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1984 ACTA UNIVERSITATIS CAROLINAE —- MATHEMATICA ET PHYSICA VOL. 25. NO. 2 

On Hereditary Subdirectly Irreducible Graphs 

J. VINAREK*) 
Department of Mathematics, Charles University, Prague**) 

Received 3 August 1983 

We give a characterization of classes of antireŕlexive graphs in which every full subgraph of 
a subdirectly irreducible graph is subdirectly irreducible as well. 

V článku je podána charakterizace tríd antireflexivních grafů, v nichž je každý úplný podgraf 
subdirektn ireducibilního grafu op t subdirektn ireducibilní. 

B paбoтe дaeтcя xapaктepизaция клaccoв гpaфoв бeз пeтeль, в кoтopыx кaждый пopoж-
дeнный пoдгpaф пoдпpямo нeпpивoдимoгo гpaфa являeтcя oпять пoдпpямo нeпpивoдимым. 

0. Introduction 

The concept of the subdirect irreducibility was introduced for algebras by G. 

Birkhoff. It can be defined more generally for categories, in particular for graphs: 

Let C be a class of (some) graphs. Then a C-graph A (i.e. a graph A e C) is said to 

be subdirectly irreducible (SI) if, whenever an isomorphic copy A' of A is contained 

as a full subgraph in a product x B{ with Bt e C and Pj(A') = Bj for all the projec­
ted 

tions, there is a j such that the restriction of ps to A' is an isomorphism onto Bj. 
(This formulation is due to A. Pultr — see [3]). 

Importance of investigation this topic is following: having a list of subdirectly 
irreducible C-graphs, one can construct any C-graph from subdirectly irreducibles 
using such simple operations as product and restrictions to full subgraphs. If sub­
directly irreducibles are, in some sense, "simple" then this procedure may be useful 
for recording of graphs to the machine memory. 

Characterization theorem for the subdirect irreducibility is given in [4]. It enables 
us to find a list of subdirectly irreducibles in various categories. This theorem, 
however, does not solve the problem when the list of subdirectly irreducibles is closed 
to subobjects. This question is particularly interesting for the case of systems of 
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antireflexive graphs where the list of subdirectly irreducibles is often infinite and so 
such a hereditary (with respect to full subgraphs) can be useful for its description. 

In [5], a characterization of systems of symmetric antireflexive graphs in which any 
full subgraph of a subdirectly irreducible one is again SI, is given. In the present note, 
we are going to generalize this characterization to the case of antireflexive graphs. 

1. Notations and definitions 

1.1. Notations. Denote (7the class of all antireflexive graphs. For any ordinal n 
denote Kn = (n, {(ij) | ij en, i 4= j}) (i.e. the complete antireflexive graph with n 
vertices), K'n = (n, {(ij) \ ije n, \ i -# j , (ij) =j= (0, 1)}) (i.e. the antireflexive graph 
on n vertices with just one edge missing), 

K = (">{(U) | Ujen, i < j}). 

Ln
+ = (n, {(ij) I ij en, i< j} u {(1, 0)}), 

L~ = (n, {(ij) | ij en, i> j} u {(0, 1)}), 

A3 = (3, {(0,1), (1,0), (0,2), (2,1)}), 

C3 = (3, {(0,1), (1,2), (2,0)}), 

A4 = (4, {(0,1), (1, 0), (0, 2), (1, 2), (2, 1), (1, 3), (2, 3), (3, 2), (3, 0), (0, 3)}). 

