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A-OPTIMAL BIASED SPRING BALANCE WEIGHING
DESIGN

Ma lgorzata Graczyk

In this paper we study the problem of estimation of individual measurements of objects
in a biased spring balance weighing design under assumption that the errors are uncorre-
lated and they have different variances. The lower bound for the variance of each of the
estimated measurements for this design and the necessary and sufficient conditions for this
lower bound to be attained are given. The incidence matrices of the balanced incomplete
block designs are used for construction of the A-optimal biased spring balance weighing
design.
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Classification: 62K05, 62K10

1. INTRODUCTION

Let us consider Ψn×p(0, 1) the class of all possible n× p matrices of elements equal
to 0 or 1. Any X ∈ Ψn×p(0, 1) is called spring balance weighing design if for an p×1
vector representing unknown measurements of objects w∗, we have y = Xw∗ + e,
where y is an n× 1 random vector of the recorded results of measurements, e is the
n×1 random vector of errors with the following properties: E(e) = 0n and E(ee′) =
σ2G, where G is diagonal positive definite matrix of known elements. Thus, any
spring balance weighing design is nonsingular if and only if X′X is nonsingular. In
such design for the estimation of unknown weights of objects, we use the general
weighed least squares method and we get

ŵ∗ =
(
X′G−1X

)−1
X′G−1y

and the dispersion matrix of ŵ∗ is

Var (ŵ∗) = σ2
(
X′G−1X

)−1
.

In the literature, some optimality criterions are considered, see for instance [5].
They are functions of the dispersion matrix of ŵ∗. In the present paper, we study
the problem of the determining the existence conditions and the relations between
the parameters of the A-optimal spring balance weighing design, i. e. the design in
that the sum of variances of estimators is minimal. For G = In, where In is n × n
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identity matrix, some optimality problems related to the spring balance weighing
designs have been considered in [1, 2, 6].

2. BIASED SPRING BALANCED WEIGHING DESIGN

In metrology, dynamical system theory, computational mechanics and statistics,
a systematic bias is a bias of measurement system or estimated method, which leads
to systematic errors, namely produces readings or results which are consistently to
high or too low, relative to a given value of the measured or estimated variable. An
error of this kind will not be estimated by increasing the amount of experimentation,
nor will it be revealed by the variability of the experimental results.
For our next results, we will assume that we consider the class of nonsingular spring
balance weighing designs Ψn×p(0, 1). The statistical problem is to estimate the
parameter vector w∗ when the observations undergo present model. The optimality
problem is concerned with efficient estimation in some sense by a proper choice of
the design matrix X among many designs at our disposal Ψn×p(0, 1). In a special
case, when the bias is present, let w∗ = [w1 w2 . . . wp]

′ =
[

w1 w′ ]′ be the p× 1
vector of unknown mesurements of objects, w1 is the parameter corresponding to
the bias (systematic error), w = [w2 w3 . . . wp]

′ is the (p−1)×1 vector of unknown
measurements of objects (excluding bias.) In the experiment it can be assumed to be
one object and its value is estimated by taking the column of ones in X corresponding
to the bias, i. e.

X =
[

1n X1

]
, (1)

1n is n× 1 vector of ones. For X in (1) and any positive definite diagonal matrix G
of known elements, we obtain

Var(ŵ∗) = σ2

[
1′nG−11n 1′nG−1X1

X′
1G

−11n X′
1G

−1X1

]−1

= σ2

[
d T
T′ H−1

]
,

where d =
(
tr(G−1)

)−1 +
(
tr(G−1)

)−2
1′nG−1X1H−1X′

1G
−11n,

T = −
(
tr(G−1)

)−1
1′nG−1X1H−1,

H = X′
1G

−1X1 −
(
tr(G−1)

)−1
X′

1G
−11n1′nG−1X1.

According to the [2, 6, 7], when the bias is present then ŵ1 is treated as the estimator
of the bias and Var(ŵ1) = σ2d, whereas Var(ŵ) = σ2H−1. The regular A-optimal
design there is such design for that the lower bound of the trace of the dispersion
matrix of the estimation vector of unknown measurements of objects ŵ is attained.
For this reason, as the next step, we determine this lower bound. The following
lemma will be required to prove the main result of next theorem. Some assertion
concerned on this lemma are announced in [3] and [4] for a special case.

Lemma 2.1. For any positive definite q × q matrix B we have

tr(B−1) ≥ q2

tr(B)
, (2)

the equality holding if and only if B = λIq for some λ > 0.
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P r o o f . Let λ1, λ2, . . . , λq be the eigenvalues of the matrix B. Then tr(B) =∑q
i=1 λi and tr(B−1) =

∑q
i=1 λ−1

i . Let a = 1
q

∑q
i=1 λi be the arithmetic mean and

h =
(

1
q

∑q
i=1

1
λi

)−1

be the harmonic mean of eigenvalues λ1, λ2, . . . , λq, respectively.

