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1984 ACTA UNIVERSITATIS CAROLINAE — MATHEMATICA ET PHYSICA VOL. 25. NO. 2

On Hereditary Subdirectly Irreducible Graphs

J. VINAREK?*)
Department of Mathematics, Charles University, Prague**)

Received 3 August 1983

We give a characterization of classes of antireflexive graphs in which every full subgraph of
a subdirectly irreducible graph is subdirectly irreducible as well.

V ¢&lanku je podana charakterizace tfid antireflexivnich grafu, v nich? je kaZdy aplny podgraf
subdirektné ireducibilniho grafu opé&t subdirektn& ireducibilni.

B pabote naercs xapakTepu3aums KJaccoB rpadoB 6e3 meTenb, B KOTOPBIX KaXAblif IOPOX-
JEHHbIH moarpad MOANPSMO HEMPUBOOMMOrO rpada sBIAETCA ONATH NOIOPSIMO HENPHBOAMMBIM.

0. Introduction

The concept of the subdirect irreducibility was introduced for algebras by G.
Birkhoff. It can be defined more generally for categories, in particular for graphs:
Let C be a class of (some) graphs. Then a C-graph A (i.e. a graph 4 € C) is said to
be subdirectly irreducible (SI) if, whenever an isomorphic copy A’ of A is contained
as a full subgraph in a product x B; with B;e C and p;(4’) = B; for all the projec-

lea

tions, there is a j such that the restriction of p; to A’ is an isomorphism onto B;.
(This formulation is due to A. Pultr — see [3]).

Importdnce of investigation this topic is following: having a list of subdirectly
irreducible C-graphs, one can construct any C-graph from subdirectly irreducibles
using such simple operations as product and restrictions to full subgraphs. If sub-
directly irreducibles are, in some sense, ‘‘simple’’ then this procedure may be useful
for recording of graphs to the machine memory.

Characterization theorem for the subdirect irreducibility is given in [4]. It enables
us to find a list of subdirectly irreducibles in various categories. This theorem,
however, does not solve the problem when the list of subdirectly irreducibles is closed
to subobjects. This question is particularly interesting for the case of systems of
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antireflexive graphs where the list of subdirectly irreducibles is often infinite and so
such a hereditary (with respect to full subgraphs) can be useful for its description.
In [5], a characterization of systems of symmetric antireflexive graphs in which any
full subgraph of a subdirectly irreducible one is again SI, is given. In the present note,
we are going to generalize this characterization to the case of antireflexive graphs.

1. Notations and definitions

1.1. Notations. Denote G'the class of all antireflexive graphs. For any ordinal n
denote K, = (n, {(i,j) | i,j e n, i * j}) (i-e. the complete antireflexive graph with n
vertices), K, = (n, {(i,j)| i,jen, | i # j, (i,j) # (0, 1)}) (i-e. the antireflexive graph
on n vertices with just one edge missing),

L, = (n, {(i,j)|i.jen, i <j}).

Ly = (nA{(ij)|i.jen, i <j}u{(1,0)}).

L, =(n{(i,j)|i,jen, i >j} u{(0,1)}),

4; = (3,{(0, 1), (1,0), (0, 2), (2, 1)}),

Cs = (3,{(0. 1), (1,2), (2, 0)}),

Ay = (4,{(0,1), (1,0),(0,2), (1, 2), (2. 1). (1, 3). (2. 3) (3, 2), (3, 0), (0, 3);)-

Further, put " = {K, | ne Ord}, #" = {K, | ne Ord}, * = {L} | ne Ord},

s ={L; | neOrd}, & = {(X,90) | X is a set} (the class of sets = discrete

graphs),

J ={(X,R) l Vx,yeX, x + y=|{(x,y). (nx)}n R‘ = 1} (the class of

all tournaments),

U={nR)|n=6|Rl=n+[n2], x+y=|{(x), (.x)} nR| 21 and

(n, R) contains neither K nor Aj as a full subgraph},

¥ = R) |14 x+y=|{(x ) (o0} AR 21 RS {01), (1,0)

(2,3),(3,2)} nn x nand (n, R) does not contain K} as a full subgraph},

W ={Ae G| any full subgraph of 4 with 3 vertices is isomorphic either to A4;

or to L}.