Further, put X = {Kn\ne Ord}, X' = {K'n \ n e Ord}, $£+ = {L+ | n e Ord}, 

<£~ = {\7n | n e Ord}, ^ = {(X, 0) | X is a set} (the class of sets = discrete 

graphs), 

F = {(X, R) | Vx, y e X, x 4= y => | {(x, y), (y, x)} n R \ = 1} (the class of 

all tournaments), 

^ = {(n, R) | n = 6, \R\ = n + [n/2], x * y => |{(x, y), (y, x)} n R\ = 1 and 

(n, R) contains neither K3 nor A3 as a full subgraph}, 

r = {(n, R) | n = 4, x * y => \{(x, y), (y, x)} n R\ = V R ^ {(0, 1), (1, 0), 

(2, 3), (3, 2)} n n x n and (n, K) does not contain K3 as a full subgraph}, 

iT = {A e G\ any full subgraph of A with 3 vertices is isomorphic either to A3 

or to L3}. 
Let D be a collection of graphs. Then SP(D) denotes (similarly as in [2]) the class 
of all the graphs which can be embedded as full subgraphs into products of graphs 
from D. 

1.2. Definition. A class C of graphs closed to categorical products X ( X(Xh Rt) = 
iel 

= ( XXh R) where ((x,-)/, (y;)j) e Ro (x„ y.) e Rt for any i e I) and to full subgraphs 
iel 

is said to be be hereditary with respect to subdirect irreducibility (HSI) if any full 
subgraph of a SI graph is again SI. 
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2. Main theorem 

We are going to prove the following: 

2.1. Theorem. Let C c G be a productive hereditary class of graphs (i.e. a class 
closed to categorical products X and to full subgraphs). Then C is HSI iff either 
C = 5^, or C = SP(D) where Z> satisfies one of the following conditions: 

(i) D cz j f u j f 

(ii) Z> c Jf u {K^, A4} 
(iii) D c j f u r u ^ 
(iv) Z) c j f u $£- u .T 

( v ) D c / u «r 

(vi) D c f u f 

(vii) D c j f u f ^ 

3. Subdirect irreducibility 

Before proving Main Theorem, recall the characterization of subdirectly ir-
reducibles: 

3.1. Definition, a) A graph (X, R) is said to be meet-irreducible (in C) iff, whenever 
R = C\ Ri9 (X, Rt) e C then there exists i0el such that Rio = K. 

i d 

b) A graph (X, R) is said to be maximal (in C) iff K' => K, (X, K') e C implies that 
K' = R. 

c) A monomorphic system is a system (wf : (X, K) -* (7i5 Kf))^ of homomorphisms 
such that if wfa = utp for all i e J then a = p. 

3.2. Theorem. A C-graph A = (X, K) is SI iff either A is maximal in C and for any 
monomorphic system (ut: A —> B , ) ^ there exists an i0 e I such that uio is one-to-one, 
or A is not maximal, it is meet-irreducible in C and for any 0) : A -> B not one-to-one 
there exists R' 2 R s u c h that O can be extended to a homomorphism $ : (X, R') -> B. 

3.3. Remark. The previous theorem is just a reformulation of Theorem 3.6 from [6]. 
Using Theorem 3.2 one can characterize subdirectly irreducible <7-graphs: 

3.4. Proposition. A C-graph A is SI in G iff A e Jf u Jf'. 

Proof. One can easily see that meet-irreducible C-graphs are just elements of Jf u Jf'. 
Since any SI graph must be meet-irreducible, it has to be an element of Jf u X'. 



Any element of Ctf is maximal C-graph which cannot be mapped to a G-graph of 
a smaller cardinality, hence it is SI. Any element A of M' is non-maximal meet-
irreducible graph. Moreover, every mapping <D : A -> B is one-to-one. Hence, 
A is SI. • 

4. Proof of the main theorem 

We are going to prove Theorem 2.1 by a series of lemmas: 

4.1. Lemma. Let C =j= Sf be a productive hereditary class of G-graphs. If C is HSI 
then for every (X, R) a SI C-graph and for any x, y e X, x 4- j , there is {(x, y), 
(y, JC)} n JR 4= 0. 

Proof. Since C ^ Sf, C must contain a non-discrete graph. Since C is hereditary, it 
must contain a non-discrete graph A with two vertices. Hence, (2, 0) ^ A x (1,0) 
is not SI and HSI of C implies the assertion of lemma. • 

4.2. Lemma. Let C be a productive hereditary class of C-graphs. If A3 e C then C3 

is not SI in C. 

