
Commentationes Mathematicae Universitatis Carolinae

Yoshio Tanaka
Topology on ordered fields

Commentationes Mathematicae Universitatis Carolinae, Vol. 53 (2012), No. 1, 139--147

Persistent URL: http://dml.cz/dmlcz/141831

Terms of use:
© Charles University in Prague, Faculty of Mathematics and Physics, 2012

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to
digitized documents strictly for personal use. Each copy of any part of this document must
contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech
Digital Mathematics Library http://project.dml.cz

http://dml.cz/dmlcz/141831
http://project.dml.cz


Comment.Math.Univ.Carolin. 53,1 (2012) 139–147 139

Topology on ordered fields

Yoshio Tanaka

Abstract. An ordered field is a field which has a linear order and the order topol-
ogy by this order. For a subfield F of an ordered field, we give characterizations
for F to be Dedekind-complete or Archimedean in terms of the order topology
and the subspace topology on F .

Keywords: order topology, subspace topology, ordered field, Archimedes’ axiom,
axiom of continuity

Classification: 54A10, 54F05, 12J15

1. Preliminaries

Let X be a set linearly ordered (or totally ordered) by ≤. Then X is called
a linearly ordered topological space (or LOTS ) if X has the order topology (or
interval topology) by ≤; that is, the topology has a base {(α, β) : α, β ∈ X},
where (α, β) = {x ∈ X : α < x < β}; see [1] etc. As is well-known, every LOTS
is normal. For A ⊂ X , A is called a subspace of the LOTS X when A has the
subspace topology (relative topology, or induced topology) from X ; that is, the
topology has a base {(α, β) ∩A : α, β ∈ X}.

Let X be a LOTS with a (linear) order ≤. For A ⊂ X , let ≤A be the restriction
of the order ≤ to A. Then the order topology on A by ≤A is coarser than the
subspace topology on A. The order topology need not coincide with the subspace
topology ([2, 3Q], [3, Remark 3.2], etc.).

For a subset A of a space X , we say that A is compact ; connected ; and discrete
in X if so is A respectively as a subspace of X . Also, A is closed discrete in X if
A is closed and discrete in X (equivalently, any subset of A is closed in X). For
p ∈ X , p is an accumulation point of A in X if p ∈ cl(A − {p}). Also, A is dense
in X if clA = X .

Now, let R; Q; and N be the usual real number field; rational number field;
and the set of natural numbers, respectively.

Let G = (G,+) be an Abelian group (i.e., commutative group which is addi-
tive). Let us say that G is an ordered additive group ([3], [5]) if G has a linear
order ≤ such that the order is preserving with respect to addition (i.e., for a < b,
a + x < b + x), and G has the order topology by the order ≤. For x ∈ G, de-
fine |x| ∈ G by |x| = x if x ≥ 0, and |x| = −x if x < 0. Then, for x, y ∈ G,
|x + y| ≤ |x| + |y| holds. For a commutative field K = (K,+,×) with a linear
order ≤, we say that K is an ordered field if K is an ordered additive group, and
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the order ≤ is moreover preserving with respect to multiplication (i.e., for a < b
and 0 < x, a × x < b× x). For an ordered field K, K contains a subfield which
is isomorphic to Q, so we assume K ⊃ Q.

Remark 1.1. Obviously, any ordered field has no isolated points. Also, for an
ordered additive group G, G has no isolated points iff it is not discrete by the
homogeneity of G ([3]).

Let (K,≤) be an (algebraic) ordered field. A pair (A|B) of non-empty subsets
A and B in K is a (Dedekind) cut if K = A

⋃
B, A

⋂
B = ∅, and for any x ∈ A,

y ∈ B, x < y. We recall the following classical Archimedes’ axiom, and the axiom
of continuity which is stronger than Archimedes’ axiom.

• Archimedes’ axiom: For each α, β ∈ K with 0 < α < β, there exists
n ∈ N with β < nα (equivalently, for each α ∈ K, there exists n ∈ N with
α < n).

• Axiom of continuity: For each cut (A|B) in K, there exists one of maxA
and minB (equivalently, there exists maxA or minB).

An (algebraic) ordered field is Archimedean; Dedekind-complete if it satisfies
Archimedes’ axiom; the Axiom of continuity, respectively. The ordered field Q is
Archimedean, but not Dedekind-complete.