Let D be a collection of graphs. Then SP(D) denotes (similarly as in [2]) the class
of all the graphs which can be embedded as full subgraphs into products of graphs
from D.

X

B

1.2. Definition. A class C of graphs closed to categorical products X ( X (X, R;) =
iel

= ( X X;, R) where ((x;);, (v:);) € R <> (x;, y;) € R; for any i € I) and to full subgraphs
iel

is said to be be hereditary with respect to subdirect irreducibility (HSI) if any full
subgraph of a SI graph is again SI.
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2. Main theorem
We are going to prove the following:

2.1. Theorem. Let C = G be a productive hereditary class of graphs (i.e. a class
closed to categorical products X and to full subgraphs). Then C is HSI iff either
C = &, or C = SP(D) where D satisfies one of the following conditions:
() Dextx vx’
(i) D < o LK) Al
(i) DeX vs T
(iVyDeHX v vT
VDX vu
(Vi) DecX vYV
(i) De X oW

3. Subdirect irreducibility

Before proving Main Theorem, recall the characterization of subdirectly ir-
reducibles:

3.1. Definition. a) A graph (X, R) is said to be meet-irreducible (in C) iff, whenever
R = R, (X, R)) e C then there exists i, €I such that R;; = R.
il

b) A graph (X, R) is said to be maximal (in C)iff R" > R, (X, R’) € C implies that
R’ = R.

¢) A monomorphicsystemisa system (u; : (X, R) = (Y, R;));;; of homomorphisms
such that if u,0 = u;B for all i eI then a = B.

3.2. Theorem. A C-graph A = (X, R) is SI iff either 4 is maximal in C and for any
monomorphic system (u; : A — B,),, there exists an i, € I such that u;, is one-to-one,
or A is not maximal, it is meet-irreducible in C and for any ® : A — B not one-to-one

there exists R’ z R such that @ can be extended to a homomorphism ¢ : (X, R') » B.

3.3. Remark. The previous theorem is just a reformulation of Theorem 3.6 from [6]
Using Theorem 3.2 one can characterize subdirectly irreducible G-graphs:

3.4. Proposition. A G-graph Ais Slin Giff Ae A U A"

Proof. One can easily see that meet-irreducible G-graphs are just elements of 4~ U J'.
Since any SI graph must be meet-irreducible, it has to be an element of X" U ™.



Any element of # is maximal G-graph which cannot be mapped to a G-graph of
a smaller cardinality, hence it is SI. Any element A of X is non-maximal meet-
irreducible graph. Moreover, every mapping ® : 4 - B is one-to-one. Hence,
Ais SI. O

4. Proof of the main theorem

We are going to prove Theorem 2.1 by a series of lemmas:

4.1. Lemma. Let C + & be a productive hereditary class of G-graphs. If C is HSI
then for every (X, R) a SI C-graph and for any x, y e X, x # y, there is {(x, y),
(»x)}nR=*0.

Proof. Since C + &, C must contain a non-discrete graph. Since C is hereditary, it
must contain a non-discrete graph 4 with two vertices. Hence, (2,0) = 4 x (1, 0)

is not SI and HSI of C implies the assertion of lemma. [J

4.2. Lemma. Let C be a productive hereditary class of G-graphs. If A; € C then C,
is not SI'in C.

Proof.

|
|

Hence, C; is not meet-irreducible and according to 3.2 it is not SI. [J

4.3. Lemma. Let C be a productive hereditary class of G-graphs. If L € C, L; € C,
then L, is not SI in C.

Proof.

>
13

———
Hence, L, is not meet-irreducible and according to 3.2 it is not SI. [J
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4.4. Lemma. Let C be a productive hereditary class of G-graphs. If K3 e C then
L%, L, A, are not SI in C.

