca =
= d'd and let (p:Rl(O) — G be a projective homomorphism (see 6.1). Then
a,b,c,d, e, f are pair-wise different and ¢(a) = ', @(b) = b, ¢(c) = ¢,
od)=d, ¢le) = ¢, o(f) = /" Further, let x,yeG, u,veR, and ¢(u) = x,
o(v) = y.

(i) Let xy = b'. Proceeding similarly as in the proof of 5.2, we can show that
x=y=d.

(i) Let xy = ¢ Then p(ucv)=c,andsoucv=*ab,cde, [ Ifuov=y, for
some i > 5, then ao(uov) =g, = (uov)oaand this implies that &' = a'c’ =
= c'a’ = f’, a contradiction. Thus uov=c,u=a,v=band x =d,y = b
(i11) This is dual to (ii).

63 Let n>44<m<nand R, ={abcdelfgs.., g, (n+ 2 pair-
wise different elements). Define a structure of a semigroup on R}, as follows:

=da, c=a,e=a" g=a for 5<i<n a"*'=a" ad = f, dx = a’x,
fx = a*x, xf = xa* for every x€ R, ,, yd = ya’ for every ye R, ,, v * a. It is

’

easy to check that R;,, becomes a semigroup and that R, ,, is not cyclic; every
generator set of R), must contain the elements a, d. Moreover, the conditions
(a), (b), (¢), (d), (f) from 3.2 and the conditions (e"), (g), (h), (i), (j), (k) from 3.4
are satisfied. Now, define a binary operation o on R;, by xoy = xy if
(x,y) # (b, a), (c,a),and boa = d, coa = [ (see 3.4). Then R}, (o) is a minimal
(n + 2)-element SH-groupoid of type (a, a, a) and of subtype (B). Clearly,
1 < sdist(R;, ,(c)) < 2. It 5 < m, then ¢ + bo g forevery ge R, ,, g * b, and it
is easy to check that sdist(R] ,(c)) =2 (see 3.3). Finally, if m = 4, then
sdist(R;, ,(2)) = 1 (R,.4(¢) [, a, g_\] for n = 6 and R; (o) [a, a.e] for n = 4,5

are semigroups).

64 Let 5 <nand R, = -{a,b, ad,e, f,gs, ..., g,,_,}v (n + 1 pair-wise different
elements). Define a structure of a semigroup on R} as follows: b = a, c=da,
e=d g =dfor5<i<n—14a"=fad = f,dx = a’x, fx = a*x for every
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x € R, and yd = ya’ for every y e R, y + a. It is easy to check that R, becomes
a semigroup (which is not cyclic) and that the conditions (a), (b), (c), (d), (f) from
3.2 and the contitions (e’), (g), (h), (i), (j), (k) from 3.4 are satisfied. Now, define
a binary operation o on R;, by xoy = xy if (x, y) # (b, a), (c,a) and boa = d,
coa = f (see 3.4). Then R;(c) is a minimal (n + 1)-element SH-groupoid of type
(a, a, a) and of subtype (B). Moreover, sdist(R;(c)) = 2 (see 3.2).

6.5 Theorem. (i) R\(o) is (up to isomorphism) the only infinite minimal
SH-groupoid of type (a, a, a) and of subtype (P).
(ii) Let n > 6. Then the n — 4 groupoids R;,_|(), R,_;(c) (4 <m <n—2)
are pair-wise non-isomorphic and they are (up to isomorphism) the only n-element
minimal SH-groupoid of type (a, a, a) and subtype ().

Proof. (i) Let G be an infinite minimal SH-groupoid of type (a, a, a) and of

subtype (B). Letae Gbe suchthata.aa # aa.aandlet b = aa, c = ab,d = ba,
e = ac, f = ad. The groupoid G satisfies the condition (SH1) from 3.1 and the
condition (SH2) from 3.3 (see 6.2), and so we can consider the corresponding
semigroup G(x). Proceeding similarly as in the proof of 6.2 and using the fact that
G is infinite, we can show that xy =+ f if (x, y) # (a, d), (c, a). This (together with
6.2(ii1)) shows that H(x) is a cyclic semigroup, where H = G — {d,f}. The rest is
clear.
(ii) Let G be an n-element minimal SH-groupoid of type (a, a, a) and of subtype
(B). By 6.2, G satisfies both (SHI) and (SH2) and we have the semigroup G(*)
from 3.3. By 6.2(iii), d + x * y for all x, y€ G. If f % x * y, then H(x) is cyclic
(H= G — {d,f})and G is ismorphic to R,_, ,(0). Now, assume that f = x % y
for some x, y€ G, i.e., f = uv for some u, ve G such that (u,v) * (a, d), (c, a).
Then f = a=+.. *xa (k-times), which means that axa*xa*xaxa=axf =
=a=*... xa (k + 1-times) and, since G possesses just n elements, necessarily
k = n — 1. Consequently, G is ismorphic to R;,_,(o).

6.6 Corollary. Let G be a minimal SH-groupoid of type (a, a, a) and subtype
(B). Then sdist(G) = 2 except for the case when G is ismorphic to R; 4 for some

n > 4 and then sdist(G) = 1.
6.7 Example.

Rifo)la b ¢ d e f Ro)la b ¢ d e f
a |[b ¢ e f e e a |b ¢ e f f f
b |[d e e e e e b |d e f f f f
c |f e e e e e f\rr 5 rs
d |[e e e e e e d |e f f f f f
e e e e e e e e | f f f f f f
S le e e e e e firfr 5 fr 5
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Rifo))a b ¢ d e f gs sso)la b ¢ d e f gs
a b e f gs gs e a b ¢ e f gs g5 [
b |d gs gs e e gs b |d e gs g5 [ f ¢s
4 fogs e gs s c f o9 f f .95 95 f
d € gs gs 9s d e g5 f f g5 g5 f
€ gs € gs gs gs e gs [ 95 gs [ f 9s
fo19s e gs gs gs foles f 95 95 f f s
gs e ¢gs e € (gs gs e 9s f o9 f f g5 g5 f

Rfc)la b ¢ d e [ gs

a b ¢ e f g5 g5 9s

b d e gs gs gs 9gs s

¢ f g5 9gs gs 9gs 9s s

d |e g5 g5 gs gs Ys s

e gs 9s 9gs gs 9s Ys Ys

S o195 95 95 9s 9s 9s s

gs 9s 9s 9s 9s Ys Ygs s

III.7 Comments and open problems

7.1 In this part, some results from [1] are reformulated. Besides, the semigroup
distance of minimal SH-groupoids of the type (a, a, a) is found.

7.2 Find the numbers sdist(G) for SH-groupoids of the type (a,a,a). In

particular, are these numbers bounded?
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