For fields (or rings) K and K ′, f : K → K ′ is a homomorphism if f(x + y) =
f(x) + f(y), f(xy) = f(x)f(y), and f(1) = 1′, where 1; 1′ is the unit in K; K ′,
respectively. Then, a homomorphism is an isomorphism if it is a bijection.

For ordered fields (K,≤) and (K ′,≤′), f : (K,≤) → (K ′,≤′) is order-preserving
if for x < y, f(x) <′ f(y). A homomorphism f is order-preserving iff for 0 < x,
0 <′ f(x). The following is well-known; see [2] etc.

Remark 1.2. (1) Any homomorphism from a field is injective.
(2) Let f : R → (K,≤) be a homomorphism. Then f is order-preserving.
(3) For an ordered field K, K is Archimedean iff it is order-preserving iso-

morphic to a subfield of R; in particular, K is Dedekind-complete iff it is
(order-preserving) isomorphic to R.

We assume that spaces are Hausdorff. Let us use the following abbreviated
notations in this paper.

Notations. X means a LOTS having an order ≤, unless otherwise stated. A ⊂ X
means that the set A has the order ≤A. When X is an ordered field; ordered
additive group, we use the symbol K; G respectively, instead of X . A field
A ⊂ K means that A is a subfield of K which has the order ≤A, and also the
same meaning for an additive group A ⊂ G.

For A ⊂ X , A∗ means a space having the order topology by ≤A. Clearly, A
∗ is

a subspace of X iff the order topology on A coincides with the subspace topology.
L ⊂ G means an infinite decreasing sequence having a lower bound 0 in G, and

let L0 = L ∪ {0}. In particular, for the decreasing sequence {1/n : n ∈ N} in K,
let S = {1/n : n ∈ N} and S0 = S ∪ {0}.
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Remark 1.3. If A is compact or connected in X , then A∗ is a subspace of X , as
is well-known. While, if A = Q, R, or S0 ⊂ K, then A∗ is the usual subspace in R,
so we may put A∗ = A (but, A∗ need not be a subspace of K; see Theorem 2.2,
Example 3.1, or Example 3.3 later). Indeed, this is shown by a well-known fact
that Q and R have the usual order which is unique as an ordered field, and so
does S0 as a subset of an ordered field, because the set of integers has the unique
usual order as an ordered ring. (Every ordered field in R need not have the unique
order; see Example 3.2.)

Remark 1.4. (1) Let L ⊂ G. Then L∗ is a discrete space (equivalently,
discrete subspace of G), but L need not be closed in G. While, L∗

0 is a
compact space, but L0 need not be compact in G.

(2) For L ⊂ G, L0 is compact in G ⇔ L converges to 0 in G ⇔ clL = L0 in
G ⇔ L∗

0 is a (compact) subspace of G. Also, clL is compact in G ⇔ L
converges to a point in G ⇔ L is not closed (discrete) in G.

2. Results

Theorem 2.1. For an additive group A ⊂ G, if A∗ is not discrete, then the
following are equivalent.

(a) A∗ is a subspace of G.
(b) A is not closed discrete in G.
(c) Any point of A is an accumulation point of A in G.
(d) Some point of G is an accumulation point of A in G.

Proof: For (a)⇒ (c), by Remark 1.1 any point of A is an accumulation point of
A in A∗, hence in G. (c)⇒ (d) is clear, and (b)⇔ (d) is obvious. For (d)⇒ (a),
it suffices to show that the subspace topology is coarser than the order topology
on A. To see this, let H = (α, β) ∩ A with α, β ∈ G, and let γ ∈ H . Let
δ = min{γ−α, β−γ} > 0. Let p be an accumulation point of A in G. Then there
exist distinct points a, b in A such that 0 < δ0 = |a−p| < δ, and 0 < |b−p| < δ−δ0.
Put σ = |a − b| > 0. Then σ ∈ A (thus, γ − σ, γ + σ ∈ A), and σ < δ since
σ ≤ |a− p|+ |b− p| < δ. Let T = (γ − σ, γ + σ) be the open interval in A. Then
T is an open subset of A∗ with γ ∈ T ⊂ H . Hence H is open in A∗. �

Corollary 2.1. For A ⊂ G, if A is dense in G, A∗ is a subspace of G.

