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Received 10. October 1993

Basic properties of permutation groups generated by left and right translations of quasigroups and
loops are collected.

Zikladni vlastnosti permutaénich grup generovanych levymi a pravymi translacemi kvazigrup a lup
jsou sebrdny.

1. Multiplication groups — first observations

1.1 A groupoid is anon-empty set supplied with a binary operation. This operation
is usually denoted multiplicatively, i.e. by . or juxtaposition.

Let G be a groupoid. For each a € Q, we have two transformations .#(G, a) and
A(G,a) of G defined by Z(G,a)(x) =ax and (G, a)(x) = xa, resp. The
transformation (G, a) (%(G, a))is called the left (right) translation by a (of G)
and will be also denoted by Z(a) (%(a)) when G is clear from the context.

A groupoid is called a quasigroup if all the translations are permutations (i.e.
bijective transformations). :

A loop is a quasigroup possesing a neutral element.

1.2 Let Q be a quasigroup. The subgroup #{Q) = {Z(a);a € Q) generated by
all the left translations (in the group &”(Q) of all permutations of Q) is called the
left multiplication group of Q. Similarly .#,/(Q) = (%(a);ae Q) is the right
multiplication group and #(Q) = {%(a), Z(a);a € Q) = {AM(Q) L #,(Q)) is the
multiplication group of Q.

For a € Q, the stabilizer F(Q, a) = St(#(Q), Q, a) = {f € #(Q); f(a) = a} is
called the left inner permutation group (with respect to a). Similarly.#(Q, a) =
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= St((Q), Q, a) is the right inner permutation group and .#(Q, a) = St(.#(Q), Q, a)
is the inner permutation group (with respect to a). If Q is a loop, then #(Q) =
= J(Q, 1) is called the inner permutation group of Q.

1.3 In the rest of this section, let Q be a quasigroup, S = ¥(Q), G, = #(Q),
G, = #M/(Q), G = A(Q), H{a) = #(Q, a), H(a) = F(Q, a), and H(a) = #(Q, a).

1.4 Observation. (i) The permutation group G (G,, G,.) is transitive on Q and
consequently the stabilizers H(a) (H{a), H,(a)), a € Q, are conjugate in G (G, G,).
In particular, the stabilizers are isomorphic.

(i) (H(@) =1 ((\H{a) =1, (\H(a) = 1).

aeQ) aeQ aeQ

(iii) L((:(H(A)) =1 (Lg(H(A)) = 1, (i,G‘_(H,.(A)) = 1) (here, LK) denotes the
core of a subgroup K in G).

(iv) <JH(a)ae Q) (K\JH(a); a e Q>.<{|JH/(a);, a € Q))is normalin G (G, G,).

(v) card(G) = card(Q)-i(Q) (card(G)) = card(Q)-i(Q), card(G,) = card(Q)-i(Q)),
where i(Q) = card(H(a)) (i{Q) = card(H{a)), i(Q) = card(H (a)).

(vi) i,(Q) <i(Q) and i,.(Q) < i(Q), moreover, both i,(Q) and i,.(Q) divide i(Q),
provided that i(Q) is finite.

1.5 Obscrvation. (i) Z(G) < C(G) = [/ €S; [ = A(f(a)) R(a)~" for ecach
a€Q} < Gyhere, Z(K) is the centre of K and CyK) is the centralizer of K for
a subgroup K of S).

(i) Z(G,) = Cs(G,) = {J €S; [ = ZL(f(a)) L(a) ' for each ae Q} < G,

(iii) Z(G) = C5(G) € G, N G,
(iv) Z(G) = Z(G) n Z(G)).
(v) Z(G) UZ(G,) € G, N G,

(i) If Q is a loop, then Z(G) = | Z(a); a € Z(Q)} = [Z(a); a€ Z(Q)): in
particular, the groups Z(G) and Z(Q) are isomorphic.
(vii) Every automorphism of Q is contained in each of the normalizers NS(G),
Ny(G). Ny(G,) '
(viii) Suppose that Q is a loop and that the automorphism group of Q is transitive
on Q — {1}.Then each of the normalizers N{G), Ny(G)), Ns(G,) is 2-transitive on Q.
1.6 Observation. Put A = {L(a);ae Q} and B = {F(a);a € Q}.
(1) The set A is a transversal to each of the subgroups I-I,(a) in G, ie Ais
a stable transversal.
(i1) The set B is a stable transversal to cach of the subgroups H,.(a) in G,.
(iii) Both A and B are stable transversals to each of the subgroups H(a) in G.
Moreover, A, B are H(a)-semiconnwtal transversals (see 1.4.1).
(iv) If Q is a loop, then A and B are H(I)-connected, i.e. the mutual commutator
[A, B] is contained in H(1).
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1.7 Observation. (i) The following conditions are equivalent:

(@ i{Q) =1 (i(Q) = 1).

(b) G, (G,) is a regular permutation group.

() G,= A (G, = B).

(d) Q is a left (right) loop isotopic to a group.

(e) There exist a group Q(+) (possibly non-commutative) and f € S such that
f(0) =0and xy = f(x) + y (xy = x + f(y) for all x, y€ Q.

(i1) The following conditions are equivalent:

@ i(Q) = 1 = i[Q)

(b) Both G, and G, are regular permutation groups.

(¢) G,= Aand G, = B.

(d) Q is a group.

In this case, the groups Q, G;, G, are isomorphic and G is isomorphic to the
factorgroup (Q x Q)/K, K = {(a,a); a € ZQ}. Moreover, H(1) is isomorphic to
Q/Z(Q).

(i) The following conditions are equivalent:

(@) i(Q) = 1.

(b) G is regular permutation group.

(c) Q is an abelian group.

In this case, the groups Q and G = G, = G, are isomorphic.

1.8 Let r be a binary relation defined on Q. Then r is called

— left (right) stable if (a, b) € r implies (xa, xb) € r ((ax, bx) € r) for every x € Q;

— stable if it is both left and right stable;

— left (right) cancellative if (ca, cb) € r ((ac, be) € r) implies (a, b) € r;

— cancellative if it is both left and right cancellative.

Clearly, a congruence of Q (i.e. a stable equivalence) is cancellative iff the
corresponding factorgroupoid is again a quasigroup.

1.9 Observation (i) Let N be a normal subgroup of G, (G,). Define a relation
ron Q by (a,b)eriff b = f(a) for some f € N. Then r is left (right) cancellative
left (right) stable equivalence on Q. Moreover, r = idg iff N = landr = QxQ
iff N is transitive on Q.

(it) Let r be left (right) cancellative left (right) stable equivalence defined on Q.
Then N = {f € G, ([ €G,); (x; f(x)) € r for each x € Q} is a normal subgroup of
G, (G,). Moreover, N = G, (N = G,) iff r = QxQ.

(i) The permutation group G, (G,) is primitive iff idy and Q x Q are the only
left (right) cancellative left (right) stable equivalences on Q.

1.10 Observation. Let A" denote the lattice of normal subgroup of G und € the
lattice of cancellative congruences of the quasigroup Q.
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(i) Forevery N e A, r = ®(N) defined by (a,b)er iffa,be Q and b = f(a)
for some f € N is a cancellative congruence of Q.

