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TOMAS KEPKA AND MILAN TRCH 

Praha*) 

Received 10. October 1994 

This paper deals with groupoids possessing just one non-associative triple of elements. The triple is 
of the form (a, a, a). 

Článek se zabývá grupoidy, které mají právě jednu neasociativní trojici prvků. Tato trojice je 
tvaru (a, a, a). 

In this paper (which is a free continuation of [3] and [4]), Szász- Hájek 
groupoids (i.e., groupoids with just one non-associative triple) are studied in more 
detail. 

III. 1 Introduction 

1.1 A groupoid G will be called an SH-groupoid (Szasz-Hajek groupoid) if 
ns(G) = 1, i.e., if G possesses just one non-associative triple (see 1.1.1). If this is 
so and if [a, b, c) is that triple, then exactly one of the following five cases takes 
place: 

a = b = c (and then we shall say that G is an SH-groupoid of type (a, a, a)); 
a = b 4= c (type (a, a, b)); 
a #- b = c (type (a, b, b) — this type is dual to (a, a, b)); 
fl = c + b (type (a, b, a)); 
a =# b 4= c + a (type (a, b, c)). 

1.2 Proposition. Let G be an SH-groupoid and let a, b, c e G be such that 
a . be 4= ab . c. Then: 

(i) If x, y e G are such that xy = a (xy = b,xy = c), then either x = a (x = b, 
x = c) or y = a (y = b, y = c). 
(ii) If A is a non-empty generator, set of G, then {a, b, c] <= A. 
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(Hi) If H is a subgroupoid of G, then either {a, b,c] c H and H is an 
SH-groupoid of the same type as G or {a,b, c) $ H and H is a semigroup, 
(iv) If r is a congruence of G, then either (a . be, ab . c)$r and G/r is an 
SH-groupoid of the same type as G or (a . be, ab . c)e r and G/r is a semigroup. 

Proof, (i) If x =4= a =1= y, then a.be = xy.be = x(y.be) = x(yb.c) = (x.yb) c = 
= (xy . b) c = ab . c, a contradiction. The other cases are similar. 
(ii) Let W be an absolutely free groupoid with a free basis X such that there exists 
a bijection f:X -> A. This bijection can be uniquely extended to a projective 
homomorphism g:W' -» G. Now, suppose that a $ A and take teW such that the 
length l(t) of t is minimal with respect to the property that g(t) = a. Since a $ A, 
t $ X and t = rs for some r, s e W We have l(r) < 1(f), l(s) < \(t) and either 
f(r) = a or f(s) = a (see (i)), which is a contradiction. We have proved that a e A. 
Quite similarly, b, c e A. 
(iii) and (iv). These two assertions are obvious. 

1.3 An SH-groupoid G is said to be minimal if every proper subgroupoid of G is 
associative (i.e., if no proper subgroupoid of G is an SH-groupoid). 

1.4 For a groupoid G, let o(G) denote the smallest cardinal number a such that 
there exists a generator set A of G with card(^) = a. We have 0 < o(G) and 
o(G) = 0 iff G contains no proper subgroupoid. Groupoids with o(G) < 1 are 
sometimes called cyclic. 

1.5 Proposition. Let G be an SH-groupoid. 
(i) If G is of type (a, a, a), then o(G) > 1 and G is minimal iff o(G) = 1. 
(ii) If G is of type (a, a, b) (or (a, b, b), (a, b, a)), then o(G) > 2 and G is minimal 
iffa(G) = 2. 
(Hi) If G is of type (a, b, c), then (G) > 3 and G is minimal iff o(G) = 3. 

Proof, (i) Let a e G be such that a . aa + aa . a. Put b = aa. Then b 4= a. Now, 
let A be a generator set of G. If A = 0, then {bj is also a generator set, and hence 
a e {b}by VI (ii) and a = b, a contradiction. Thus A + 0, ae A and card(A) > I. 
This means that o(G) > V If o(G) = 1, then G possesses a one-element generator 
set, and therefore {a} is a generator set of G (again, by VI (ii)). In this case, if H is 
a proper subgroupoid of G, then a $ H, and so H is associative. We have proved 
that G is minimal. Conversely, if G is minimal, then G is generated by a, so that 
a(G) = I. 
(ii) and (iii). We can proceed similarly as in the proof of (i). 

1.6 Proposition. Let G be an SH-groupoid, let a,b,ceG be such that 
a. be 4= ab. c and let H be the subgroupoid generated by {a,b, c). Then H is 
a minimal SH-groupoid and H is of the same type as G. 

Proof. Obvious. 
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III .2 Basic arithmetic of SH-groupoids of type (a, a, a) 

2.1 Throughout this section, let G be an SH-groupoid of type (a, a, a). Further, 
let a e G be such that a. aa 4= aa . a and put b = aa, c = ab, d = ba, e = ac, 
f = ad. 

2.2 Lemma, (i) If xeG, then ax = a iff xa = a. 
(ii) If x, y e G are such that a = xy, then either x = a and ay = ya = a or 
y = a and ax = xa = a. 
(Hi) If x, y, z e G are such that a = ax (resp. a = xa) and x = yz, then 
a = ax = xa = ay = ya =* az = za and x =# a, y -# a, z 4= a. 

