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The solvability of generalized orthomodular lattices was defined by E. L. Mars-
den. In this paper we propose a slightly simplified construction. 

If Se = <L, Us n> ±> 0, 1> is an orthomodular lattice we let Sf<i+1> denote 
the ideal of the lattice Sf generated by all elements of the form [x, y] = (x (J y) f] 
n v*1 (Jy) n (* Uy1- ) n (x-1 U yL) where x9y eW) and &(o) = Se. We shall 
say that S£ is solvable if there exists an w _ 0 such that L(*> = {0}. 

The aim of this note is the proof of the following theorem which is an equivalent 
of Marsden's result [3], Th. 9: 

Theorem. An orthomodular lattice is solvable iff it is distributive. 
Let S£ denote a uniquely complemented lattice where the mapping y : a \-* a' 

is antitone. Since (a')' = a, it is easy to see that (a' f] b')' ^ a (J b and that 
(a U b)' = a' n V. From this we get (a \J b)' = a' f]b' and (a f] b)' = a' [) b'. 
We summarize these facts in a useful variant of a known result ([1], Th. 17, 
p. 44): 

Proposit ion. A uniquely complemented lattice is Boolean iff the mapping 
(p : a |-> a' is antitone. 

As an immediate consequence of this result we state (cf. [2]). 
Corollary. A uniquely complemented lattice satisfying the condition x f]y = 

= 0 => x' = y is Boolean. 
Proof. If a <^ by then b' f] a = 0 and so we have V 5g a'. 

We shall say for brevity that a lattice S£ satisfies the condition (P«)> i J_ 0, if 
S£ is orthomodular and if every interval [0; v], v e L(*>, is a uniquely comple­
mented lattice. 

Lemma. If S£ satisfies (Pi), i^l, then S£ satisfies also (Pi-\). 
Proof (We shall use the identity (ii) of [1], p. 54, without making explicit references). 
Let [0; u] be an interval of SfV-V . Then [0; u] is an orthomodular lattice where 
a+ = a1- f]u is the orthocomplement of a e[0; u]. Let a* e[0; u] be such that 
a U a* = 1 and a f]a* =0. We shall show that a* = a+: Denote by </>, q} 
the element (p [J q) f] (p+ (J q) f] (p U q+) f) (p+ U q+)- Since </>, q} g [/>, q], 
we have <p, q} eL(*> whenever />, q e[0; u]. Now 
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/ = <a+ D (« U <**+), a* f. (« U a*+)> = 
= {(a+ H(a U <**+)) U («* D (<t U <**+))} D 
f| {(a+ f| (« U <**+)) U (<•*+ U (a+ fl a*))} f| 
0 {(a U (a+ n a*)) U (a* D (a U a*+))} n 
D {(a u (*+ n a*)) U (a*+ U (a+ n a*))} 

and the last three members {...} are equal to u. Thus / = m\ \j mi where m\ = 
= a+ n (A U A*+)> ^2 = a* n (<* U A*+). Similarly we get /* = <«i, «2> = 

= n\ U w2 where «i = a f) (a+ U A*), n2 = a*+ n (A+ U a*). But /*,f G L<*> 
implies that also wi, m^ n\, n% e L<*>. On the other hand 

« i u » i = (<*+ n(fl u<**+)) u(A n(A+ uA*)) = 
= t(a+ n (A u **+)) u A] n (A+ u A*) = 
= (A u A+) n (A u A*+) n (A+ U A*) = 
= («u A*+) n (A+ u A*) = f ^ m2. 

Hence I ^ ^ x where ^J- = W2 U wi- Further, 

(A u A*+) n (A*+ u (A+ n A*)) = A*+ 

(a+ u A*) n (A+ u (A n A*+)) = A+ 

and this yields 

f n A = ^ U A*+) n (A+ u A*) n (A*+ U (A+ n A*)) n (A+ u (A n A*+» = 
= a*+ n A+ = (a U A*)+ = u+ = 0. 

By orthomodularity, g = rj1 and thus ^2 U ni = £• We have also wi n wi _ 
5g a+ n A = 0, m<z n « i _ A * n a = 0. Since [0; f] is uniquely complemented 
it follows that m\ = m% = wi f l w 2 = (a+ n a*) n (A+ n A*)+ = 0. So we have 
m\ = a+ n (A U A*+) = 0, a+ ^ (a (J a*+)+ and the orthomodularity implies 
that a+ = (a U a*+)+ = a+ f) a* ^ a*. From m2 = 0 we obtain similarly 
a* ^ a+ and the lemma is proved. 
Proof of T h e o r e m . If j£? is orthomodular and L<rt> = {0}, then the condition 
(Pn) holds and, by Lemma, the condition (Pn) holds also. Since 1 e L, & is a 
uniquely complemented lattice where kL is the complement of i e L and since i f 
is an ortholattice, the mapping cp : k\-+ k^- is antitone. 
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