(i) for every re ¢, N =Y()={f€G; (x,f(x)er for each xeQ} is
a normal subgroup of G.
(iii) ®(N) = idg iff N = 1 and ®(N) = Q x Q iff N is transitive on Q.
(iv) Y(r)=1iffr=idgand ¥(r) = G iffr = Qx Q.
(v) If Ny M e & and N © M, then ®(N) < O(M).
(vi) Ifr,s€€ and r < s, then P(r) < ¥(s).
(vii) Let Ne N and g € G. Then g € YO(N) iff for every x € Q there is f € N
with g(x) = f(x); in particular, N = WO(N).
(viii) Letr € € and a, b e Q. Then (a, b) € ®¥(r) iff b = g(a) for some g € G such
that (x, g(x)) € r for every x € Q; in particular, ®Y(r) < r.
(ix) If N, M€ N, then ®(N, M) = ®(N) ®(M) and DN ~ M) < ®(N) N ¥(M).
(x) If r,s€ G, then W(r)\V(s) € V(rs) and ¥(r N s) = V(r) 0 Y(s).
1.11 Proposition. Let N € A" and M = Y®(N). Then:
(i) ForeachaeQ, M =L(NH(a))=NK,where K ={feH(a);g~'fge NH(a)
for each g € G}.
(ii) M = (\NH(a).
aeQ
(iii)) YO(M) = M.
Proof. The assertions follow easily from 1.10(vii).

1.12 Proposition. (i) YO = id,.

(ii) The mapping ®: A" — € is projective.

(iii) The mapping V: € — N is injective.

Proof. Let r € € and s = ®¥(r). By 1.10(viii), s < r. Now, let (a, b) € r. Then
(x, Z(a)~" Z(b)(x))er for every xeQ (since r is cancellative), and hence

(a, Z(a)~' £(b)(a)) € s by 1.10(viii). However, s is a cancellative congruence of
Q and consequently (aa, ba) € s and (a, b) € s. We have proved that r = s.

1.13 Observation. Letre €, P = Q/r (i.e., P is the factorquasigroup of Q by r)
and let \: Q — P denote the natural projection.

(i) Pt N =Y(r). Then YO(N)=YOY¥(r)= V()= N. Hence also
N = L¢(NH(a)) for each ae Q and N = (\NH(a) (see 1.11 and 1.12).

aeQ

(i) There exists a projective homomorphism ¢: G — #/(P) suchthatKer(p) = N
and ¢(2(0Q, a)) = L(P, Y(a)), ¢(#(Q, a)) = A(P,(a)) for every Ae Q. In par-
ticular, the groups #(P) and G/N are isomorphic. Moreover, ¢(G) = #(P) =
~ G/G,n N = G\N/N and ¢(G,) = #[(P) = G,/G,n N = G,N/N.
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1.14 Observation. The permutation group G is primitive iff the quasigroup Q is
c-simple (i.e., idy and Q x Q are the only cancellative congruences of Q).

1.15 Observation. ILet P be a subquasigroup of Q, K, = (!Z’(Q, a); ae P) c G,
K, = (@(Q,a); aeP) £G,and K = (K, U K,) € G. Then there exists a projec-
tive homomorphism ¢: K — ,//(P) such that o( f )= S |P foreach f € K. Moreover,
¢o(K) = #(P), p(K,) = 4 (P) and Ker(p) = (H(a) n K.

ael’

1.16 Observation. Suppose that Q = T1Q;, where Q,,i € 1, is a non-empty system
of quasigroups. Then there exists an injective homomorphism ¢: T1/#(Q,) — S such
that @(I1f) = If,, fie #(Q). Moreover, G < 1Im(p), G, < @(II.#(Q) and
G, < o(I1.7,(Q).

1.17 Obscrvation. (i) The following conditions are equivalent:

(a) G, is abelian.

(b) Q is left permutable (i.e., x - yz = y - xz for all x, y,z € Q).

(¢) There exists an abelian group Q(+) and f €S such that {(0) = 0 and
xy = f(x) + yforall x,y€ Q. In this case, i(Q) = 1 (see 1.7(i)).

(i) The following conditions are equivalent:

(a) G, is abelian.

(b) Q is right permutable (i.e., x - yz = y - xz for all x, y,z€ Q).

(¢) There exists an abelian group Q(+) and [ €S such that f(0) = 0 and
xy = x + f(y) for all x,y € Q. In this case, i(Q) = 1 (see 1.7(i)).

(i) The following conditions are equivalent:

(a) Both G, and G, are abelian.

(b) G is abelian.

(¢c) G is regular.

) i(Q) = 1.

(e) Q is an abelian group.

() I(a) is normal in G.

1.18 Proposition. If Q is non-trivial and the multiplication group G is simple,
then, for each a € Q, H(a) is a maximal subgroup of G.

Proof. The result follows from 1.6(iii) and 1.3.13.

2. Inner permutation groups
2.1 This section is an immediate continuation of the preceding one.

For a,x,yeQ, let Z(x,y,a) = 2(Q,x,y,a) = ZL(y)" Z(x)"" L),
v==R(a)""(x ya), A(x,y,a) = B(Q,x,y,a) = A(y)~" R(x)"" A(w), w=L(a)~" (ax"x)
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and F(x,a)=T(Q,x,a)= L(x)"" 4(z), z= L(a)” ' (xa). Clearly, L(x,y,a) € H{a),
w(x, y, a)eH( ), and J(x a) H(a) If Q is a loop and a = 1, then J’(\c y) =
= Dy, 1) = L) L L), Bl )= A, 1) = A B ),
and I (x) = T(x, 1) = L(x)"! ()

2.2 Proposition. ([1]) Let A€ Q.

(1) The inner permutation group H(a) is generated Dy the permutations
L(x, v, a), Ax, y, a), T(x,a), x, y€ Q.

(it) The left inner permutation group II,(a) is generated by the permutations
L(x, y,a), x, yeQ.

(iti) The right inner permutation group H(a) is generated by the permutations
A(x, y,a), x, y € Q.

Proof. (i) Let K denote the subgroup of G generated by the permutations in (i).
Then K < H(a) and we are going to prove that H(a) < K.

Let feH(a). There are n21, R,...R,e(Z. R}, u,..,u,eQ and
Fro.oy 1y € (1= 1) such that /= Ry(u,)" ... R,(u,)™. Now, proceeding by induction
on i, we prove that [ e K. We can assume, without loss of generality, that R, = #.

First, let n = 1. Then au, = a and 2(u,) = #(u,, uy, a)~' € K. Consequently,
/= 2u)" K.

Now, let n = 2. The rest is divided into several parts.

(a) LetR,., = Zandr,_, = 1 = r,. Then we have [ = ¢g#(u,_,) #(u,), where
g = Ry(uw)" ... R, \(u, -y g =idy for n = 2. Further, h = R(u,_,, u,,a)e K
and fh = gA(w), where aw = au, - u,_,. But g#(w) (a) = fh{a) = a, and therefore
gA(w) e H(a) and fh = gZ(w) € K by induction. Since € K, we have also f € K.

(b) Let R,y =2 and r,_,=1=r, Then [=gLu,_\)Ru) h=
= A(u,) " L(z)e K, where au, = za, and [h = g.L(u,_,) ZL(v) € H(a). Now, this
case is dual to the case (a).

(¢) Let R,_y =2 and r,_, = —1, r, = 1. Then f[= g&(u,_,)""' A(u,) =
= g(u) h, where au, = au- u,_,,h = Ru)™" A, )" Bu,) = B(u,_, u, a) e K.
From this, fh™" = g#(u) € H(a), g2(u) € K by induction and fe€ K.