Proof, (i) Let ax = a 4= xa. Then x #- a (otherwise aa = a and a . aa = a = 
= aa . a) and aa . a = (a . ax) a = [aa . x) a = aa . xa = a[a . xa) = a[ax . a) = 
= a. aa, a contradiction. Similarly, if ax 4= a = xa. 
(ii) If x 4= a 4= y, then aa . a = (a . xy) a = [ax . y) a = ax . ya = a[x . ya) = 
= a[xy . a) = a, aa, a contradiction. 
(iii) By (i), ax = xa = a, and hence x 4= a, b (otherwise a . aa = aa . a). This 
implies that either y 4= a or z 4= a. If z = a, then y 4= # and yb = y . aa = 
= ya. a = yz . a = xa = a, a contradiction with (ii) (since y + a 3= b). Hence 
z + a and, similarly, y 4= a. Further, ay. z = a . yz = ax = a and ay = a by (ii). 
Similarly, za = a. The rest is clear from (i). 

2.3 Lemma, (i) a, b, c, d are pair-wise different elements of G. 
(ii) b = aa, c = ab = a . aa, d = ba = aa. a. 
(iii) e = ac = da = bb = a[a . aa) = [aa . a) a = aa . aa and e 4= a, b. 
(iv) f = ca = ad = (a. aa) a = a(aa . a) and f 4= a,b. 

Proof, (i) Since c = ab = a . aa 4= aa . a = ba = d, we have c + !J and also 
a 4= b. If c = a, then d = a by 2.2(i), and so c = d, a contradiction. Thus a 4=c 
and, similarly, a 4= d. If bb = b, then c = ab = a . bb = a[aa . b) = a[a . ab) = 
= a . ac = aa . c = be = b . ab = ba . b = db = d. aa = da . a = [ba . a) a = 
= [b . aa) a = bb . a = ba = d, a contradiction. Hence bb 4= b and, if c = b, then 
b = ab = a. ab = aa. b = bb, 3. contradiction. Thus b 4= c and, similarly, b 4= d. 
(ii) This is clear from the definition of b, c, d. 

(iii) We have e = ac = a . ab = aa. b = bb = b . aa = ba . a = da. If e = a, 
then bb = a, a contradiction with 2.1 (ii). The inequality e = bb 4= b was already 
proved in (i). 
(iv) We have / = ca = ab .a = a .ba = ad. If / = a, then ca = a = ac by 
2.2(i), a contradiction with (iii). If / = b, then c = ab = af = a. ca = ac . a = 
= ea = da . a = d . aa = db = ba . b = b . ab = be = aa . c = a . ac = 
= a[a . ab) = a[aa . b) = a . bb = ab . b = cb = ca . a = fa = ba = d, a con­

tradiction. 

2.4 Lemma, (i) ex = dx, xc = xd, ex = fx and xe = xf for every xe G, 
such that x 4= a 4= ax. 
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(ii) bx = b = xb, ex = c = xc, dx = d = xd, ex = e = xe and fx=f=xf 
for every x e G such that a = ax. 
(Hi) ea = fa = ae = af 

Proof, (i) We have ex = ab . x = a . bx = a(aa . x) = a(a . ax) = aa . ax = 
= b . ax = ba . x = dx and similarly, xc = xd. Further, ex = ac. x = a. ex = 
= a . dx = ad. x = fx and, similarly, xe = xf. 
(ii) We have x + a and the rest is clear. 
(iii) We have fa = ad.a = a.da = ae = a.bb = a(aa.b) = a(a.ab) = aa.ab = 
= b . ab = ba . b = ba. aa = (ba . a) a = (b . aa) a = bb . a = ea = ac . a = 
= a . ca = af 

2.5 Lemma, (i) c = e iff c = f. 
(ii) d = eiffd=f. 

Proof, (i) If c = e, then c = e = ac = ae = ea = ca = f (use 2.3(iii), (iv) 
and 2.4(iii)). Similarly, if c = f then c = f = ca = fa = af = ac = e. 
(ii) This is dual to (i). 

2.6 Lemma, (i) xc = xd = dfor every xe G such that xb = b and ax =|= a. 
(ii) ex = dx = c for every xe G such that bx = b and ax =1= a. 

Proof, (i) By 2.4(i), xc = xd. However, xd = x . ba = xb . a = ba = d. 
(ii) This is dual to (i). 

2.7 Lemma. Suppose that there exists an element ueG such that ub = b 
(bu = b) and au =1= a. Then bx ^ b (xb #= b) whenever xe G and ax =N x. 

Proof. Let, on the contrary, bv = b for some veG such that av 4= a. Now, by 
2.6, c = dv = uc. v = u . cv = uc = d, a contradiction. 

2.8 Put An(G) = {ue G; au = a} = {ueG\ua = a] (see 2.2(i)), Bn,(G) = 
= {ue G;ub = b) and Bn,.(G) = {ue G; bu = b). 

2.9 Proposition, (i) An(G) (resp. Bn,(G), Bn,(G)) is either empty or a sub-
groupoid of G. 
(ii) An(G) = Bn,(G) n Bnr(G). 
(iii) If Bn,(G) * An(G), then Bnr(G) = An(G). 
(iv) If Bnr(G) #= An(G), then Bn,(G) = An(G). 