Proof: If A is closed in G, then A = G, so let A be not closed in G. Then
any interval (α, β) in G is not empty. Indeed, A has an accumulation point in G.
Thus, for δ = β−α > 0, there exists δ0 ∈ G with 0 < δ0 < δ. Then α+δ0 ∈ (α, β).
Thus, for γ ∈ (α, β) ∩A, we can take γ1 ∈ (α, γ) ∩ A, and γ2 ∈ (γ, β) ∩A. Then
the open interval T = (γ1, γ2) in A satisfies γ ∈ T ⊂ (α, β) ∩ A. Hence, A∗ is a
subspace of G. �

Remark 2.1. (1) If A in Theorem 2.1, or G in Corollary 2.1 is a space,
then the result need not hold. Indeed, let A0 = [0, 1) ∪ [2, 3] ⊂ R, and
A1 = A0 ∪ {1} ⊂ R. Then any point of A0 is an accumulation point of
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A0 in R, and A0 is dense in A∗
1. But A

∗
0 is not a subspace of the space R

or A∗
1.

(2) For a field A ⊂ K, the converse of Corollary 2.1 need not hold (thus, (c)
in Theorem 2.1 need not imply that A is dense in G); see Example 3.1.

Theorem 2.2. (1) The following are equivalent for K (we can omit the pa-
renthetic parts in (d), (e), and (f)).
(a) K is Archimedean.
(b) Q is dense in K.
(c) Q is a subspace of K.
(d) For any field F ⊂ K, F ∗ is a (dense) subspace of K.
(e) For some Archimedean ordered field F ⊂ K, F ∗ is a (dense) subspace

of K.
(f) S0 is a (compact) subspace of K.

(2) The following are equivalent for K.
(a) K is not Archimedean.
(b) Q is closed discrete in K.
(c) Some field F ⊂ K is closed discrete in K.
(d) Any Archimedean ordered field F ⊂ K is closed discrete in K.
(e) S0 (or S) is closed discrete in K.

Proof: (2) holds in view of (1) and Theorem 2.1, so we show (1) holds. (a)⇔ (b)
is well-known. We will show the implication (a)⇒ (d)⇒ (c)⇒ (e)⇒ (a)⇔ (f) holds.
(d)⇒ (c)⇒ (e) is obvious. For (a)⇒ (d), Q is dense in K. Thus, F is dense in K.
Hence F ∗ is a (dense) subspace of K by Corollary 2.1. For (e)⇒ (a), Q is dense
in F , thus it is a subspace of F ∗ by Corollary 2.1. While, F ∗ is a subspace of K.
Thus, Q is a subspace of K. Hence, Q has an accumulation point in K. Thus, for
each ǫ > 0 in K, there exist p, q ∈ Q such that 0 < |p− q| < ǫ. But, 1/k < |p− q|
for some k ∈ N. Then 1/k < ǫ. This shows that K is Archimedean. For (a)⇔ (f),
K is Archimedean iff S0 is compact in K ([4]). Thus the equivalence holds by
Remark 1.3. �

Corollary 2.2. (1) For Q ⊂ K, Q is a (dense) subspace of K, or Q is closed
discrete in K.

(2) For R ⊂ K, K = R, or R is closed discrete in K.

Proof: (1) holds by Theorem 2.2. For (2), if K is not Archimedean, then R is
closed discrete in K by Theorem 2.2(2). So, let K be Archimedean. Then, R
is a dense subspace of K by Theorem 2.2(1). To show that R is closed in K,
let p ∈ clR. Since K is Archimedean, there exists an infinite sequence L in R
converging to the point p in K by Remark 2.4(2) later. Since L is a Cauchy
sequence in R, L converges to a point q in R. But, R is a subspace of K, hence
p = q ∈ R. Then, R is closed in K. Thus, K = R since R is dense in K. �

Remark 2.2. Related to Theorem 2.2; Corollary 2.2, the following (1); (2) holds
respectively in view of Example 3.1.
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(1) For some non-Archimedean ordered field K, there exist non-Archimedean
ordered fields K1, K2 ⊂ K such that K∗

1 is not a subspace of K (equiva-
lently, K1 is closed discrete in K), while K∗

2 is a subspace of K which is
not dense in K.

(2) For each ordered field F (in particular, F = R), there exists a non-
Archimedean ordered field K such that F ⊂ K is closed discrete in K.

For spaces X , X ′, f : X → X ′ is continuous if f−1(G) is an open subset in X
for any open subset G in X ′. f : X → X ′ is a homeomorphism if it a bijection,
and f and f−1 are continuous. f : X → X ′ is a homeomorphic embedding if
f : X → f(X) is a homeomorphism to a subspace f(X) of X ′.

