
Acta Universitatis Carolinae. Mathematica et Physica

N. R. Nassif
On a finite-element collocation method which reproduces the Padé table

Acta Universitatis Carolinae. Mathematica et Physica, Vol. 15 (1974), No. 1-2, 105--109

Persistent URL: http://dml.cz/dmlcz/142336

Terms of use:
© Univerzita Karlova v Praze, 1974

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to
digitized documents strictly for personal use. Each copy of any part of this document must
contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://project.dml.cz

http://dml.cz/dmlcz/142336
http://project.dml.cz


1974 ACTA UNIVERSITATIS CAROLINAE - MATHEMATICA ET PHYSICA NO. 1-2 PAG. 105-109 

On a Finite-Element Collocation Method 
Which Reproduces the Pade Table 

N. R. N A S S I F 

Mathematics Depar tment , American Universi ty, Beirut 

In this paper, we derive Pade approximations of any order by using Hermite interpolatory 
bases and collocating appropriately to obtain one-step numerical solutions of the system of differen­
tial equations dyfdt = — Sy, y(0) = yo. 

I. Introduction 

Consider the initial-value problem 

y ( r ) = —Sy , 0 = t=T (1) 

y(0)=y0 (10 
where y: [0, T] -> Rn and S = {Sij} is an n x n matrix whose coefficients are 
independent of the variable t. The solution to (1) — (V) is given by [4, p. 254], 
y(t) = exp (—tS)yo, which implies if At = 0 that 

y(t + At) = exp(—ArS) y(t), 0 = r, t + At = T. (2) 

It is well-known [ibid, pp. 262—270], that one-step implicit and explicit schemes 
for solving numerically (1) — (V) are obtained by considering Pade Matrix appro­
ximations to exp(—AtS). Specifically consider for 0 = /, r the (/, r) entry of the 
Pade Table composed of Pr,i(z)IQr>i(z), where 

^ (r+/-*)!(/)! P"-1{Z) ~ Z (-+/).(*).(.•-*). (~^ (3) 
A5=0 

and 
r 

QM=2 (r
(;o!

/
(^!"

)
r-

)l)! - f c=** M • (30 
*=o 

The one-step scheme, based on this (r, /) entry is 

Qr,i(AtS) z(t + At) = Pr,i(&tS) z(t) . (4) 

If r = 0, (4) is explicit. Otherwise it is implicit, unless 5 reduces to a triangular 
matrix. 
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In this paper, our main result is that (4) can be obtained in the numerical 
solution of (1) — (V) by a finite-element collocation technique in t. If we.let 

nAt = t0 = 0 < t\ = Ar < t2 = 2Ar < ... < tm = mAt = T 

be a (not necessarily) uniform partition of the interval [0, T]. Let also / and r 
be two non-negative integers with q = min(r — 1, /—1) and/) = max(r — 1, /—1). 

We consider the following class of piecewise polynomials. For /, r ^ 1 
W>r = Hl>r ([0, T]; Rn; ITAt) denotes the subspace of O-([0, T]; Rn) which 
consists of those functions from [0, T] to Rn which are polynomials of degree 
(I +r — 1) on the intervals of [0, T] determined by the partition IIAt. 

For this purpose we construct on the interval [0,1], the polynomials of degree 
l+r — l, ¥k(t), 0^k^l—l and 0k(t), 0 ^ * ^ r — 1, defined by the 
conditions 

W 0 ) =-«,*, 0 ^ ; ^ Z - 1 (5a) m i ) = 0 , O f g j ^ r - 1 (5b) 

0<>>(O) = 0 , 0 < j ^ / - 1 (5c) 0^(1) = dkj, 0 rg j ^ r - 1 (5d) 

/—1 r—1 

zeHi.ro Z(t) = ^(At)*v*(^ir-)* + 2 ( A r ) * 0 k (ns i r ) z'+i' 

t e [tu ti+i] . (6) 
Note then that z\ = *<*>(*«). (6), (5a), (5b), (5c), and (5d) insure that 
z e C*([0, 71; Rn). If / = 0 and r ^ 1 (or r = 0 and / ^ 1) then W>r (resp. Hl>°) 
consists of those functions which are polynomials of degree I +r — 1, on each 
subinterval [tu U+i], 0 ^ i ^ m — 1, and which are only piecewise continuous. 
That is z e H°>r (resp. H^) iff 

r—1 • t - 1 

Z(t) = 2 (A*)* ®* {^KT) *<+I' (resp-*« = 2 ( A t )*W k i1~sf)**)• (6'} 

k=0 £=0 

Note: Hl>r represents exactly a special case of classical Hermite interpolation 
for two knots [1]. 

To construct the approximation z(t) to the solution y(t) of (1) — (V) we start 
by rewriting (1), in a sequence of integral equations, and this by integrating (1) 
on [r<, u+i], obtaining, 

n+i 

y(tt+i) ~y(tt) = - J" Sy(t)dt, 0^i^m — l. (7) 

Also by differentiating (1) j times one arrives at 

y<fi(t) = (S)! y(t) O^t^T, 1 ̂ j (8) 
which implies, 

yU)(ti) = (S)l y(tt), O^j^p, O^i^m. (8') 
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Our requirements on z(t) are (Rl) z eHl>r, (R2) z satisfies the integral equations 
(8), (R3) z satisfies (V) and if in addition / = 2, or r = 2, or /, r = 2, z satisfies 
(8'). See [3], for / = r = 1,2. Our results are as follows. 

Theorem I, The difference scheme obtained from (Rl), (R2) and (R3) is 
equivalent to (4). 