() Let #,_, = L and r,_, = —1,r,=1.Then [ = gZL(u,_,)"" Ru,), h =
= Au,)"" ZL(z) € K, where za = au,, [h = gZL(u,_,) L(v)€ H(a) and this case
is dual to the case (c).

(¢) Finally, let r, = —1, so that [ = (//(u,,) ' Let w,z€ Q be such that
aw = a = az-u, Thenh = R(u,, z, a) = A()~" #(u,) " %’(u)e K and #(w) € K.
Further, f#(w) = g#(z) h € H(a), so that g. /P( ) H(a) and, consequently, g#(z) € K
by induction. Then also [ = g#(z) h#(w) ' € K.

2.3 Consider the situation from 1.13.

(i) It follows easily from 2.2(i) that, for each a € Q, ¢(H(a)) = S(P, ¥(a)) and
Ker(qp|H(a)) = H(a) A N. Thus we have the isomorphisms J(P,y(a)) =
=~ H(a)/H(a) n N = H(a) N/N.
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(ii) @(H{(a))= IR y(a)), Ker(p|H(a))= H{a)n N and (P, y(a)) = H{a)/H(a) N
AN = H{a) N/N.
(iii) @(H,(a))=F(B¥(a)),Ker(p|H,(a))=H,(a)n N and J(By(a)) = H(a)/H(a) N
AN = Hy/a) N/N.
2.4 Consider the situation from 1.15.
(i) For ae P, let I(a) = {(Z(x,y, a), A(x, y, a), 7 (x, a); x,y € P) = K. Then
¢(I(a)) = (P, a) and I(a) < H(a).
(ii) For ae P, let I{a) = (Z(x,y, a); x, xe P) < K, Then ¢(I{a)) = J(P, a)
and I(a) < H{a).
(iii) For ae P, let I,(a) = {Z(x,y, a); x, x€ P) < K,. Then ¢(I,(a)) = 4,(P, )
and I,(a) € H,(a).
2.5 Consider the situation from 1.16. Then, for a = (a) € Q, H(a) (H(a), H,(a))
can be embedded into T1.#(Q, a;) (ITHQ, a), TL.7(Q,, a))).
2.6 Lemma. Let a, b e Q. The following conditions are equivalent:
(i) H(a) = H(b).
(i) H(b) = H(
(iii) H( ) = H(
(iv) Z(b) < (a)
V) Z(a) ()"

a).
b).
' = 9(b) %) " € Z(G).
' 0/7() (b)~" e Z(G).
)(

Proof. Flrst obse that  &(x, y, a)e H(b) iff L(x) 9/7( )(
= A0) 90)" L0 A O Ay D HO) T A 2
20 200 ' ) 2le) () and” sl e HE) 0 205 2le): A
= A(b) (x). Consequently Z(x, y, a) € H(D) for every y € Q iff £(x ) (D) A(a)
= @(b) RAla)~" L(x). Similarly 2(x, y,a)e Hb) for every yeQ iff
A(x) L(b) L(a)™" = L(b) L(a)~" A(x). Moreover T (x, a) € H(b) for every x € Q
iff 2(b) Z(a)™" = A(a) A(b)~". Using this, we see easily that (i) implies (iv).
Conversely, iff (iv) is satisfied, then (i) follows by 2.2(i), and so (i) and (iv) are
equivalent. Quite similarly, (ii) and (v) are equivalent and, trivially, (iv) and (v)
are equivalent.

2.7 Proposition. ([4]) Let a € Q.

(i) feNg(H(a)) iff f € G and H(f(a)) = H(a).

(ii) NG(H(a)) = H(a) Z(G).

Proof. First, let g € Ng(H(a)) and g € H(a). Then h = [~'gf € H(a), ¢f(a) =
= fh(a) = [(a) and g € H(f(a)). We have proved that H(a) < H(f(a)), and so
H(f(a)) = H(a) by 2.6.

Now, let H(f(a)) = H(a) and let beQ be such that a = ab. By 2.6,
2(f(a)) L(a)"' € Z(G). However, 2(b)e H(a) = H(f(a)), f(a)= f(a)Db,
S 2(f(a)) L(a)~' € H(a) and f € H(a) Z(G) = Ng(H(a)).

Another proof of (ii) follows from 1.6(iii) and 1.3.18.

,\
/—\
S
~——
—_

\,\.—\.-

_vvv
S I
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2.8 Lemma. Let a, b € Q. The following conditions are equivalent:
(i) Hfa) < H(b) (H(a)  H,(b))
(i) H{b) < Hfa) (H/{b) € H,(a))
(iiiy H{a) = H(b) (H(a) = H,(b)).
(iv) (b) Z(a)™' € C(G) = C{G)) £ G, (L(b) Z(a)'€Ci(G,) = Cs(G,) < G
(v) #(b)R(a)™" = R(xb) #(xa)~" for every xe Q (L(b) L(a)~" = L(bx) ZL(ax)™"
Sfor every x € Q).
Proof. Similar to that of 2.6 (see 1.5(i), (ii)).
2.9 Proposiuon. Let ae€ Q and [ € G, (f € G,). The following conditions are
equimlenl'
/é N( ( ,( )) (]G N( (}1 ((l)))
(11) H{(f(a)) = H{a) (H,(/(a)) = H(a)).
(iii) [ €(C4(G) H(a)) N G, (€ (Ci(G,) H(a)) N G,).
Proof. (i) implies (ii). Let g € H{a). Then f 'gf € Il{a) and g € H{( f(a)). B
2.8, Ha) = H{ [ (a)).
(i) implies (iii). By 2.8, k = #(f(a)) #(a) " € C4(G)). Further, if a = ba. then
f(a) = bf(a) and f~'k € H(a).
(iii) implies (i). Let [ =¢gh, g€
SRS (a) = [ kgla) = [ 'gk(a) = h™'(a) = a, and so [ 'k f € H{a).
2.10 Corollary. (i) Ng(H(a)) = H(a) iff Z(G) = 1
(i) If C(G) = 1, then N (H{a)) = Hj(a).
(iti) If C4(G,) = 1, then N (H (a)) = H,(a).

C(( ). e H(a) and let ke H{a). Then

3. The stability congruence

3.1 We continue here immediately the preceding two sections.

Put s = s(Q) = O(Z(G)) (see 1.10(i)). Then s is a cancellative congruence of Q
(the stability congruence introduced by Smith in [4]) and ((I, b) esiff a,be Q and
b = f(a) for some [ € Z(G).

3.2 Lemma. Let a, b e Q. The following conditions are equivalent:

(i) (a.b)es.

(it) H(a) = H(b) (see 2.6).

(i) 2(h) L(a)"" € Z(G).

(iv) Z(b) %#(a)""' € Z(G).

In this case L(b) Z(a)"" = A(b) #(a)”" and L(b) L(a)"" (a) = b.

Proof. (i) implies (ii). This implication is casy.
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(it) implies (iii) and (iv). See 2.6.

(iii) implies (i). Let ce @ be such that a = ac. Then Z(b) Z(a)™' (a) =
= 2(b) L(a)~' %(c)™" (a) = Z(c)~" L(b) L(a)~" (a) = ()" (bc) = b.