Remark 2.3. For f : X → X ′, if we take the subspace topology on f(X) ⊂ X ′

and A ⊂ X , the following holds: if f : X → f(X) is continuous, then so is
f : X → X ′ (the converse also holds), and the restriction f |A : A → X ′ is also
continuous. However, if we take the order topology, the above need not hold.
Indeed, for a non-Archimedean ordered field K, the identity map 1Q : Q → Q
(resp. 1K : K → K) is continuous, but the inclusion map (resp. restriction)
iQ : Q → K is not continuous, because the range Q ⊂ K is closed discrete in K
by Theorem 2.2(2), but the domain Q has no isolated points as an ordered field.
Here, we can replace “Q” by any ordered field “F”, but use the non-Archimedean
ordered field K in Example 3.1, where F is closed discrete in K.

Theorem 2.3. Let f : (K,≤) → (K ′,≤′) be a homomorphism, and let F =
f(K) ⊂ K ′. If K is Archimedean, then the following are equivalent.

(a) f is continuous.
(b) f is a homeomorphic embedding.
(c) f is order-preserving, and F ∗ is a subspace of K ′.
(d) f is order-preserving, and K ′ is Archimedean.

Proof: For (a)⇒ (d), since f is a homomorphism (hence, injection by Remark
1.2(1)), for each n/m ∈ Q, f(n/m) = n1′/m1′, thus f is order-preserving on Q.
To see f is order-preserving, let p < q. Suppose f(q) <′ f(p) in K ′. Since f is
continuous, there exist disjoint open intervals Ip ∋ p and Iq ∋ q such that any
element of f(Ip) is larger than any element of f(Iq). Since K is Archimedean,
Q is dense in K, so take rp ∈ Ip ∩ Q and rq ∈ Iq ∩ Q such that rp < rq. Thus
f(rp) <′ f(rq). This is a contradiction. Hence, f is order-preserving. Thus,
obviously the field F ⊂ K ′ is Archimedean. Suppose K ′ is not Archimedean.
Then F is closed discrete in K ′ by Theorem 2.2(2). Thus, for p ∈ F , there exists
a neighborhood V (p) inK ′ with V (p)∩F = {p}. Thus, f−1(V (p))(= f−1(p)) is an
isolated point in K since f is injective and continuous. This is a contradiction, for
any ordered field has no isolated points by Remark 1.1. Hence,K ′ is Archimedean.
(d)⇒ (c) holds by Theorem 2.2(1). The implication (c)⇒ (b)⇒ (a) is obvious, for
F ∗ is a subspace of K ′. �
Remark 2.4. (1) In Theorem 2.3, we cannot delete (*) “F ∗ is a subspace

of K ′” in (c); and “K ′ is Archimedean” in (d), in view of Remark 2.3
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(or Example 3.3). While, (a) implies the property (*) in (c) without
Archimedes’ axiom of K, using Theorem 2.1.

(2) In view of Theorem 2.3 and Remark 1.2(3),K is Archimedean iffK admits
an isomorphic and homeomorphic map from K to an ordered field F ⊂ R
(which is also a subspace of R); in particular, K is Dedekind-complete iff
F = R. But, every ordered field isomorphic to a subfield of R need not be
Archimedean; see Example 3.2. Also, every ordered field homeomorphic
to a subspace of R need not be Archimedean. Indeed, take a countable,
non-Archimedean ordered field K (as K = Q(x) in Example 3.1). Since
K is countable, it has the obvious countable base, thus K is separable
metrizable, as is well-known. Thus, the LOTS K is homeomorphic to a
subspace of R by [1, 6.3.2(c)].

Corollary 2.3. Let f : K → K ′ be a homomorphism with f(K) = K ′. If K is
Archimedean, then the following are equivalent.

(a) f is continuous.
(b) f is a homeomorphism.
(c) f is order-preserving.

Theorem 2.4. The following are equivalent for K.

(a) K is Dedekind-complete.
(b) K is homeomorphic to R (or, K is a continuous image of R).
(c) Some field F ⊂ K is isomorphic to R, and K is Lindelöf (i.e., every open

cover of K has a countable subcover).
(d) Some field S ⊂ K is isomorphic to R, and S∗ is a subspace of K.
(e) Some subset A of K with |A| ≥ 2 is connected in K.
(f) Some (or any) closed interval [a, b] (a < b) in K is compact in K.
(g) For any decreasing sequence L in K having a lower bound, L has a limit

point in K.
(h) For any L ⊂ K, clL is compact in K.