Proof, (i) If u, v e An(G), then u =1= a -# v and uv . a = u . va = u . a = a. 
(ii), (iii) and (iv). Apply 2.4(H) and 2.7. 

2.10 Lemma. Suppose that G is minimal. Then a =1= xy for all x, y e G. 

Proof. Let W be an absolutely free groupoid with a one-element free basis {w} 
and let f: W -> G be the projective homomorphism such that f(w) = a (the 
groupoid G is generated by a). Suppose, on the contrary, that a = xy for some 
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x, y e G. In view of 2.2(iv) we can assume that x = a. We have y = f(t) for some 
t e W and we can also assume that the length l(t) is minimal with respect to 
a = af(t). Since a 4= b = aa, t 4= .x and t = rs, r, s e W. Then a = a .uv, 
u = f(r\ v = f(s) and, by 2.2(iii), a = au = av, a contradiction with the minima­
lity of 1(f). 

2.11 We shall say that G is of subtype (a) (resp. ((3)) if e = f (resp. e 4= f). 
Hence, if G is of subtype (a), then G contains at least four different elements 
(namely a, b, c, d) and, if G is of subtype (P), then G contains at least six different 
elements (namely a, b, c, d, e,f). 

2.12 Proposition. Let sG denote the least congruence of G such that the 
corresponding factor is associative. 
(i) If G is of subtype (a), then sG = idG u {(c,d), (d, c)}. 
(ii) IfG is of subtype ((3), then sG = idG u {(c,d), (d, c), (e,f), (f, e)}. 

Proof. Put r = idG u {(c,d),(d, c),(e, f),(f, e)}. It follows from the preceding 
results that r is a congruence of G. Clearly, G/r is associative, and hence sG ^ r . 
On the other hand, (c, d) = (a . aa, aa . a)e sG and (e, f) e sG. Thus r = sG. 

III.3 Construction of some SH-groupoids of type (a, a, a) 

3.1 Let G be an SH-groupoid of type (a, a, a) and of subtype (a) and let 
a,b,c,d,e be as in 2.1 (we have e = f). Further, assume that the following 
condition is satisfied: 
(SHI) If x, y e G are such that xy = b, then either x = y = a or y = b and 

ax = a. 
Now, define a binary operation * on G by x * y = xy if (x, y) =1= (b, a) and 

b * a = c. We are going to check that G(*) is a semigroup. For, take x, y,z e G 
and consider the following cases: 
(1) (>', z) + (b, a) and x -# b. Then x * (y * z) = x . yz and (x * y) * z = xy * z. If 
xy 4= b, then (x, y) -# (a, a) and x . yz = xy. z = xy * z. If xy = b, then either 
y = b, z =t= a and x . yz = xy . z = xy * z or x = y = a. If x = y = a and 
z =}= a, then x . yz = xy . z = xy * z. If x = y = z = a, then x . yz = c = 
= b * a = xy * z. 
(2) (y, z) 4= (b, a) and x = b. Then x * (y * z) = b * yz and (x * y) * z = (b * y) * z. 
If yz = a = y, then b*yz = b*a = c = cz = c*z = (b*y)*z. If yz = a =1= y, 
then z = a and b * yz = c = b * a = by * a = (b * y) * a = (b * y) * z. If yz #-
4= a = y, then b * yz = byz = baz = dz = cz = c * z = (b * a) * z = (b * y) * z. 
If yz 4= a 4= y and by 4= &, then b * yz = byz = by * z = (b * y)* z. If 
yz 4= a 4= y and by = b, then ay = a, z 4= fl and b * yz = byz = bz = b * z = 
= (b * y) * z. 
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(3) (>', z) = (fe, a). Then x * (y * z) = x * c = xc and (x * y) * z = (x * fe) * a = 
= xfe * a. If xfe 4= fe and x + a, then xa =# a and xc = xd = xba = xfe * a. 
If xfe = fe, then xa = a and xc = c = fe * a = xfe * a. If x = a, then 
xc = ac = e = / = c a = c * a = afc*a = xfe*a. 

We have proved that G(*) is a semigroup. Clearly, G = G(*) [fe, a, d] (see II.2.1) 
and sdist(G) = 1 (see II. 1.1). 

3.2 Let G be a semigroup containing two elements a, d such that the following 
conditions are satisfied: 
(a) a2 4= a 4= a3 and a2 #- d 4= a3. 
(b) If x e G, then ax = a iff xa = a. 
(c) If x, y e G and a = xy, then either x = a or y = a. 
(d) If x, y e G and xy = a2, then either x = y = a or x = a2 and ax = a. 
(e) If x e G and ax 4= a, then xd = xa3 and dx = a3x. 
(f) If x e G and ax = a, then xd = dx = d. 