(iv) implies (i). We can proceed similarly.

The rest is clear from 2.6.

3.3 Corollary. (i) card(Q) = card(Z(G)) - (card(Q/s).

(i) s = idg iff Z(G) = 1.

(iii) s = @ x Q iff Q is an abelian group.

3.4 For every ordinal number o« = 0, define a cancellative congruence
s(@) = s(Q, ) of Q as follows: s(0) = idg; if « =0 then s(a + 1) is the
uniquely determined cancellative congruence of Q such that s(e) < s(x + 1) and
s + 1)/s(x) = s(Q/s(«)); if & > 0 is limit, then s(x) = (Js(), 0 < f < «

The quasigroup Q is said to be stably nilpotent of class at most « if s(o ) Q x Q.

The quasigroup is said to be stably nilpotent if it is stably nilpotent of a finite class.

Clearly, Q is stably nilpotent of class at most O iff it is trivial and Q is stably
nilpotent of class at most 1 iff it is an abelian group.

3.5 (i) Forevery o 2 0, let L(a) = ‘P(s(e)) (see 1.10(ii)). Then L(x) is a normal
subgroup of G and Q is stably nilpotent of class at most « iff L(et) = G (this follows
from 1.12).

(ii) Forae Q and o 2 0, let H(a, o) = L(2) n H(a).

Let ¥: Q — Q/s(x) = P denote the natural projection. By 2.3(i), J(P, y(a)) =

H(a)/H(a, o).

3.6. Lemma. (i) L(0) = 1.

(i) L(1) = L(H(a) Z(G)), a € Q.

(iii) For every n 2 0, L(n + 1) = Ly(H(a) K,), a€ Q, where K, € A" is such
that L(n) < K, and K,/L(n) = Z(G/L(n)).

Proof. (i) This is obvious.

(i) L(1) = (s) = WYO(Z(G)) = L(H(a) Z(G)) by 1.11().

(i1i) We shall proceed by induction on n. For n = 0, the result is proved in (ii).
Now letn 2 1, P = Q/s(n), ¥: Q — P and o: G - G/L(n) be the natural projection
and let ¢:G — .#(P) be by 1.13(ii). Now, we are going to show that
s(n + 1) = O(K,).

First, let feK,, ae Q. We have L(n) = Ker(p), so that ¢ = gg for an iso-
morphism a: G/L(n) — .//(P), and then o(F) = ao(/) € Z(.#(P)), (W(a), o(/) (¥(a))) =
= (Y(a), y(f(a)) € s(P) and (a, f(a))e s(n + 1). We have proved that ®(K,) is
contained in s(n + 1).

Now, let (a, b) € s(n + 1), i.e. (Y(a), ¥(b)) € s(P). Then there is f € K, such that

W(b) = o(f) (¥(a)) = ¥(/(a)). However, then (a, f(a)) € D(K,) and (f(a), b) € s(n).

Since L(n)  K,, we have s(n) = ®(K,), and hence (a, b) € O(K,
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We have proved that s(n + 1) = ®(K,). Now, by L.11(i), L(n + 1) =V(s(n + 1)) =
= Yd(K,) = L(H(a) K,).

3.7 Proposition. Ler n = 1. The following conditions are equivalent:

(i) Q is stably nilpotent of class at most n.

(i) L(n) = G.

(iii) G' € H(a) K, . (see 3.6; K_, = 1).

(iv) H(c ) w_a s normal in G.

(v) H( 1) € Ln — 1).

(vi) H(a) = H(a,n — 1).

Proof. Easy (combine 3.4, 3.5 and 3.0).

3.8 Proposition. ([4]) Let n = 1. The following conditions are equivalent:
(i) Q is stably nilpotent of class at most n.
(i) For every a€ Q, H(a) is subnormal of depth at most n in G.

(iii) There exists a € Q such that H(a) is subnormal of depth at most n € G.

Proof. (i) implics (ii). By induction on n. If n = 1, then Il(a) = [l is normal in G,
i.e.. subnormal of depth at most 1.

Let n = 2 and P = Q/s(1). Then P is stably nilpotent of class at most n — 1,
and so 7(P,"(a)) = L(1) H(a)/L(1) is subnormal of depth at most n — 1 in
/(P) = G/L(1) (here, y: Q — P denotes the natural projection). This implies that
L(1) H(a) is subnormal of depth at most n — 1 in G. However, H(a) < L(1) H(1) =
= Z(G) I(a), so that H(a) is normal in L(1) H(a).

(i1) implies (iii). This is trivial.

(111) implies (i). Again by induction on n. If n = 1, then the result follows from
1.17(iii). Let n =22 and P = Q/s(1). We have .7(P.(a)) = L(1) H(a)/L(1) =
= Ng(H(a))/L(1). However Ng(H(a)) is subnormal of depth at most n — 1 in . Z(P),
P is stably nilpotent of class at most n — 1 and Q is stably nilpotent of class at most n.

3.9 Corollary. [fthe multiplication group G is nilpotent of class at most n = 0,

then the quasigroup Q is stably nilpotent of class at most n.
3.10 Put j(Q) = card(Q/s). By 2.7(i) and 3.2, we have j(Q) = [G: Ny(H(a))] =

[G H(a) Z(G)]. By 3.3(i), card(Q) = card(Z(G)) - j(Q). Comequently cald((')
= i(Q) './(Q) Cd'd(7 (G))

3.11 Lemma. (i) L(1) can be imbedded into the cartesian product of j(Q) copies
of Z(G); in particular, L(1) is abelian.

(it) For every ae€ Q, H(a. 1) can be imbedded into the cartesian product of
J(Q) — 1 copies of Z(G) (here. j(Q) — 1 = j(Q) for j(Q) infinite).

Proof. (i) For every a e Q, Ny(H(a)) is the direct product of H(a) and Z(G).
Hence, let 7,: Ng(H(a)) — Z(G) denote the natural projection. Now, let {u,} be a set
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of representatives of the blocks of s = s(1). Since L(1) = Lg(Ng(H(a))) for every
ae @, we can define a homomorphism ¢: L(1) - IT; Z(G) by ¢(f) = (n.(/)),
fe L(1). If o(f) = 1, then f € H(a,) for every i and then f€ ()H(a) = idgy. Thus
¢ is injective. a

(ii) Take ae Q and define y: H(a, 1) - I1 Z(G) by ¥(f) = (rna(/)), a; ¢ H(a).
Again, Y/ is injective.

3.12 Corollary. For every n 2 0, L(n + 1)/L(n) can be imbedded into the

cartesian product of j(Q/s(n)) copises of Z(G)/L(n)).

3.13 Corollary. ({4]) If Q is stably nilpotent of class at most n 2 1, then the
mudltiplication group G is soluble of class at most n.

3.14 Corollary. If Q is stably nilpotent of class at most 2, then H(a) (for each
a € Q) can be imbedded into the cartesian product of j(Q) — | copies of Z(G). In
particular, H(a) is an abelian group.

3.15 Proposition. Suppose that Q is finite and of prime-power order. The

Jollowing conditions are equivalent:
(i) Q is stably nilpotent.

(i) G is a p-group.

(iii) G is nilpotent.

Proof. (i) implies (ii). For every n = 0, the centre Z(G/L(n)) is isomorphic to
the centre Z(.#(Q/s(n)). However, the order of Q/s(n) is a power of a prime p, and
hence Z(G/L(n)) is a p-group (see 3.10). Now, by 3.12, I{n + 1)/L(n) is a p-group,
t00.