Proof.

Ly =~ = N

——————; — [ A——
Ly = = j N j

|/~ .

4
A3 = = j N
-3

Proposition 3.2 finishes the proof. []

4.5. Lemma. Let C be a productive hereditary class of G-graphs. If Cis HSI, Kj € C,
K, ¢ C, then every SI C-graph with 4 vertices is either isomorphic to K, or iso-
morphic to A,.

Proof. Let A be a SI C-graph with 4 vertices. Since C is HSI, A cannot contain a two-
point discrete graph as a full subgraph. Lemmas 4.2—4.4 imply that any 3-point
full subgraph of A has to be isomorphic either to K3, or to K3. Since K}, ¢ C, there is
either A K,or A=A, O

4.6. Lemma. Let C be a productive hereditary class of G-graphs. If Cis HSI, K; € C,
K, ¢ C, then every SI C-graph with n = 5 vertices is isomorphic to K,,.

Proof. Suppose that there exists SI C-graph with more than 4 vertices which is iso-
morphic to no K,. Hereditary of C implies that thereexists A = (5, R) # K5 which
is ST 1n C, Lemma 4.5 and the assumptions K3 € C, K}, ¢ C imply that

ANd=(4RN4x4)=A,.



Suppose that R 4 x 4 = {(0, 1),(1,0),(0,2),(1, 2),(2,1),(1, 3),(2, 3), (3, 2), (3, 0),
(0,3)}. Similarly, A4 | {1,2,3,4} = A,. Hence, Rn{1,2,3, 4} x{1,2,3,4} =
10,2, 2. 1), (1,3), (2.3), (5,2), (1,4, (4, 1), (3, 9, (4 ) © {(,))} where (i, 1) =

= (2,4) or (i,j) = (4,2). Therefore, B = A | {0,2,4} # K, B £ K}. Hence, B is
not SI which contradicts the HSI property of C. [

4.7. Lemma. Let C be a productive hereditary class of G-graphs. If Cis HSI, K; ¢ C,
53¢ C, Ay ¢ C, L', € C, then every SI C-graph is an element of X" U £* U 7.

Proof. Let A be a SI C-graph. If A¢ A U T then A must contain three-point full
subgraph B which is neither a tournament, nor an isomorphic copy of K;. Since
4¢C.L; ¢C, A ¢C, thereis B~ Lyand A = L. 0O

4.8. Lemma. Let C be a productive hereditary class of G-graphs. If Cis HSI, K; ¢ C,
LY ¢ C, A;¢ C, L; € C, then every SI C-graph is an element of X" U £~ U T

Proof is similar to the proof of Lemma 4.7. [J

4.9. Lemma. Any tournament on 4 vertices contains L, as a full subgraph.

Proof is obvious. []

4.10. Lemma. Let C be a productive hereditary class of G-graphs. If C is HSI,
L%, L, are SI C-graphs, then every SI C-graph is an element of 4" U %.

Proof. By Lemma 4.4, K’ ¢ C. Hence, K, ¢ C for any n = 3. By Lemma 4.3, L, is
not SI in C. Suppose there exists a SI C-graph A with n g 7 vertices which is not
isomorphic to K,. Since K3 ¢ C, A contains a tournament on 4 vertices as a full
subgraph. By Lemma 4.9 and HSI property of C, L, is SI in C which is a contradiction.

If B is a SI C-graph with n < 6 vertices, B % K,, then B does not contain K;
as a full subgraph, on the other hand, B does not contain L; as a full subgraph as
well. Hence, Be %. O

4.11. Lemma. Let C be a productive hereditary class of G-graphs which is HSI.
If AyeC, L% e C(L;eC, resp.) then no tournament with at least 3 vertices is SI.

/ // A / \‘\ -

/ /

- —

Proof.