Now, put G(®) = G[a2, a, d] (see II.2.1). Then Ns(G(®)) = {(a,a, a)}, and so 
G(®) is an SH-groupoid of type (a, a, a) (compare with 3.1). Clearly, G(®) is of 
subtype (a) and sdist(G(®) = 1. 

3.3 Let G be an SH-groupoid of the type (a, a, a) and of subtype (P) and let 
a, fe, c, d, c,f be as in 2.1. Further, assume that the following two conditions 
satisfied: 
(SHI) from 3.1 
(SH2) If x, y e G are such that xy = c, then either x = a, y = b or x = c and 

ay = a or y = c and ax = a. 
Now, define a binary operation * on G by x * y = xy if (x, y) 4= (fe, a), (c, a) and 

fe * a = c, c * a = b. Then G(*) is a semigroup (it requires just a tedious 
checking), and so sdist(G) < 2. We show that sdist(G) = 2, provided that g = b 
whenever g e G and gb = bg = e. 

Let, on the contrary, G(o) be a semigroup such that dist(G, G(o)) = 1. Then 
u o v = w 4= uv for just one ordered pair (u, v). If (u, v) ̂  {(a, a), (a, fe), (fe, a)}, then 
a . aa = a(a o a) = a o (a o a) = (a o a) o a = (a o a) a = aa . a, a contradiction. 
If (u, v) = (a, a) and g = a o a, then fe . g = fe o <y = fe o (a o a) = (fe o a) o a = 
= (fea) o a = fea . a = e = bb = aa . b = a . ab = a(a o fe) = a o (a o fe) = 
= (a o a) o fe =g o fe = £/fe. According to our hypothesis, g = fe, and therefore 
a o a = aa, a contradiction. If (w, v) = (a, fe) and a o b = g, then g = a o fe = 
= a o (a o a) = (a o a) o a = fe o a = fea = d and c = fefe = fe o fe = (a o a) o fe = 
= a o (a o fe) = a o a = a o d = ad = f a contradiction. Similarly, if (u, v) = (fe, a), 
then g = fe o a = (a o a) o a = a o (a o a) = a o fe = afe = c and e = ac = ag = 
= a o g = a o (b o a) = (a o fe) o a = ab . a = ca = f, a contradiction. 

3.4 Let G be a semigroup containing three elements a, d,f such that the 
conditions (a), (b), (c), (d), (f) from 3.2 are satisfied and, moreover, the following 
are true: 
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(e') If x e G, x =t= a and ax 4= a, then xd = xa3 and dx = a3x. 
(g) ad = f and da = a4. 
(h) / 4= a4. 
(i) If x, y e G and xy = a3, then either x = a, y = a2 or x = a2, y = a or 
x = a3, ay = a or y = a3, ax = a. 
(j) If x e G and ax #= a, then x / = xa4 and / x = a4x. 
(k) If x e G and ax = a, then a / = / = /a. 

Now, define a binary operation ® on G by x ® y = xy if (x, y) 4= (a2, a), (a3, a) 
and a2 ® a = d, a3 ® a = / Then G(®) is an SH-groupoid of the type (a, a, a) 
and subtype (P) (compare with 3.3). 

III.4 A variety of "almost" associative groupoids 

4.1 Denote by ^2, the variety pf groupoids satisfying the following identities: 

(xy . u) v = xy . uv, x(y . uv) = xy .uv, (x . yu) v = x(yu . v). 

Clearly, Sf = ^2,, where 9* denotes the variety of semigroups. 

4.2 Throughout this section, let W be an absolutely free groupoid with a free 
basis X. 

4.3 Lemma. Let teX be such that \(t) > 4. Then there are xeX and qeX 
such that the identity t = xq is satisfied in 0tx. 

Proof. We have t = rs for some r, s e W and we can assume that r $ X. Then 
r = uv, u,ve W. If u e X, then either v = wz and t = (u . wz) s = u(wz . s) = 
= u .vs is satisfied in ^2, or v e X, s = wz and t = uv . wz = u(v . wz) = u . vs 
is satisfied in 01 x, too. 

4.4. Lemma. Let r,seW, l(r) > 5. Then the identity r = s is satisfied in 0tx iff 
it is satisfied in £f. 

Proof. Assume that r = s is true in £f. Then \(s) = l(r) > 5 and we shall 
proceed by induction on l(r). By 4.3, there are x,x'eX and q,q'eW such that 
the identities r = xq and s = x'q' are satisfied in 0lx. Then these identities are 
satisfied in £f, and hence x = x' and q = q' is satisfied in £f (take into account 
that free semigroups are cancellative). If l(q) > 5, then q = q' is true in 0tx by the 
induction hypothesis, and so r = xq = xq' = s are satisfied in 01 x. Now, the 
remainig case is 1(g) = l(q') = 4. Then there are y, u, v, z e X such that 
q> q' e {y(u- vz\ }{uv • -0> })U • vz, (yu . v) z, (y . uv) z) and xq, xq' e [x(y(u. vz)), 
x(y(uv . z)), x(yz . vz), x((yu . v) z), x((y . uv) z)}. However, using the three identities 
from 4.1, it is easy to show that the following identities hold in 0tx\ x((yu . v) z) = 
= x(yu . vz) = x(y(u . vz)) = (xy) (u . vz) = ((xy . u) v) z = (xy . uv) z = 
= (xy) (uv . z) = x(y(uv . z)) = x((y . uv) z). 
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4.5 (i) Let F with a free basis A be a free groupoid in 0tv Denote by sF the 
smallest congruence of F such that F/sF is a semigroup and let f\F-+ F/sF be 
a natural projection. Then F/sF is a free semigroup, f(A) is its free basis and f\A 
is injective. 