(ii) implies (iii). This is clear.

(iii) implies (i). See 3.9.

3.16 Lemma. (i) If a, b € Q belong to the same block of s, then ab = ba.

(i1) If Q is commutative and a, b, c € q belong to the same block of s, then
a-be =ab-c.

Proof. (i) b = f(a) for some fe Z(G), and so ab = af(a) = f(aa) = f(a) a =
= ba.

(i) b = f(a), ¢ = g(a), [,g€Z(G) and a-bc = a-[(a)g(a) = g(a" f(a) a) =
= g(a- f(aq)) = gf(a- aa) = fy(a- aa) = fg(aa-a) = ab - c.

3.17 Proposition. ([4]) If Q is stably nilpotent, then Q contains a unique
idempotent element e¢. The block of s containing ¢ is an abelian subgroup of Q.

Proof. We shall proceed by induction on the class n of Q. If n = 0, then Q is
trivial and the result is clear. Let n = 1 and P = Q/s. Then P is stably nilpotent
of class at most n — 1 and P contains just one idempotent element. The block R of
s(Q) corresponding to this element is a subquasigroup of Q. By 3.16, R is an abelian
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subgroup of @, and so the neutral element ¢ of R is an idempotent in Q. On the
other hand, if ¢’ € Q is idempotent, then ¢’ € R (since P contains just one idempotent)
and necessarily ¢’ = e.

3.18 If Q is a loop, then the stability congruence coincides with the congruence
corresponding to the centre Z(Q) of Q. Thus Q is stably nilpotent (of a class) iff
Q is (centrally) nilpotent (of the same class) in the usual sense.

3.19 Lemma. Suppose that Q is a loop but not an abelian group. Then j(Q) = 3

Proof. If j(Q) = 1,then s = Q x Q and Q is an abelian group. Now, let j(Q) = 2.
Then Q is (stably) nilpotent of class 2, Q = Z(Q) u a Z(Q) for any ae Q — Z(Q).
If b,c in Z(Q), then bc = cb, b ac = uc b, ab-ac = (ab-a)c = (a’h) ¢ =
= a* bc = a* ¢b = ac- ab and we have checked that Q is commutative. Simi-
larly, if b, ¢, d € Z(Q), then (ab) (ac - ad) = (a- @) (bed) = (a* - a) (bed) = (ab - ac) (ad)
and it is clear that Q is an abelian group; then j(Q) = I, a contradiction.

4. The loop-kernel

4.1 Again, this is an immediate continuation of the preceding three sections.

(i) Leta,be Q, [ = Aa),g = L(b)and x x y = [ ~'(x) g~ '(y)forall x, y € Q.
Then Q(x) is a loop, ba is its neutral element and xy = [(x) = g(y) for all x, y € Q.
The loop Q(*) is a principal isotope of Q and cvery puncnpdl loop isotope of Q is
of this form.

(ii) Let Q(x) be a loop which is principal isotope of the quasigroup Q, i.e.,
there exist f,geS such that xy = [(x)*¢g(y) for all x,yeQ. Then
S =2g7 (). g = L(f '(¢)). where ¢ denotes the neutral element of Q(+), and

= CHMOM), 95, G, = CAQX)). /D2 G = QS 9.

(iii) Let Q(x) and Q(¢) be loops which are both principal isotopes of Q. Then
Q(c) is a principal isotope of Q(x), and so M{Q(o)) = M{Q(x)),
M(Q(0)) & M,(Q(x)), M(Q()) = M(Q(*)). Similarly the converse inequalities and
thus we have .7Z(Q(°)) = M{Q(x)). .#(Q(<)) = M,(Q(x)) and M(Q(c)) = M(Q(*)).

The uniquely determined subgroup .Z(Q(x)) of G = ./#(Q) will be called the
loop-kernel of G in the sequel and will be denoted by G = .7(Q).

For every ae Q, H(u) n G = .7(Q.a) n G = 7(Q(*). a) = J(Q(c), a); we put
H(a) = 7(Q,a) = H(a) n G.

4.2 Lemma. (i) Z(a) ()" '€ G forall a,be Q.

(i) G = (L(x) L)', 2(x) A(b)'; x € O for all a,be Q.

(i) G = <G, L(a) #(b) for all a.be Q.

Proof. Sece 4.1.

4.3 Lemma. G = G- H(a) = H(a)- G for every ae Q.



Proof. Let [€G, bceQ a=ba, f(a)=ca Then f= Z(c)L(b)"-
- Z(b) Z(c)™"f, £(c) Z(b)~" € G and Z(b) Z(c)~' f € Ha).

4.4 Lemma. (i) Z(G) < G and Z(G,) < G.
(i) Z(G) € Lo(ZC)).

Proof. (i) This follows from 1.5(i), (ii) and 4.2(i).

(i) By (i) and 1.5(iv), Z(G) € G. Hence Z(G) < Z(G) and, moreover,
Z(G) < Lg(Z(G)).

4.5 Proposition. The following conditions are equivalent:

(i) Q is isotopic to abelian group.

(i) G is an abelian group.

(iiiv H(a) = L.

(iv) H(a) is a cyclic group.

Proof. (i) implies (ii). Let Q(*) be a principal loop isotope of Q. Then Q(x) is
an abelian group, and so Q(x) = #(Q(*)) = G.

(ii) implies (iii). We have H(a) = #(Q(*),a) = 1.

(iii) implies (iv). This is trivial.

(iv) implies (i). Q(*) is a loop whose inner permutation group is cyclic. By [3],
Q(*) is an abelian group.

4.6 Corollary. Suppose that H(a) is cyclic. Then Q is isotopic to abelian group.

4.7 Proposition. Suppose that H (a) is abelian and Q is isotopic to abelian group.
Then G" = 1.

Proof. By 4.5, G is abelian. However, G = G - H(a) and we can use the
well-known Ito theorem.

4.8 Let Q(x) be a principal loop isotope of Q and let e denote the neutral element
of Q(*). There are f, g € S such that xy = f(x) g(y) for all x, ye Q.

(i) Put a = f(e) and f, = 2(Q(*), a)”" f€S. Then fi(e) = e, so that f, € H(e),
and f(x) = fi(x) * a for every x € Q. Similarly, it b = g(¢)and g, = 2(Q(x), b)~' g,
then gie) = e, g,€ H(e) and g(x) = g,(x) xb for every xe Q. Now, xy =
= (fi(x) * a) * (g4(x) * b) for all x, y € Q.

(i) We have Z(G) = {£(Q(x),u); ue Z(Q(%))}. Now, put R = {ue Z(Q(*));
L(Q(*), u) € L4(Z(G))}. Then R is a subgroup of Z(Q(x)).

(iii) Let ue R and he H(c). Then Z(x, u) € Ly(Z(G)), and so h&(x, u) h~' =
= &(,v) for suitable ve R. Then also h(u) = h(uxe) = v* h(e) = v, so that
hP(x, u) = L(*, h(u)) h and h(u x x) = h(u) * h(x) for every x € Q.