Proof. 

n 

Hence, C3 is not meet-irreducible and according to 3.2 it is not SI. • 

4.3. Lemma. Let C be a productive hereditary class of C-graphs. If L3 e C, Lie C, 
then L3 is not SI in C. 

Proof. 

n 

Hence, L3 is not meet-irreducible and according to 3.2 it is not SI. • 
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4.4. Lemma. Let C be a productive hereditary class of G-graphs. If K'3 e C then 
L+

3, L~3, A3 are not SI in C 

Proof. 

L+ ~ ^з = n 

L: ~ n 

-4* = n 

Proposition 3.2 finishes the proof. D 

4.5. Lemma. Let C be a productive hereditary class of ©-graphs. If Cis HSI, JK3 e C, 
K4 £ C, then every SI C-graph with 4 vertices is either isomorphic to K4 or iso­
morphic to A4. 

Proof. Let A be a SI C-graph with 4 vertices. Since C is HSI, A cannot contain a two-
point discrete graph as a full subgraph. Lemmas 4.2—4.4 imply that any 3-point 
full subgraph of A has to be isomorphic either to K3, or to K3. Since K4 £ C, there is 
either A s K4 or A s A4. • 

4.6. Lemma. Let C be a productive hereditary class of C-graphs. If Cis HSI, K3 e C, 
K4 £ C, then every SI C-graph with n ^ 5 vertices is isomorphic to Kn. 

Proof. Suppose that there exists SI Cgraph with more than 4 vertices which is iso­
morphic to no Kn. Hereditary of C implies that there exists A = (5, R) # Ks which 
is SI in C, Lemma 4.5 and the assumptions K'3 e C, K4 £ C imply that 

A h 4 = (4, R n 4 x 4) s -44 . 



Suppose that R n 4 x 4 - {(0,1), (1, 0), (0, 2), (1, 2), (2,1), (1, 3), (2, 3), (3, 2), (3, 0), 
(0, 3)}. Similarly, A f {1, 2, 3, 4} s _44. Hence, K n {1, 2, 3, 4} x {1, 2, 3, 4} = 
{(1, 2), (2, 1), (1, 3), (2, 3), (3, 2), (1, 4), (4, 1), (3, 4), (4, 3)} u {(ij)} where (ij) = 
= (2, 4) or (ij) = (4, 2). Therefore, B = A \ {0, 2, 4} -2 K3, B # K3. Hence, B is 
not SI which contradicts the HSI property of C • 

4.7. Lemma. Let C be a productive hereditary class of G-graphs. If C is HSI, K3 £ C, 
L"̂  £ C, A3 <£ C, L"̂  6 C, then every SI C-graph is an element of X u J£?+ u «~. 

Proof. Let A be a SI C-graph. If A £ Jf u «̂ " then A must contain three-point full 
subgraph B which is neither a tournament, nor an isomorphic copy of K3. Since 
K3 ^C,L~3$ C, A3 <£ C, there is B _ L+

3 and Al _ L+. • 

4.8. Lemma. Let Cbe a productive hereditary class of C-graphs. If Cis HSI, K3' £ C, 
L3 ^ C, A3 <£ C, L3 e C, then every SI C-graph is an element of / u if" u / . 

Proof is similar to the proof of Lemma 4.7. • 

4.9. Lemma. Any tournament on 4 vertices contains L3 as a full subgraph. 

Proof is obvious. • 

4.10. Lemma. Let C be a productive hereditary class of C-graphs. If C is HSI, 
L+

3, LI, are SI C-graphs, then every SI C-graph is an element of X u fy. 

Proof. By Lemma 4.4, K3 <£ C Hence, K'n£C for any n = 3. By Lemma 4.3, L3 is 
not SI in C Suppose there exists a SI C-graph A with n = 7 vertices which is not 
isomorphic to K„. Since K3 ^ C, A contains a tournament on 4 vertices as a full 
subgraph. By Lemma 4.9 and HSI property of C, L3 is SI in C which is a contradiction. 