Let a e A and let g be the endomorphism of F such that g(A) = {a}.Then g(F) 
is a free 01 x -groupoid of rank 1 and sF n ker(g) = idF. This implies that F can be 
imbedded into the cartesian product g(F) x F/sF. 
(ii) Let F be a free ^-groupoid of rank 1. It follows from (i) that the variety &x is 
generated by £f u {F}. 

4.6 Consider pair-wise different elements a, b, c, d, e,f g5, g6, g7,... and define 
a grouipoid R\(o) by the following multiplication table: 

*l(°) a b C d e f 05 06 07 08 ••• 

a b C e f 05 05 06 07 08 09 -

b d e 05 05 06 06 07 08 09 010 ••• 

c f 05 06 06 07 07 08 09 010 011 ••• 

d e 05 06 06 07 07 08 09 010 011 ••• 

e 05 06 07 07 08 - 08 09 010 011 012 ••• 

f 05 06 07 07 08 08 09 010 011 012 ••• 

05 06 07 08 08 09 09 010 011 012 013 ••• 

06 07 08 09 09 010 010 011 012 013 014 ••• 

07 08 09 010 010 011 011 012 013 014 015 » . 

08 09 010 011 011 012 012 013 014 015 016 ••• 

It follows easily from 4.4 that R\(o) is a free ,^,-groupoid of rank 1; {a}is the only 
basis of R\(°\ 

4.7 Let S be a free semigroup with a free basis X. Put F = {(a, x); x e X} u 
u {(b, xy); x, y e X) u {(c, xyz), (d, xyz); x, y, z e X) u {(e, xyuv), (f xyuv); 
x, y, u, v e X) v {(g„ r); r e S}, l(r) = i > 5. Then F is a subgroupoid of the 
cartesian product R\(o) x S, F is a free ^2,-groupoid and {(a,x)', x e X} is its free 
basis. 

4.8 Denote by 0t2 the sub variety of Stx determined in &x by the identity 
xy . uv = x(yu . v). 

4.9 Lemma. Let r, s e W, \(r) > 4. Then the identity r = s is satisfied in 0t2 iff 
it is satisfied in £f. 

Proof. Easy (use 4.4). 
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4.10 Consider the following groupoid R2(o): 

4°) a 6 C d 04 05 06 07 08 .» 

a b c 04 9A 05 06 07 08 09 ••• 

b d 04 05 05 06 07 08 09 010 ••• 
c 04 05 06 06 07 08 09 010 011 » . 

d 04 05 06 06 07 08 09 010 011 .» 

04 05 06 07 07 08 09 010 011 012 ••• 

05 Øб 07 08 08 09 010 011 012 01.1 ••• 

06 07 08 09 09 010 011 012 01.1 014 ••• 

07 08 09 010 010 011 012 013 014 015 .» 

08 09 010 011 011 012 01.1 014 015 016 ••• 

Then R2(o) is a free ^-groupoid of r a n k 1 • 

4.11 Proposition. Let G be a groupoid such that <J(G) < 1. The following 
conditions are equivalent: 

(i) G is an SH-groupoid of type (a, a, a) (and then G is minimal), 

(ii) G is non-associative and G e0tx. 

Proof, (i) implies (ii). Let a e G b e such that a. aa + aa. a. Then xy, uv, yu ^ a 
for all x, y, u,veG (see 2.10), and hence xy .uv = (xy . u) v, xy .uv = x(y . uv), 
x(yu . v) = (x . yu) v. This means that G e fflx. 
(ii) implies (i). There is an element aeG such that G is generated by {a}.Let 
/ : W -+ G be the projective homomorphism such that f(X) = {a}. Now, take 
u,v,we G. There are r,s,teW with f(r) = u, f(s) = v and f(t) = w. If 
l(r) + 1(5) + \(t) > 5, then the identity r . st -̂  rs. t is satisfied in Stiy and hence 
u. vw = uv. w. Assume that n = \(r) + \{s) + 1(f) < 4. Clearly, 3 < n and if 
n = 3, then r, s, t e X and u = v = w = a. Finally, assume that n = 4. If 
l(r) > 2, then l(r) = 2, 1(5) = \(t) = 1, u = aa, v = w = a and u .vw = aa .aa = 
= (aa. aa)a = uv . ww, since G e l , . The other two cases are similar and we 
have proved that u. vw = uv . w except, possibly, for the case u = v = w = a. 
Since G is non-associative, a. aa + aa . a and G is an SH-groupoid of type 
(a, a, a). 

4.12. Proposition. Let G be a groupoid such that G(G) < 1. The following 
conditions are equivalent: 
(i) G is an SH-groupoid of type (a, a, a) and of subtype (a). 
(ii) G is non-associative and G e 0l2. 