(iv) For each he H(e), h|R is an automorphism of the abelian group R(x). In
particular, f;|R and g,|R are automorphisms of R(x).
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(v) G = <G, f;, g,>. Now, define a binary operation A on Q by x Ay =
= fi(x) * g,(y). Then Q(A) is a guasigroup, it is a principal isotope of Q and
MQ(A) = G = M(Q), #(Q(A)) = G = .#(Q). Moreover, e A e = e.

(vi) If G is abelian and normal in G, then Q(x) is an abelian group and f,, g, are
its automorphisms. In that case, xy = fi(x) * g)(y) * ¢, ¢ = a = b, for all x, y € Q.

5. Quasigroups linear over abelian groups

5.1 A quasigroup Q will be called linear (more precisely, linear over abelian
group) in the sequel if there exists an abelian group Q(+), f, g € Aut(Q(+)) and
w e Q such that xy = f(x) + g(y) + wforall x, y € Q. Now, assume that Q is such
a quasigroup.

() 2(0,0) = LO(+).S() + w) g and #(Q, &) = L(Q(+).gla) + w)f or
every ae Q.

(i) A(Q) = {AM(Q(+)).9), .///(Q(+)) is a normal subgroup of .#{Q),
//(Q( )) Nn<{g)=1and A(Q) = #(Q ( )) {9,

(i) A,(Q) = <A(Q(+))./>, ( (+)) is a normal subgroup of .#,(Q),
MQ(+)) " Y = Land #/(Q) = A(Q(+)) .

(iv) AM(Q) = M (Q(+)).1, 9D //,(Q( +)) is a normal subgroup of .#(Q),
MQ(+)) N <f 9> = 1 and #(Q) = A(Q(+)) </, 9.

V) F(Q,0) = <g>, £(Q,0) = </ and F(Q,0) = {f, ¢>.

(vi) A(Q) = .#(Q(+)) = O(+).

vi) Z(#{Q)) = {£(Q(+).a) g(a) = a}, Z(#(Q)) = {L((Q(+).a); f(a) = a}
and Z(.#(Q)) = {£(Q(+).a); /(a) = ¢(a) = a}.

5.2 Proposition. The following conditions are equivalent for a group G:
(1) G is isomorphic to the multiplication group of a linear quasigroup.

(i) G contains subgroups K, H such that G = KH, K is a normal abelian
subgroup of G, H can be generated by at most two elements and Lg(H) = 1.

Proof. (i) implies (ii). If G = //(Q), then K = /i(Q) and H = J(Q, 0) (seeS.1).

(ii) implies (i). First, define a mapping ¢: H — Aut(K) by ¢(a) (x) = axa~' for
alla € H, x € K. Then ¢ is a homomorphism and Ker(¢p) = H n C¢(K) < Lg(H) =
= 1, so that ¢ is injective. Further, denote by P the subgroup of %(K) generated
by #(K) L ¢(H) and define a mapping y: G — P by y(xa) = L(K, x) ¢(a) for
all xe K and ae H (we have K n H < LG(H) = 1, and so ¥ is well defined).
Now, for x,ye K and a,be H, we have y(xa)(y(yb)(z)) = xaybzb~'a™' =
= xaya~' - abzb~'a~" = y(xaya~' - ab)(z) = Y(xayb) (z). We have checked that
Y is a homomorphism of G into the permutation group P. Since W(K) = /(K)
and Y(H) = ¢(H), we have (G) = P. Moreover, if y(xa) = 1, then xaz = za for
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every ze K, and hence x = 1 and ae H n C4(K) = 1. Thus ¥ is an isomorphism
of G onto P. Finally, let u, v generate H. Define a binary operation * on K by
x*y = ¢(u)(x) @(v)(y) = uxu='vyv~' for all x,ye K. Then K(x) is a linear
quasigroup and #(K(x)) = P (see 5.1).

5.3 Remark. Let G be a group such that G = KH, where K is a normal abelian
subgroup of G and H is a subgroup of G. Then Lg(H) = 1 iff C4(K) = K and
KnH=1.

5.4 Proposition. A quasigroup Q is linear iff /7(Q) is abelian and normal in

M(Q).
Proof. Combine 5.1 and 4.8(viii).

5.5 Proposition. Let Q be a linear quasigroup. Then Q is stably nilpotent of
class at most 2 iff the multiplication group A/ (Q) is nilpotent of class at most 2.

Proof. Put G = #(Q), K = ./(Q) and H = #(Q, 0) (see 5.1). If G is nilpotent
of class at most 2, then Q is stably nilpotent of class at most 2 by 3.9. Now, assume
that Q is stably nilpotent of class at most 2. Then Z(G) H is normal in G. Since
Q is linear,, K is normal in G and we have [K, K] € [K, Z(G) H] € K n Z(G) H.
On the other hand, Lg(H) = 1, and so C¢(K) = K, Z(G) c K and Kn H = 1.
Consequently, K n Z(G) H = Z(G), [K, H] < Z(G) and G/Z(G) is abelian (take
into account H is abelian by 3.14).

5.6 Consider the situation from 5.1 and put P = {ae Q; f(a) = g(a) = a} (see
5.1(vii)), so that P is a subgroup of Q(+). Then Qis stably nilpotent of class at most 2
iff f(a)— a, g(a)— ae P (or, equivalently, [*(a)—2f(a)+ a = g*(a) — 2g(a) + a =
= fg(a) — g(a) — f(a) + a = gf(a) — f(a) — g(a) + a = 0) for every ae Q. In
that case, fg = g/, and so the quasigroup Q is medial (i.e., it satisfies the identity
XY uv = Xu- yv).

6. The centre congruence

6.1 Throughout this section, we use the same notation as in the first five sections.

Put t = t(Q) = D(L(Z(G))) (see 1.10G) and 4.1). Then t is a cancellative
congruence of Q (the centre congruence introduced by Smith in [4]) and (a, b) et
iff a, be Q and b = f(a) for some f'€ L4(Z(G)).

By 4.4(ii), Z(G) = Lg(Z(G)), and hence s = s(Q) = ®(Z(G)) < O(L(Z(G)) =
= {(Q) = t. Thus, the stability congruence is contained in the centre congruence.
If Q is a loop, then G = G, Z(G) = L(Z(G)) and s = t (see also 3.18).

By 1.11(1), ¥(t) = Lg(L4(Z(G)) - H(a)).

6.2 Consider the situation from 4.8. Then, for x, y€ Q, (x, y)etiff y = x *x u
for some u € R. Further, R(A) is a subquasigroup of Q(A) and R(A) is a linear
quasigroup (see 5.1). Now, define a mapping ¢:t — R by ¢(x, y) = u, where
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(x,y)et,ue R and y = x *u (u is determined uniquely by the pair (x, y)). The
congruence t (as a subset of Q) is also a subquasigroup of the cartesian square
0@ of the quasigroup Q and we will show that ¢ is a homomorphism of this
quasigroup t onto the linear quasigroup R(A). Indeed, let y = x*u, z =
=wxv,x,y,weQ,u,veR. Then (x, y) (w, z) = (xv, yz), xw = (f(x) * a) * (g,(y) * b),
yz = (e » 1) ) x (giw = ) = b) = () » @) = ) = B) » (fiw) = 9,(0) =
= (xw) * (u A v), and hence ¢((x, y) (W, 2)) = u A v = @(x, y) A @(w, 2).

Clearly, ¢(t) = R and the identity congruence id, is just one of the blocks of
Ker(¢); in fact, idg = ¢ ~'(e), e being the neutral element of Q(x). That means, that
idy (as a quasigroup) is a normal subquasigroup of t.