Since h ≤ a then
(

1
q

∑q
i=1

1
λi

)−1

≤ 1
q

∑q
i=1 λi.

From this
∑q

i=1
1
λi
≥ q2

( ∑q
i=1 λi

)−1

, i. e. tr(B−1) ≥ q2

tr(B) . The equality in (2)
is attained if and only if λ1 = λ2 = . . . = λq = λ. Then, there exists a q × q
orthogonal matrix Q such that Q′BQ = λIq. Thus we get our aim. �

Theorem 2.2. In any nonsingular biased spring balance weighing design
X ∈ Ψn×p(0, 1) in the form (1) with the diagonal dispersion matrix of errors σ2G

tr (Var(ŵ)) ≥ σ2 4(p− 1)
tr(G−1)

. (3)

Equality holds in (3) if and only if

(i) H = λIp−1 and

(ii) f = X′
1G

−11n = tr(G−1)
2 1p−1.

P r o o f . Without loosing of generality let denote G = diag
(
g−1
1 , g−1

2 , . . . , g−1
n

)
.

Because Var(ŵ) = σ2H−1, thus we will consider the trace of the matrix H obtaining

tr(H) = tr
(
X′

1G
−1X1

)
−

(
tr(G−1)

)−1

tr
(
(X′

1G
−11n)(X′

1G
−11n)′

)
=

=
∑n

i=1 gi

∑p
j=2 xij − 1

tr(G−1) tr(f f ′), where f = [f2 f3 . . . fp]′ = X′
1G

−11n. More-

over, tr(H) =
∑p

j=2 fj − 1
tr(G−1)

∑p
j=2 f2

j =
∑p

j=2

(
fj − 1

tr(G−1)f
2
j

)
. Note, that

considering (2) for B = H, we receive

tr(H−1) ≥ (p− 1)2∑p
j=2

(
fj − 1

tr(G−1)f
2
j

) . (4)

The
∑p

j=2

(
fj− 1

tr(G−1)f
2
j

)
is quadratic function of fj and takes the greatest value for

fj = 1
2 tr(G−1), j = 2, 3, . . . , p, hence (ii). In this way we obtain tr(H−1) ≥ 4(p−1)

tr(G−1) .

Since Var(ŵ) = σ2H−1 then first part of proof is completed, whereas the equality
(i) follows immediately from lemma 2.1. �

Corollary 2.3. In the special case G = In we get tr(H−1) ≥ 4(p−1)
n .

In many problems concerning weighing designs, the criterion of A-optimality is con-
sidered. There is the design for which the sum of variances of the estimators of
unknown parameters is minimal in Ψn×p(0, 1). In particular, the design for which
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the sum of variances of estimators parameters attains the lower bound in Ψn×p(0, 1)
is called regular A-optimal design. Note, each design which is regular A-optimal is
A-optimal, the opposition thesis is false. The concept of A-optimality was presented
for instance in [5, 7]. Here is why we give the following definition.

Definition 2.4. Any nonsingular X ∈ Ψn×p(0, 1) of the form (1) with the diagonal
dispersion matrix of errors σ2G is called the regular A-optimal biased spring balance
weighing design for estimation of ŵ if tr (Var(ŵ)) = σ2 4(p−1)

tr(G−1) .

By assumption that X ∈ Ψn×p(0, 1) is the regular A-optimal biased spring balance
weighing design we conclude
H = X′

1G
−1X1 − 1

tr(G−1)
tr(G−1)

2 1p−1
tr(G−1)

2 1′p−1 = X′
1G

−1X1 − tr(G−1)
4 1p−11′p−1.

Because H = λIp−1 then c′jHcj = λ and c′jHcl = 0 for j 6= l, where cj de-
notes the jth column of the matrix Ip−1. Therefore, c′jHcj = c′jX

′
1G

−1X1cj −
1

tr(G−1)c
′
jX

′
1G

−11n1′nG−1X1cj = tr(G−1)
2 − tr(G−1)

4 = tr(G−1)
4 . Thus λ = tr(G−1)

4 .

From above considerations we can derive H = 1
4 tr(G−1)Ip−1 = X′

1G
−1X1−

1
4 tr(G−1) 1p−11′p−1. For that reason we have next corollaries.