Proof. This follows easily from 4.9 and '4.11. 
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III .5 Minimal SH-groupoids of type (a, a, a) and of subtype (a) 

5.1 Proposition. The following conditions are equivalent for a groupoid G: 
(i) G is a minimal SH-groupoid of type (a, a, a) and subtype (a). 
(ii) G is non-associative and G is a homomorphic image of the groupoid Ri(0) 
(see 4. JO). 

Proof, (i) implies (ii). We have G(G) = 1 and G e 0),2 by 4.12. However, R2(o) 
is free of rank 1 in 0l2, and so G is a homomorphic image of R2. 
(ii) implies (i). Clearly, a(G) < 1 and G e 0t2. Now, it suffices to use 4.12. 

5.2 Lemma. Let G be a minimal SH-groupoid of type (a, a, a) and of subtype 
(a). Let a' e G be such that a' . (a' . a') #- (a' . a'). a'. Then x = y = a', whenever 
x, y e G and xy = b' = a' . a'. 

Proof. Let // = a' . a', c = a' . b\ d' = b' . a' and let (p: R2(o) -» G be a pro­
jective homomorphism (see 5.1). The elements a', b', c, d' are pair-wise different 
and (p(a) = a', (p(b) = b', (p(c) = c!, (p(d) = d'. Further, there are u,veR2 with 
(p(u) = x and (p(v) = y. Then (p(u o v) = (p(u) (p(v) = xy = b', and so u o v =t= 
4= a, c, d. If u o v = g, for some / > 4, then a o (u o v) = gi+ { = (u o v) o a, and 
therefore c' = a' . b' = (p(a) (p(u o v) = (p(a o(u o v)) = (p(gi+\) = (p((u o v) o a) = 
= (p(u o v) (p(a) = b' . a' = d, a contradiction. Thus u o v = b, u = v = a and 
x = y = a'. 

5.3 Let 3 < m < n and Rnm = [a,b, c, d, g4,..., gn] (n + 1 pair-wise different 
elements). Define a structure of a semigroup on Rnm as follows: b = a2, c = a\ 
g, = a' for 4 < / < n, an+] = a'" and dx = a}x, xd = xa3 for every x e Rn m. 
Clearly, Rn m becomes a semigroup and Rn m is not cyclic; every generator set of 
Rn m must contain the elements a and d. Moreover, the conditions (a), (b), (c), (d), 
(e) and (f) from 3.2 are satisfied. Now, put Rnm(®) = Rlhm[b, a, d] (see 3.2), so 
that RIKm(®) is a minimal (n + l)-element SH-groupoid of type (a, a, a) and of 
subtype (a). 

5.4 Let 4 < n and Rn = [a,b, c, d,gA,..., g„_i} (n pair-wise different elements). 
Define a structure of semigroup on Rn as follows: b = a2, c = a\ gi = a' for 
4 < / < n — 1, d = a11, a4 = an+l. Clearly, Rn is cyclic semigroup generated by 
a and the condition (a), (b), (c), (d), (e), (f) from 3.2 are satisfied. Now, put 
Rn(®) = Rn\_b, a, d] (see 3.2), so that Rn(®) is a minimal n-element SH-groupoid 
of type (a, a, a) and of subtype (a). 

5.5 Theorem, (i) i?:(°) is (up to isomorphism) the only infinite minimal 
SH-groupoid of type (a, a, a) and of subtype (a). 
(ii) Let n > 4. Then the n — 2 groupoids Rn(®\ Rn-i,m(®) (3 < m, m < n — I) 
are pair-wise non-isomorphic and they are (up to isomorphism) the only n-element 
minimal SH-groupoids of type (a, a, a) and subtype (a). 
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Proof, (i) Let G be an infinite minimal SH-groupoid of type (a, a, a) and of sub­
type (a). Let a e G be such that a. aa #= aa. a and let b = aa, c = ab, d = ba. The 
groupoid G satisfies the condition (SHI) from 3.1 (see 5.2), and so we have the cor­
responding semigroup G(*). Proceeding similarly as in the proof of 5.2 and using the 
fact that G is infinite, we can show that xy =1= d if (x, y) =t= (b, a). This shows that 
//(*) is a cyclic semigroup generated by a, where H = G — {d\ The rest is clear, 
(ii) Let G be an n-element minimal SH-groupoid of type (a, a, a) and of subtype 
(a). Again, G satisfies (SHI) and we have the semigroup G(*) from 3.1. If 
d 4- x . y for all x, y e G, then G(*) is not cyclic, if(*) is cyclic (H = G — {d})and 
G is isomorphic to Rn~\,m(®) for some 3 < m < n — 1. Now, assume that 
d = x * y for some x j e G , i.e., d = uv for some u,veG such that (w, v) 4- (b, a). 
Then, G(*) is a cyclic semigroup generated by a and we have d = a * ... * a 
(k-times). From this a*a*a*a = a*c = a*d = a*... * a (k + l-times) 
and, since G possesses just n elements, necessarily k = n. Consequently, G is 
isomorphic to Rn(®). 