6.3 Proposition. Q is a linear quasigroup iff t(Q) = Q x Q.

Proof. If Q is linear, then G is a normal abelian subgroup of G, and therefore
Li(Z(G)) = G, ¥(t) = L(GH(a)) = Lg(G) = G and t = YO(G) = ®(G) = @ x Q.
Cor wsely, if t = @ xQ, then R = Q (see 6.2), Q(*) is an abelian group and Q is
linear by 4.8.

6.4 For every ordinal number « = 0, define a cancellative congruence
t(®) = 1(Q, «) of Q as follows: #(0) = idy; if « = 0, then t(o + 1) is the uniquely
determined cancellative congruence of Q such that (o) < t(a + 1) and
to + 1)/t(0) = 1(Q/t(«)); if « > 0 is limit, then t(a) = ( Jt(B), 0 £ B < . The
quasigroup Q is said to be centrally nilpotent of class at most o if #(a) = Q x Q.
The quasigroup is said to be centrally nilpotent if it is centrally nilpotent of a finite
class.

Q is centrally nilpotent of class at most O iff it is trivial and Q is centrally
nilpotent of class at most 1 iff it is linear (see 6.3).

From 4.4(iv) it follows easily that s(Q, ) < #(Q, «) for every a = 0. In particular,
if Q is stably nilpotent of class at most a, then Q is centrally nilpotent of class at
most o. If Q is a loop, then 5(Q, o) = 1(Q, «) for every o = 0 (see 3.18).

6.5 Proposition. Suppose that Q is centrally nilpotent of class at most n (n
finite) and let Q(*) be a loop isotopic to Q. Then Q(x) is nilpotent of class at most n.

Proof. We shall proceed by induction on n. The result is clear for n < 1.

Generally, t(Q) < #(Q(*)) = s(Q(*)), 1(Q) is a congruence of Q(x) and -Q/t(Q) is
isotopic to Q(x)/t(Q) (ve assume that Q() is a principal isotope of Q).

6.6 Proposition. Let Q be centrally nilpotent. If H(a) is soluble, then G is so.

Proof. By induction on the nilpotence class of Q. We have .#(Q/t) = G/L,
where L = Lg(Lg(Z(G)) - H(a)). If H(a) is soluble, the H(a)- Lg(Z(G)) is so and
conseuqgently L is soluble.

24



7. Quasigroups isotopic to abelian groups

7.1 Let Q be a quasigroup isotopic to abelian group, i.e., there exists an abelian
group Q(+) and f; g € #(Q) such that xy = f(x) + g(y) for all x, y € Q.
() 2(0, a) = L(Q(+), £(a)) g and R(Q, a) = A(Q(+),g(a) f forevery ae 0.
(i) H(Q)=<H(Q(+)): 9>, M(Q) =< M(Q+)),./> and A(Q) = <H(Q(+)). /; 9>-
(i) A = #(Q(+)) = O(+)
(iv) A#(Q) = #4(Q(+)) #(Q, a) and A(Q(+)) N #(Q,a) = 1 forevery ae Q.

(v) Let f},9,€1(Q,0) be as in 4.8G). Then #(Q) = <A(Q(+))./1,9:> (see
4.8(v)).
7.2 Let G be a group sych that G = KH, where K is an abelian subgroup and

H is a subgroup of G. Suppose further that Lg(H) = 1 and that there are u, ve H
with G = {(K,u, v).

7.21 Lemma. Hn K = 1.

Proof. H N K g Lg(H) = 1.
7.2.2 Lemma. For all ae H and x € K, there are transformations q, of K and
Px of H such that ax = a,(x) p,(a).

Proof. G = KH = HK.

7.2.3 Lemma. (i) q,, = q.q, for all a,be H.

(ii) pd(ab) = p, (@) p«(b) for all a,be H, x e K.

(iii) p., = pypx for all x, y € K.

(V) quxy) = qu(X) gpya(y) for all x,ye K, a€ H.

Proof. (i) and (ii). g(x)p.(ab) = abx = aqy(x) p.(b) = q.au(X)) Pu(a) P(b)
and the result follows from the fact that H n K = 1.

(iii) and (iv). Similar.

7.2.4 Lemma. The mapping a — q, is an injective homomorphism of the group
H into the symmetric group f/’(K)

Proof. By 7.2.3(i), 9.q.~' = q.-1q. = ¢, = idg, and so ¢, € .‘/’(K) By 7.2.3(i)
again, a — q,, is a homomorphism. The kernel of this homomorphism is L) = 1.

7.2.5 Lemma. The mapping x — p.—: is a homomorphism of K into ff(H) and
its kernel is Lg(K).

Proof. Similar to that of 7.2.4.

7.2.6 Define a mapping ¢: G —» ¥(K) by ¢(xa) = L(K, x) q, for all xeK,
acH.

7.2.7 Lemma. (i) ¢ is an injective homomorphism of G into y(K).
(i) o(x) = Z(K, x) for every x € K.
(iii) ¢@(a) = q, for every a€ H.
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Proof. Let x, ye K and a,b e H. Then xayb = xq,y) p,(a) b and ¢(xayb) =
= ff(K’ xqa(y)) qpy(u)h = g(Ka x) Z(K; l]u(}’)) qp,(a)CIb = ..(Z(K, x) qa g(K, y) qy =
= ¢(xa) (yb) (by 7.2.3(iv), L(K, 4.y)) @p( = 9.L(K, y)). We have checked that
¢ is a homomorphism.

Finally, let ¢(xa) = idx. Then xq,(y) = y for every ye K, x = xq,(1) = 1,
g, = idg, a = 1, xa = 1. Thus Ker(¢) = 1 and ¢ is injective.

7.2.8 Lemma. The exists a homomorphism \: G — &(H) such that:

(i) Ker(y) = L¢(K).

(i) ¥(a) = Z(H, a) for every a€ H.

Proof. This is dual to 7.2.7.

7.2.9 Lemma. If H is finite and card(K) > (card(H) — 1)!, then L¢(K) # 1.

Proof. This follows immediately from 7.2.8.

7.2.10 Lemma. Ifn = card(K) is finite, then H is finite and card(H) < (n — 1)!.

Proof. This follows immediately from 7.2.7(i).

7.2.11 Define a binary operation * on K by x * y = ¢,(x) ¢,(y) for all x, y € K.
Then K(x) is a quasigroup (isotopic to K) and .#/(K (%)) = ¢(G) = G, .#(K(+)) #(K) =
~ K, #(K(*), 1) = ¢(H) = H.

7.3 Proposition. The following conditions are equivalent for a group G:

(i) G is isomorphic to the multiplication group of a quasigroup isotopic to
abelian group.

(i) G contains subgroups K, H such that G = KH, K is abelian, LG(H) =1
and there exist u,v € H with G = (K,u, v).

Proof. Combine 7.1 and 7.2.

7.4 Proposition. Let Q be a non-trivial finite quasigroup isotopic to abelian
group. If card(Q) > (i(Q) — 1)1, then ¢(Q) =* id,.
Proof. Put G = #(Q), K = 4#(Q), H = #(0Q, 0) (see 7.1). We must show that

Lg(K) + 1. However, card(K) = card(Q), card(H) = i(Q) and the result follows
from 7.2.9.