Corollary 2.5. Any nonsingular X ∈ Ψn×p(0, 1) of the form (1) with the diago-
nal dispersion matrix of errors σ2G is the regular A-optimal biased spring balance
weighing design for estimation of ŵ if and only if

X′
1G

−1X1 =
tr(G−1)

4
(
Ip−1 + 1p−11′p−1

)
. (5)

Corollary 2.6. Any nonsingular X ∈ Ψn×p(0, 1) of the form (1) with the diagonal
dispersion matrix of errors σ2In is the regular A-optimal biased spring balance
weighing design for estimation of ŵ if and only if X′

1X1 = n
4

(
Ip−1 + 1p−11′p−1

)
.

As it was mention in Section 2, Var (ŵ1) = σ2d, therefore we obtain following coro-
llary.

Corollary 2.7. In the regular A-optimal biased spring balance weighing design
X ∈ Ψn×p(0, 1) of the form (1) with the diagonal dispersion matrix of errors σ2G,

Var(ŵ1) = pσ2

tr(G−1) , where ŵ1 is the estimate of the bias.

3. THE CONSTRUCTION OF THE DESIGN MATRIX

Each form of the matrix G requires specifically investigations and it is not possible
to give the conditions determining optimal design for any number of measurement
operations n and of objects p. Because of this we consider the dispersion matrix of
errors σ2G, where G is given by

G =
[ 1

g 0′n−1

0n−1 In−1

]
, g > 0. (6)
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This form of matrix G could be interpreted as adding one more weighing operation
with different precision made on other installation or in other conditions. According
to the form of G given in (6), we divide the design matrix of the biased spring
balance weighing design X ∈ Ψn×p(0, 1) of the form (1) obtaining

X =
[

1 x′

1n−1 X2

]
, (7)

where x is any (p− 1)× 1 vector of elements equal to 0 or 1 and X1 = [x X′
2]
′
.

Theorem 3.1. Any nonsingular X ∈ Ψn×p(0, 1) in (7) with the dispersion matrix
of errors σ2G for G given by (6), is the regular A-optimal biased spring balance
weighing design for the estimation of ŵ if and only if

(i) H = λIp−1 and

(ii) x = 1p−1 and X′
21n−1 = 1

2 (n− 1− g)1p−1 or
x = 0p−1 and X′

21n−1 = 1
2 (n− 1 + g)1p−1.

P r o o f . It would be notice that for G in (6) and X in (7), based on the theorem
2.5, the equality in (4) is fulfilled if and only if X′

1G
−11n = 1

2 tr(G−1)1p−1. Next
X′

1G
−11n = gx + X′

21n−1. Moreover tr(G−1) = g + n − 1. Comparing these
two equalities we obtain gx + X′

21n−1 = 1
2 (g + n − 1)1p−1 and next

X′
21n−1 = 1

2 (g + n − 1)1p−1 − gx. That condition implies x = 1p−1 or x = 0p−1.
Hence, if x = 1p−1 then X′

21n−1 = 1
2 (n− 1− g)1p−1. If x = 0p−1 then X′

21n−1 =
1
2 (n− 1 + g)1p−1. This finished the proof. �

Theorem 3.2. Any nonsingular X ∈ Ψn×p(0, 1) in (7) with the dispersion matrix
of errors σ2G, where G is of the form (6), is the regular A-optimal biased spring
balance weighing design if and only if

x = 1p−1 and X′
2X2 = c1Ip−1 + c21p−11′p−1 or

x = 0p−1 and X′
2X2 = c1

(
Ip−1 + 1p−11′p−1

)
,

where c1 = n−1+g
4 and c2 = n−1−3g

4 .

P r o o f . For G having form (6) and X of (7), we consider the x = 1p−1 obtaining
X′

1G
−1X1 = g1p−11′p−1+X′

2X2. Based on (5), we have X′
1G

−1X1 = n−1+g
4

(
Ip−1+

1p−11′p−1

)
. It implies that X′

2X2 = n−1+g
4 Ip−1 + n−1−3g

4 1p−11′p−1. Similar, for x =
0p−1 we have X′

1G
−1X1 = X′

2X2 = c1

(
Ip−1 + 1p−11′p−1

)
. Moreover for both forms

of X2, the condition (i) of Theorem 3.1 is satisfied. This proves the theorem. �

Naturally, balanced incomplete block designs may be utilized in our study. For this
reason, we recall the definition of the design. Any balanced incomplete block design
there is an arrangement of v treatments in b blocks, each of size k, in such a way,



898 M. GRACZYK

that each treatment occurs at most ones in each block, occurs in exactly r blocks
and every pair of treatments occurs together in λ blocks. The integers v, b, r, k, λ are
called the parameters of the balanced incomplete block design. It is straightforward
to verify that vr = bk, λ(v− 1) = r(k− 1). For the the incidence matrix N we have
NN′ = (r − λ)Iv + λ1v1′v.