5.6 Corollary. Let G be a minimal SH-groupoid of type (a, a, a) arid of subtype 
(a). Then sdist(G) = 1. 

5.7 Example. 

ВД a b c d 

a b c d d 
b d d d d 
c d d d d 
d d d d d 

Ы°) a b c d 

a b c c c 
b d c c c 

c c c c c 
d c c c c 

H°) a b c d 04 

a b c 04 04 d 

b d 04 d d 04 

c 04 d 04 04 d 
d 04 d 04 04 d 

04 d 04 d d 04 

* 4 » a b c d 9A 

a b c 9A 9A c 

b d 9A c c 9A 

c 9A c 9A 9A c 
d 9A c 9A 9A c 

9A c 9A c c 9A 

-M°) a b C d 04 

a b c 04 04 04 

b d 04 04 04 04 

c 04 04 04 04 04 

d 04 04 04 04 04 

04 04 04 04 04 04 
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III.6 Minimal SH-groupoids of type (a, a, a) and subtype ((3) 

6.1 Proposition. The following conditions are equivalent for a groupoid G: 
(i) G is a minimal SH-groupoid of type (a, a, a). 
(ii) G is non-associative and G is a homomorphic image of the groupoid R\(°) 
(see 4.6). 

Proof. This is an easy consequence of 4.11 (see the proof of 5.1). 

6.2 Lemma. Let G be a minimal SH-groupoid of type (a, a, a) and or subtype 
(p). Let d e G be such that d . dd 4= dd . d. Then: 
(i) x = y = d, whenever x, y e G and xy = b' = dd. 
(ii) x = d and y = b', whenever x, y e G and xy = c' = db'. 
(Hi) x = b' and y = d, whenever x, y e G and xy = d' = b'd. 

Proof. Let b' = dd, c! = db', d' = b'd, e = b'b' = dc! = d'd, f = c'd = 
= dd' and let cp: Rx(o) -+ G be a projective homomorphism (see 6.1). Then 
d, b', c', d', e', f are pair-wise different and cp(a) = d, <p(b) = b', cp(c) = c', 
cp(d) = d', cp(e) = e', cp(f) = f. Further, let x, y e G, u,ve R{ and cp(u) = x, 
cp(v) = y. 
(i) Let xy = b'. Proceeding similarly as in the proof of 5.2, we can show that 
x = y = d. 
(ii) Let xy = C'. Then cp(u o v) = c', and so u o v 4= a, b, c, d, e,f. If u o v = g, for 
some i > 5, then a o (u o v) = g/+1 = (it o v) o a and this implies that e' = dc' = 
= c'd = f, a contradiction. Thus u o v = c, u = a, v = b and x = d, y = b'. 
(iii) This is dual to (ii). 

6.3 Let n > 4, 4 < m < n and R'nm = {a,b, c, d, e, f, g5,..., g,,} (n + 2 pair-
wise different elements). Define a structure of a semigroup on R'n m as follows: 
b = a2, c = a\ e = a4, g, = d for 5 < i < n, an+l = am, ad = f, dx = a}x, 
fx = a4x, xf = xa4 for every x e R'nm, yd = ya} for every y e R'nm, y 4= a. It is 
easy to check that R'n m becomes a semigroup and that R'nm is not cyclic; every 
generator set of R'nm must contain the elements a, d. Moreover, the conditions 
(a), (b), (c), (d), (f) from 3.2 and the conditions (e'), (g), (h), (i), (j), (k) from 3.4 
are satisfied. Now, define a binary operation o on R'n m by x o y = xy if 
(x, y) + (b, a), (c, a), and b o a = d, c o a = f (see 3.4). Then R'lum(o) is a minimal 
(n + 2)-element SH-groupoid of type (a, a, a) and of subtype ((3). Clearly, 
1 < sdist^,', ,„(°)) < 2. If 5 < m, then e + b o g for every g e R',um, g + b, and it 
is easy to check that sdist(K;, „,(o)) = 2 (see 3.3). Finally, if m = 4, then 
sdist(K;, „7(o)) = 1 (R„A(G) [a, a, gn-{\ for n > 6 and R'nA(o) [a, a, c] for n = 4,5 
are semigroups). 

6.4 Let 5 < n and R'n = {a,b, c, d, e,f, g5,..., gn_x) (n + 1 pair-wise different 
elements). Define a structure of a semigroup on R'n as follows: b = a2, c = a\ 

e = d, g, = d for 5 < / < n - 1, a" = / , ad = f, dx = ayx, fx = a4x for every 
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xe R'n and yd = ya3 for every y e R'n, y =1= a. It is easy to check that R'n becomes 
a semigroup (which is not cyclic) and that the conditions (a), (b), (c), (d), (f) from 
3.2 and the contitions (e'), (g), (h), (i), (j), (k) from 3.4 are satisfied. Now, define 
a binary operation o on R'n by x o y = xy if (x, y) =t= (b, a), (c, a) and b o a = d, 
c o a = / (see 3.4). Then R'n(o) is a minimal (n + l)-element SH-groupoid of type 
(a, a, a) and of subtype (P). Moreover, sdist(i?;,(o)) = 2 (see 3.2). 