Global error bounds can also be derived and this in any vector norm \\x\\3 x e Rn. 
Specifically, let ||̂ 4|| = sup \\Ax\\ be the usual associated matrix norm, 

ll*ll-i 
Pr,i == Pr,i(ktS), Qrti = Qr,i(ktS), and Gr,i = [QrjY1 [Pr,iY Our next result is: • 

Theorem n. Assume S, A;, are such that 

KGrMQr^U^K, \ = i = m (9) 

where K is independent of (Ar), then for Ar =\ d, d positive constant, we have 

!b(0 — *(0II ^ Af(Ar)1^, 0 = t = T 
where 

M = M(l, r, S, K, T,y). Thus one obtains global convergence of 

order (Ar)*+r. 

Remark: Assumption (9) is the usual stability assumption, in the sense of 
Richtmyer. It is for example satisfied when r = l, and 5 is positive definite. In this 
case the stability is unconditional. 

2. Proof of Theorem I: If / = r = 0, the proposition is obvious; one 
obtains then Zi+i = Zi. In the case 1 = 0 and r ^ 1, or r = 0 and / =; 1, or 
r, I ^ 1, then we obtain respectively, from (Rl), (R2), and (R3), 

l—i u+i 

= {i + 2 [(At)* / v* {-^r)dt] (-s)*+1) *« oo) Zi+l 

k = 0 

ti+1 

{i—2(Ar)fc [ / M ^ A T 1 ) H (-S)*+1) Zt+l =Zi (W) 

k=0 tt 

r—1 tt + i 

{i - ^ [ / (A')* 0k (^ i r 1 ) d ' ] (~5)*+1)ZM = 
A = O «< 

/—i .f + i 

-=[ i + 2 [ / <A'}* ** ^ i r ) d t ] ( _ 5 ) * + 1 )* • (10") 

k=0 ti 

It can be proved without difficulty, in an otherwise lengthy argument that 
u+i 

/ - . ( ^ ) * - - . 
V+r.-k - i ) i (0 i 

(t+r)!(Ä + l)!(/-l-Ã)! 
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and 

f<» (*-'*] A, A> ( / + r - * - ! ) ! (r)\ 
J *«{-&r)dt=At (l+r)\(k)\(r-l-k)\ • 
U 

We may then rewrite (10), (10'), (10"), thus verifying in all cases that 

JV d+r-k)\(r)\ \_ / V (l+r-k)\(k)\ , \ 
\Zd+r)\(k)\(r-k)\ (AfS) )Zi+1 =\Zd+r)\(k)\(l-k)\ ^^H Z< 

k=0 k=0 
precisely (4). 

3. Error Estimates: We let e(t) = y(t) — z(t), y* = yW(ti), ej=e<*>(r<)> 
0 = k = py with ei = e°4. To prove theorem 2, we obtain first some local error 
estimates. Precisely, 

Lemma. For 0 = k =p, 0 = i = m, 

||e*|| = K(Aty+m , ^ ' y i , , rV i sup ||3,«+r+*+i>(0 || . (11) 
(/ + r + l j ! (/ + rj! o=r^r 

Proof. From (2), it is clear that y e C°° ([0, T]; /?»), and from [2], 
/—1 r— 1 

:v(r)=^ (At)* -** ( ^ p ) y* + 2 ( A 0 * 0 * (^ir1) ^+i + 
k=0 k=0 

+ (t-tiy(t-ti+1)r[yll\y^y] 

where [y^, yl+i, *y] is the usual notation for divided differences. Thus since y 
satisfies (7), (8) and (8'), define the truncation error, 

Qr,i ei+i — Pr,i ei = d . (12) 
It follows then that 

a = s)\t-«y(t-ti+1y[y(l\y\%y\ & 
u 

and thus 

et = 2 (Gr,di-KQr.i)-1°*-4 > \=i = m (13) 
k=\ 

(9) and (13) imply (11) for k = 0, since [>\<l),-yi;)1,;y] = J ^ f o O / (/ + r)! 

and 
-i+i 

J" (. - «oj («.+i - ty At = (/ ^
(^!

1), (W+r+1 • 
n 

For & ^ 1, consider the difference equation (4) obtained from (Rl), (R2) and (R3). 
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By left-multiplication with (—S) k, it implies that 

Qr,i(—S)*Zi+i = Pr,i(—S)kzt, and from (R3) 

(14) Qrti 4 + i = Pr.i z\, O^i^m — h l ^ k ^ p 

(140 4 = (S)kyQ . 

That is, the (r,/) Pade approximation to-y<*+1>(r) = — Sj/<*>(r),y*>(0) = (—S)ky0=y^ 
Therefore as for k = 0, (11) is true for I f= ki^p. To complete the proof, observe 
that 

7—1 r—1 

e( v (0 = 2 (*<)* Ъ (^) * + 2(Ať)* Фк (^r)e^ + 

*==0 

У{l+rKЧi)> Ш є (й, й+i), 0 ^ г ^ w — 1 . 

*=0 £=0 

(ř — ti)1 (t — Й+l) r 

(/+r)! 
Thus, if 

C = max { sup ]¥»&)]}, I) = max { sup |<Pjt(*)|}, 
0=fc=i—1 0 = x^l 0=fc=r—1 0 = x = l 

and 

C = KT-rr-
 ( ^ l max { sup ||y"*+*+->(t)||} . 

(/ + r + 1)! (/ -r-r)! o=*=*> o=t=r 
If Ar ̂  5 < 1, then \\e(t)\\ ^ M(A0'+r , 

f (C + D)C \\y«+r) (OH \ 
where _M = max --—; ^— ; sup ' ,f , ;/" } . 

I l — o o=r=r (/ + 0 ! i 
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