8. Characterizations of the multiplication groups of quasigroups and loops

8.1 Let H be a subgroup of a group G such that Ls(H) = land let Q = G/H =
= {xH;x € G} denote the set of left cosets modulo H. Then we have an injective
homomorphism = of G into the symmetric group °(Q) defined by n(x) (yH) = xyH
for all x,ye G. Put P = n(G), so that P is a subgroup of &(Q) and P = G.
Moreover, n(H) = St(P, Q, H). Further, let A be a stable transversal to H in G. For
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every x € G, there is just one f(x)€ A such that f(x) H = xH (or, x~'f(x) € H).
Now, we shall define a binary operation % on Q by (xH) * (yH) = f(x) yH (clearly,
this definition is correct).

(i) Z(Q(x), xH) = n(f(x)) € P for every x € G. In particular, Q(x) is a left
quasigroup.

(ii) Q(x) is a quasigroup.

It remains to show that Q(*) is a right quasigroup. For, let (x,H) x (yH) =
= (x,H) * (yH). Then f(x,) yH = f(x5)"" f(x) € yHy™", [ (x2) = f(x,) (since 4 is
stable) and x,H = x,H. We have shown that Q(*) is right cancellative. Finally, let
y,z € H. Since A is stable, A is also a transversal to yHy~' in G and there is x € G
such that f(x) e zy~'- yHy™'. Then f(x) y € zH, i.e. (xH) * (yH) = zH.

(iii) Q(x) is a right loop (H is a right neutral element); Q(x) is a loop iff 1 € 4.

(iv) n(<AD) = M(Q(x) S P; #(Q(x)) = P iff G = (A.

(v) Suppose that there is a transversal B to H in G such that [A, B] < H (i.e.,
A, B are H-conneted). Then, for every x € G, there is uniquely determined g(x) € B
with xH = g(x) H, i.e. x~'g(x) € H. Now, (xH) * (yH) = f(x) yH = f(x) g(y) H =
= g(y)f(x) H = g(y) xH, since g(y)~' f(x)~'g(y)/(x)e H. From this,
R(Q(*)), yH) = n{g(y)) € P. Consequently, n({B)) = 4 (Q(x)) S P and ({4, B)) =
= M(Q(x)) < P. Clearly, #,(Q(x) =P iff G=<B) and #(Q(x)) = P iff
G = (A,B).

(vi) Q(x) is commutative iff [4, A] € H (i.e., 4 is H-selfconnected). In that
case, Q(*) is a loop and #(Q(x)) < P.

(vii) F{Q(x), H) < n(H); if #{Q(x)) = P, then .#{Q(x), H) = H.

(viii) n(H) n A(Q(x)) = F(Q(), H) n P. If #(Q(%)) = P, then #(Q(x), H) =
= n(H).

8.2 Corollary. Let H be a subgroup of a group G. The following conditions are
equivalent:

(i) Lg(H) = 1 and there exists a stable transversal A to H in G such that
G = {4).

(i1) there exists a quasigroup Q with a right neutral element e and an isomorphism
¢: M(Q) - G such that p(F(Q, e)) = H.

(iii) There exist a quasigroup Q and an isomorphism ¢: 4 ,(Q) — G such that
o(F(Q, a)) = H for some a € Q.

8.3 Corollary. Let H be a subgroup of a group G. The following conditions are
equivalent:

(1) LG(H ) = 1 and there exists a stable transversal A to H in G such that 1 € A
and G = {A).

(ii) There exist a loop Q and an isomorphism ¢: M(Q) — G such that
o(#(0, 1)) = H.
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8.4 Corollary. Let H be a subgroup of a group G. The following conditions are
equivalent:

(i) LG(H ) = 1 and there exist H-connected transversals A, B to H in G such
that G = (A, B).

(ii) There exist a loop A and an isomorphism ¢:./#(Q) —» G such that
¢(/(Q)) = H.

8.5 Let G be a transitive permutation group on a non-empty set Q. Take a € Q
and put H = St(G, Q,a) and Q, = G/H (the left cosets — see 8.1). We have
abijection @: Q — Q, suchthat ¢(x) = fH,x€ Q. [ € G,x = [(a). Moreover, since
G is transitive, Lg(H) = 1, m: G - P < 7(Q,) is an isomorphism (see 8.1) and
@f(x) = n(f) p(x)forall xe Q and G. The permutation groups G (on Q) and P (on
Q)) are similar.

Now, suppose that there is defined a binary operation * on Q, such that Q,(x) is
a quasigroup. Define c on Q@ by x 0y = ¢ '(p(x) * ¢@(1)). Then ¢: Q(c) — Q,() is
an isomorphism. Obviously, .#(Q(c)) = G (#(Q(")) = G) ift 4(Q,\(*)) = P
(-#(Q\(*)) = P).

8.6 Corollary. Let G be a permutation group on a non-empty set Q, a € Q and
H = SK(G, Q, a). The following conditions arc equivalent:

(i) G is transitive on Q and there exists a stable transversal A to H in G such
that g = (A) (and idy € A).

(i) There exists a quasigroup (loop) Q(x) such that .7/{Q(*)) = G, 7(Q(x), a) = H
(and a = 1).

8.7 Corollary. Let G I‘)e a permutation group on a non-empty set Q, a € Q,
H = SY{G, Q, a). The following conditions are equivalent:

(i) G is transitive on Q and there exist H-connected transversals A, B to H in
G such that G = (A, B).

(it) There exists a loop Q(*) such that ./#/(Q(x)) = G, a = 1 and F(Q(*)) = H.

8.8 Let H, be a subgroup of a group G such that L(I1,) = 1 and let A,, B, be
H,-semiconnected stable transversals to I, in G. Take ue€ A,, ve B, and put
A= Au"', B= By '. Then there is x € G such that A, B are H-connected
transversals to H in G, H = Hj.

Now, let Q, n, P, * have the same meaning as in 8.1; Q(*) is a loop and
M(Q(x) € P = G. By 8.1(v), .#(Q(+)) = n(CA,BY).

Define permutations o« and f§ of Q by o(xI) = uxII and f(xH) = vxH, resp.,
and put (xH)o (yH) = «(xH) = f(yH) = (uxH) = (vyH) = f(ux) vyH. Then Q(o)
becomes a quasigroup.

Clearly, 2(Q(c), xH) = =n(f(ux)) n(r), and so .Z(Q( )) = n({A,v)) =
= (AM(Q(*), n(v)> € P. Further, (xI)o(yH) = f(ux)vyH = g(v) )/ u\) H=
= g(vy) uxH (sec 8.1(v)), and hence 2(Q( ), yHl) = n(y(vy)) n(u), #,(Q(c)) =
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= n({B,v)) = A(Q(*), n(u)> < P.  Finally,  .#(Q(c)) = n(<A,B,u,v)) =
= (<A, B)Y) g P and #(Q(0)) = P iff <A, B, = G.

8.9 Corollary. Let H be a subgroup of a group G. The following conditions are
equivalent:
() LG(H) = 1 and there exist H-semiconnected stable transversals A, B to
H in G such that G = (A, B).
(i1) LG(H) = 1 and there exist H-connected transversals C, D to H in G and
elements u, v e G such that G = {C,D, u, v).
(iii) There exist a quasigroup Q and an isomorphism ¢: .7/(Q) — G such that

o(#(Q, a)) = H for some a € Q.
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