Proof: (a), (e), and (f) are equivalent (see [4], [6], etc.). (a)⇔ (g) is well-known.
(g)⇔ (h) holds by Remark 1.4(2), here K is an ordered field, so we can put L = L
in (g). We show the implication (a)⇒ (b)⇒ (c)⇒ (d)⇒ (a) holds. (a)⇒ (b) holds
by Remark 2.4(2). For (b)⇒ (c), obviouslyK is Lindelöf. Also, K is connected, so
K is Dedekind-complete (by (e)), thus it is isomorphic to R by Remark 1.2(3). For
(c)⇒ (d), F ⊂ K is Archimedean by Remark 1.2(2). If K is not Archimedean,
F is closed discrete in K by Theorem 2.2(2). Then F is countable since it is
Lindelöf. This is a contradiction, for F is uncountable. Thus K is Archimedean.
Then F ∗ is a subspace of K by Theorem 2.2(1). Hence (d) holds. For (d)⇒ (a), S
is Dedekind-complete by Remark 1.2(3), hence S∗ is homeomorphic to R (by (b)).
Thus, S∗ is connected in K, then (e) holds. Hence (a) holds. �

Remark 2.5. (1) In Theorem 2.4, we cannot delete the Lindelöf property in
(c), in view of the Remark 2.3 (last sentence) or Example 3.3.
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(2) We recall that for G being non-discrete, G is metrizable iff some countable
subset of G has an accumulation point in G ([5]). Then the following holds
in view of Remarks 1.1 and 1.4.

For G being non-discrete, G is metrizable ⇔ some L ⊂ G has a limit point in
G ⇔ (h) in Theorem 2.4 holds for G, but replace “any” by “some”.

The following holds by Theorems 2.2 & 2.4, and Remarks 1.4(2) & 2.5(2).

Corollary 2.4. (1) K is Archimedean, but not Dedekind-complete iff S0 is
a (compact) subspace of K, but some L ⊂ K is closed discrete in K.

(2) The following are equivalent for K.
(a) K is metrizable, but not Archimedean (resp. not Dedekind-comp-

lete).
(b) Some L ⊂ K has a limit point in K, but S (resp. some L′ ⊂ K) has

no limit points in K. Here, L′ ⊂ K is an infinite decreasing sequence
having a lower bound 0 in K.

(c) Some L∗
0 is a (compact) subspace of K, but S (resp. some L′ ⊂ K)

is closed discrete in K.

3. Examples

Example 3.1. Let F be an ordered field. Let K = F (x1, x2) be the field of all
rational functions in the variables (independent indeterminates) xi (i = 1, 2) with
coefficients in F . We give a linear order ≤ onK as follows: Arrange any monomial
xm1
1 ·xm2

2 (m1,m2 ∈ N) in K by xm2
2 ·xm1

1 . For distinct monomials u = xm1

i1
·xm2

i2

and v = xp1

j1
· xp2

j2
(possibly, u = xm1

i1
etc.), define u ≺ v lexicographically; that is,

u ≺ v if one of the following holds: (i1 < j1); (i1 = j1,m1 < p1); (i1 = j1,m1 =
p1, i2 < j2); (i1 = j1,m1 = p1, i2 = j2,m2 < p2). Consider 1 ∈ F as an “empty
monomial” x0

i , and let 1 ≺ u for any other monomial u. Then, for u ≺ v and any
monomial w, wu ≺ wv (by the arrangement and the order among the monomials).
We arrange any non-zero polynomial w = α1w1 + · · · + αmwn (n ≤ 4) in K by
w1 ≺ w2 ≺ · · · ≺ wn, here αi ∈ F − {0}, and wi are monomials (containing the
empty monomial) in K, and let 0u = 0 for any monomial u. Let us define a linear
order ≤ in K. For η ∈ K, let η = ±(g/f), where f = a1u1 + · · · + amum and
g = b1v1 + · · ·+ bnvn are polynomials with am, bn > 0 in F . Define η > 0 if the
sign of the fraction is “+”, and η < 0 if “ – ”. For η, ξ ∈ K, define η < ξ if
0 < ξ − η. Let K = (K,≤). Let K1 = F (x1),K2 = F (x2), and K1,K2 ⊂ K.
Then it is routinely shown that K is an ordered field. The following hold for fields
F,K1,K2 ⊂ K. (For (i) and (ii), cf. [3].)

(i) K, K∗
1 , and K∗

2 are metrizable, but any of them is not Archimedean.
(ii) F is closed discrete in K, K∗

1 , and K∗
2 (but, F ∗ need not be metrizable).