6.5 Theorem, (i) R\(o) is (up to isomorphism) the only infinite minimal 
SH-groupoid of type (a, a, a) and of subtype (P). 
(ii) Let n > 6. Then the n — 4 groupoids R'n_x(o), R'n_2,m(°) (4 < rn < n — 2) 
are pair-wise non-isomorphic and they are (up to isomorphism) the only n-element 
minimal SH-groupoid of type (a, a, a) and subtype (P). 

Proof, (i) Let G be an infinite minimal SH-groupoid of type (a, a, a) and of 
subtype (P). Let a e G be such that a . aa =)= aa . a and let b = aa, c = ab, d = ba, 
e = ac, f = ad. The groupoid G satisfies the condition (SHI) from 3.1 and the 
condition (SH2) from 3.3 (see 6.2), and so we can consider the corresponding 
semigroup G(*). Proceeding similarly as in the proof of 6.2 and using the fact that 
G is infinite, we can show that xy =(= / if (x, y) =t= (a, d), (c, a). This (together with 
6.2(iii)) shows that H(*) is a cyclic semigroup, where H = G — {d,f}. The rest is 
clear. 
(ii) Let G be an n-element minimal SH-groupoid of type (a, a, a) and of subtype 
(P). By 6.2, G satisfies both (SHI) and (SH2) and we have the semigroup G(*) 
from 3.3. By 6.2(iii), d =)= x * y for all x, y e G. If / + x * y, then //(*) is cyclic 
(H = G — {d,f}) and G is ismorphic to R'n-2,m(o). Now, assume that / = x * y 
for some x, ye G, i.e., / = uv for some u,veG such that (u, v) 4= (a, d), (c, a). 
TJien / = - a * . . . *a (/c-times), which means that a*a*a*a*a = a*/ = 
= a*... *a (k + 1-times) and, since G possesses just n elements, necessarily 
k = n — 1. Consequently, G is ismorphic to R'n_x(o). 

6.6 Corollary. Let G be a minimal SH-groupoid of type (a, a, a) and subtype 
(P). Then sdist(G) = 2 except for the case when G is ismorphic to R'n4 for some 
n > 4 and then sdist(G) = 1. 

6.7 Example. 

яU°) a b c d e f 

a b c e f e e 
b d e e e e e 
c f e e e e e 
d e e e e e e 
e e e e e e e 

f e e e e e em 

вд a b c d e f 

a b c e f f f 
b d e f f f f 
f f f f f f f 
d e f f f f f 
e f f f f f f 
f f f f f f f 
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*U°) a b C d e / g5 

a b c e f g5 g5 e 

b d e g5 g5 e e g5 

c f g5 e e g5 g5 e 

d e g5 e e g5 g5 e 

e g5 e g5 g5 e e g5 

f g5 e g5 g5 e e g5 

95 e g5 e e g5 g5 e 

*U°) a b c d e f 95 

a b c e f 9ъ 9s f 
b d e 95 95 f f 95 

c f 95 f f. 95 9s f 
d e 95 f f 95 95 f 
e 95 f 95 95 f f 95 

f 95 f 95 95 f f 9s 

95 f 95 f f 95 95 f 

4°) a b c d e f 9s 

a b c e f 95 9s 95 

b d e 95 9s 95 9s 9s 
c f 9s 95 9s 9s 9s 9s 
d e 95 9s 9s 9s 9s 9s 
e 95 95 9s 9s 9s 95 9s 

f 9s 9s 9s 9s 95 9s 9s 
9s 9s 9s 9s 9s 9s 9s 9s 

III .7 Comments and open problems 

7.1 In this part, some results from [1] are reformulated. Besides, the semigroup 
distance of minimal SH-groupoids of the type (a, a, a) is found. 

7.2 Find the numbers sdist(G) for SH-groupoids of the type (a, a, a). In 
particular, are these numbers bounded? 

R e f e r e n c e s 

[1] HÁJEK P., Die Szászschen Gшppoide, Matem.-fyz. časopis SAV 15/1, (1965), 15—42. 
[2] HÁJEK P., Berichtigung zu rneiner arbeit „Die Szászschen Gruppoide", Matem.-fyz. časopis SAV 

15/4, (1965), 331. 
[Зl KEPKA T. and TRCH M., Groupoids and the associative law l. (Associative triples), Acta Univ. 

Carol. Math. Phys. 33/1, (1992), 6 9 - 8 6 . 
[4l KEPKA T. and TRCH M., Groupoids and the associative law II. (Groupoids with small semigroup 

distance), Acta Univ. Carol. Math. Phys. 34/1, (1993), 6 7 - 8 3 . 
[5] SzÁsz G., Die Unabhängigkeit der Assoziativitàtsbedingungen, Acta Sci. Math. Szeged 15, 

(1953-54), 2 0 - 2 8 . 
[6] SZÁSZ G., Über Unabhängigkeit der Assoziativitätsbedingungen kommutativer multiplikativer 

Strukturen, Acta Sci. Math. Szeged 15, (1953-54), 130-142. 

30 


		webmaster@dml.cz
	2012-10-06T02:41:31+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