If B is a SI C-graph with n ^ 6 vertices, B ^ Kn, then B does not contain K3 

as a full subgraph, on the other hand, B does not contain L3 as a full subgraph as 
well. Hence, B e f . • 

4.11. Lemma. Let C be a productive hereditary class of C-graphs which is HSI. 
If A3 6 C, L+

3 e C (L~3 e C, resp.) then no tournament with at least 3 vertices is SI. 

Proof. 

n 



n 

Hence, L3 is not SI. By 4.2, C3 is not SI. HSI property of Cimplies that no tournament 
with at least three verices is SI. • 

4.12. Lemma. Let C be a productive hereditary class of G-graphs. If K3 £ C, A3 e Cy 

L+
3 e C, (LT3 E C, resp.) and Cis HSI, then every SI C-graph is an element of X u TT. 

Proof. By Lemma 4.11, any SI C-graph A contains no tournament with at least 
3 vertices. Hence, A is either complete, or an element of TV. • 

4.13. Lemma. Let C be a productive hereditary class of G-graphs. If K3 $C, L+
3$ Cy 

L~3 $ C, A3 e C and C is HSI then every SI C-graph is an element of X u 1V. 

Proof. Let A be a SI C-graph, A $ X. By 4.2, A does not contain C3 as a full subgraph. 
Hence, AtiV. • 

4.14. Lemma. Let C be a productive hereditary class of C-graphs. If K4 e C and C 
is HSI, then every SI C-graph is an element of X u X'. 

Proof. Suppose there is a SI C-graph A $ X u X'. Then either, A has at most 
3 vertices, or A contains a full subgraph B with four vertices such that B 5- K4> 
2*#K;. 

In the first case, either there is A s (2, 0) which is a contradiction, or A = (3, R)y 

A ^ K3, A # K3, Lemma 4.4 implies that 4̂ is not SI. 
In the second case, by the similar argument as in 4.4, B is an intersection of iso­

morphic copies of K4, hence not SI. • 

4.15. Proof of main theorem. 

A. Suppose that Cis HSI, C * Sf, D = {A E C; A is SI}. 

If K4 E C then D c j f u l ' according to 4.14. 

If K4 i C, K3 e C, then D a X KJ {K3, A4} according to 4.6 and 4.4. 

If K3 $ C, A3 £ C, then either D c j f u i f + u ^(Z> c X u jSf" u y , resp.) by 

Lemmas 4.7 and 4.8, or D a X u °U by Lemma 4.10. 

If K3 £ C, A3 G C, L"J; e C(La e C, resp.) then Z> c X wf according to Lemma 4.12. 

If K3 $C, L+
3$ C, LT3 $C, A3E C, then D c j f u TT according to Lemma 4.13. 

If Cn (K'3, A3, L+
3, LT3} = 0 then D c j f u ^ . 



B. One can check that each of systems X u X', X u {K'3, A4}, X u & + u 2T, 
X u <£~ u ST, X u %, X u iT, ;>f u i!r is hereditary. If D is its subsystem closed 
to full subgraphs, then D is a system of subdirectly irreducibles of SP(D) and C = 
= ^(Z)) is HSI. • 

4.16. Concluding remark. In [5], types of dimensions of graphs are studied. Recall 
that a product dimension of a graph A in C is p-dimc A = min {a | A is a full sub­
graph of X At with At SI in C}, a subdirect dimension s-dimc A = min {a | A is 

tea 

a full subgraph of X with Af SI and ptm onto} (p̂  are projections, m is an embedding). 
iea 

Theorem 2.1 implies that, if C c G is a productive hereditary class of graphs 
then p-dimc = s-dimc iff C = SP(D) where D satisfies one of the conditions (i) — (vii) 
from 2.L 
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