(iii) K1 is closed discrete in K.
(iv) K∗

2 is a subspace of K, but K2 is not dense in K.

Proof: For (i), note that n < x1 < x2 for all n ∈ N. Then any of K, K1, and
K2 is not Archimedean. We show that K is metrizable. The decreasing sequence
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{1/xn
2 : n ∈ N} in K2 converges to 0 in K (indeed, let η ∈ K with η > 0. We

may assume that xm
2 · xn

1 is the largest monomial in the denominator of η. Then,
η > 1/xk

2 for k ∈ N with k > m). Thus, K is metrizable by Remark 2.5(2).
Similarly, K∗

i (i = 1,2) are metrizable (because, the sequence {1/xn
i : n ∈ N} in

Ki converges to 0 in K∗
i ). For (ii), let η ∈ K, and H(η) = (η − 1/x1, η + 1/x1).

Then H(η) is a neighborhood of η in K with |H(η)∩F | ≤ 1 (indeed, if H(η)∩F
contains α, β, then |α − β| < 2/x1, so α = β). Thus, (ii) holds in K. Similarly,
(ii) holds in K∗

1 and K∗
2 . For the parenthetic part, note that every ordered field

need not be metrizable; see Example 3.3 below (or, [3], [5], etc.). For (iii), let
η ∈ K, and V (η) = (η − 1/2x2, η + 1/2x2). Then V (η) is a neighborhood of
η in K with |V (η) ∩ K1| ≤ 1 (indeed, suppose V (η) ∩ K1 contains η1, η2 with
η1 < η2. Then 0 < η′ = η2 − η1 < 1/x2. But, xm

1 < x2 < x2 · xn
1 for any

m,n ∈ N. Then, since η′ ∈ K1, η
′ > 1/x2, a contradiction). For (iv), K2 has an

accumulation point 0 in K by the proof of (i). Thus K∗
2 is a subspace of K by

Theorem 2.1. To see K2 is not dense in K, let W = (1/3x1, 1/x1). Then W is a
neighborhood of 1/2x1 in K, but W ∩ K2 = ∅ (indeed, suppose W contains an
element η = (b0 + b1x2 + · · · + bnx

n
2 )/(a0 + a1x2 + · · · + amxm

2 ) (am, bn > 0) in
K2. We assume m,n ≥ 1. Since 1/3x1 < η, m ≤ n. But, 1/x1 > η, so m > n,
a contradiction). �
Example 3.2. Let K = (Q(x),≤) be a non-Archimedean ordered field defined
in Example 3.1. For a transcendental real number c (c = π etc.), define an
ordered field K ′ = Q(c) ⊂ R by replacing “x” by “c” in Q(x). Note that for
every polynomial f ∈ K, if f(c) = 0, then f = 0 since c is a transcendental real
number. Define h : K → K ′ by h((g/f)) = g(c)/f(c). Then h is an isomorphism.
Thus, the following hold ((iii) holds by Corollary 2.3).

(i) K is isomorphic to the field K ′ ⊂ R, but K is not Archimedean.
(ii) K ′ is Archimedean, but K ′ is not Archimedean with respect to an order

� defined by a ≺ b iff h−1(a) < h−1(b).
(iii) The identity map from K ′ to (K ′,�) is not continuous.

Example 3.3. For a completely regular space X , let C(X) be the collection of all
continuous functions fromX into R. For a maximal ideal M of the ring C(X), the
residue class field K = C(X)/M is an ordered field. In view of [2, Theorem 5.5],
the field K contains a subfield F which is the image under an order-preserving
isomorphism h from R into K. Thus, we can assume R ⊂ K. The ordered field
K is called real if it is isomorphic to R, and K is called hyper-real if it is not
real ([2]). For example, the ordered fields C(N)/M , C(Q)/M , and C(R)/M are
hyper-real; see [2] (or [5]). The field K = C(X)/M is real (resp. hyper-real) iff K
is Archimedean (resp. non-Archimedean); see [2, 5.6]. Thus, for the field K the
following hold by Theorems 2.2 and 2.4, here see [3] or [5] for (i).

(i) K is real ⇔ K is homeomorphic to R ⇔ K is Lindelöf ⇔ K is metrizable.
(ii) K is hyper-real ⇔ the field F (or R) ⊂ K is closed discrete in K ⇔ the

function h into K is not continuous ⇔ any non-constant function from R
into K is not continuous.
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