Hence, L, is not SI. By 4.2, C, is not SI. HSI property of Cimplies that no tournament
with at least three verices is SI. [

4.12. Lemma. Let C be a productive hereditary class of G-graphs. If K3 ¢ C, A; € C,
L% e C,(L; € C, resp.) and Cis HSI, then every SI C-graph is an element of 2" U ¥".

Proof. By Lemma 4.11, any SI C-graph A contains no tournament with at least
3 vertices. Hence, A is either complete, or an element of ¥". [

4.13. Lemma. Let C be a productive hereditary class of G-graphs. If K, ¢ C, L% ¢ C,
L5 ¢ C, A; € C and Cis HSI then every SI C-graph is an element of #" U #".

Proof. Let A be a SI C-graph, 4 ¢ . By 4.2, A does not contain C, as a full subgraph. .
Hence, Ae%. O

4.14. Lemma. Let C be a productive hereditary class of G-graphs. If K, € C and C
is HSI, then every SI C-graph is an element of ¢ U X'.

Proof. Suppose there is a SI C-graph A ¢ o U X"'. Then either, A has at most
3 vertices, or A contains a full subgraph B with four vertices such that B % K,
B £ K.

IB the first case, either there is 4 = (2, 9) which is a contradiction, or 4 = (3, R),
A # K5, A # K, Lemma 4.4 implies that 4 is not SL

In the second case, by the similar argument as in 4.4, B is an intersection of iso-
morphic copies of K}, hence not SI. [

4.15. Proof of main theorem.

A. Suppose that CisHSI, C + &, D = {4 € C; Ais SI}.

If K, e Cthen D = o U A" according to 4.14.

If K; ¢ C, KyeC, then D = # U {K}, A,} according to 4.6 and 4.4.

If K5¢C, A ¢C, theneither Dc HX VL VT (DcH UL UT, resp.) by
Lemmas 4.7 and 4.8, or D <« # U % by Lemma 4.10.

IfKy ¢ C, 45 C,L5 e C(L; € C,resp.) then D = A U ¥ according to Lemma 4.12.
If K3¢C, L5¢C, L3¢C, A;€C, then D ¢ " U # according to Lemma 4.13.
If C {K}, Ay, L5, L3} = O then D = o U 7.



B. One can check that each of systems 4" u X', A U {K’3, A4}, N uPTUT,
HOEL VT, XU X VYV, A U W ishereditary. If D is its subsystem closed
to full subgraphs, then D is a system of subdirectly irreducibles of SP(D) and C =
= SP(D)is HSI. O

4.16. Concluding remark. In [5], types of dimensions of graphs are studied. Recall

that a product dimension of a graph A in Cis p-dim¢ 4 = min {« l A is a full sub-

graph of X A; with A; SI in C}, a subdirect dimension s-dim¢ A = min {« [ A is
iex

afull subgraph of X with A; STand p;m onto} (p; are projections, m is an embedding).

Theorem 2.1 implies that, if C = G is a productive hereditary class of graphs
then p-dim¢ = s-dim¢ iff C = SP(D) where D satisfies one of the conditions (i)— (vii)
from 2.1.

References

[1] BIRKHOFF, G.: Lattice Theory, AMS Colloquium Publ. 25, Providence RI, 1967.

[2] NEeSETRIL, J., PULTR, A.: On classes of relations and graphs determined by subobjects and
factorobjects, Discr. Math., 22 1978, 287—300.

[3] PuLTR, A.: On productive classes of graphs determined by prohibiting given subgraphs,
Collog. Math. Soc. J. Bolyai, 18 1976, 805— 819.

[4] PULTR, A., VINAREK, J.: Productive classes and subdirect irreducibility, in particular for
graphs, Discr. Math. 20 1977, 159—176.

[5] VINAREK, J.: Remarks on dimensions of graphs, Abstracta Eighth Winter School on Abstract
Analysis, Praha 1980, 180— 193.

[6] VINAREK, J.: On subdirect irreducibility and its variants, Czechosl. Math. J. 32 1982, 116 to
128.

10



		webmaster@dml.cz
	2012-10-05T23:13:47+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