Theorem 3.3. Let N be the incidence matrix of the balanced incomplete block
design. Any nonsingular X ∈ Ψn×p(0, 1) in (7) for X2 = N′, with the dispersion
matrix of errors σ2G, where G is of the form (6), is the regular A-optimal biased
spring balance weighing design for the estimation of ŵ if and only if

(i) b + g = 4(r − λ) and

(ii) x = 1p−1 and r = 2λ + g or
x = 0p−1 and r = 2λ.

P r o o f . Let note v = p − 1 and b = n − 1. Because X2 = N′, then X′
2X2 =

(r−λ)Iv +λ1v1′v. As the first step, we consider the case x = 1p−1. Comparing NN′

and the form of X′
2X2 given in Theorem 3.2 we obtain the conditions b+g = 4(r−λ)

and r = 2λ + g. For the case x = 0p−1, the deliberation is similar. �

Theorem 3.4. Let X2 = N′. The existence of the incidence matrix N of the ba-
lanced incomplete block design with the parameters

(i) v = 2k + 1, b = gv, r = gk, k = 2
g λ + 1 and x = 1p−1 or

(ii) v = 2k − 1, b = gv, r = gk, k = 2
g λ and x = 0p−1

implies the existence of the biased spring balance weighing design X ∈ Ψn×p(0, 1)
in the form (7) with the dispersion matrix of errors σ2G, where G is given by (6),
that is regular A-optimal design for the estimation of ŵ.

P r o o f . Let x = 1p−1. From conditions given in Theorem 3.3 it follows that
b = 4λ + 3g. Since the parameters of the balanced incomplete block design satisfy
the equality vr = bk, λ(v − 1) = r(k − 1) it is easy to verify that v = b

g and k = r
g .

Thus k = 2
g λ+1, b = gv and moreover, v = 2k+1. For x = 0p−1 the consideration

is analogous. �

Theorem 3.5. Let g = t, t = 1, 2, . . . If the parameters of the balanced incomplete
block design are equal to v = 4s − 1, b = t(4s − 1), r = t(2s − 1), k = 2s − 1,
λ = t(s − 1), s = 1, 2, . . . , then X ∈ Ψn×p(0, 1) in the form (7) for X2 = N′

and x = 1p−1, with the dispersion matrix of errors σ2G, where G is of (6) is the
regular A-optimal biased spring balance weighing design for the estimation
of ŵ.

P r o o f . One can easily prove that the parameters of the balanced incomplete block
designs satisfy the condition (i) of Theorem 3.4. �
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Theorem 3.6. Let g = 2t, t = 1, 2, . . . If the parameters of the balanced incom-
plete block design are equal to v = 4s + 1, b = 2t(4s + 1), r = 4st, k = 2s,
λ = t(2s− 1), s = 1, 2, . . . , then X ∈ Ψn×p(0, 1) in the form (7) for X2 = N′ and
x = 1p−1, with the dispersion matrix of errors σ2G, where G is given by (6) is the
regular A-optimal biased spring balance weighing design for the estimation
of ŵ.

P r o o f . The following can be easily verified and we can see that the parameters of
the balanced incomplete block designs satisfy the condition (i) of Theorem 3.4. �

Theorem 3.7. The existence of the regular A-optimal biased spring balance weig-
hing design X ∈ Ψn×p(0, 1) in the form (7) for X2 = N′ and x = 1p−1 with the
dispersion matrix of errors σ2G, where G is of (6), is equivalent to the existence of
the regular A-optimal biased spring balance weighing design X ∈ Ψn×p(0, 1) in the
form (7) for X2 = 1b1′v −N′ and x = 0p−1, with the dispersion matrix of errors
σ2G, where G is of (6).

P r o o f . According to [6], if N is the incidence matrix of the balanced incom-
plete block design with the parameters v, b, r, k, λ then the N∗ = 1v1′b −N is
called the incidence matrix of complementary design with the parameters v∗ = v,
b∗ = b, r∗ = b − r, k∗ = v − k, λ∗ = b − 2r + λ. Hence it is easy to check that
the parameters v, b, r, k, λ satisfy the condition (i) of Theorem 3.4 whereas the
parameters v∗ = v, b∗ = b, r∗ = b − r, k∗ = v − k, λ∗ = b − 2r + λ satisfy the
condition (ii) of Theorem 3.4. �

4. EXAMPLE

Suppose, that for the dispersion matrix of errors σ2G the matrix G is given in (6)
for g = 2. Furthermore, we consider the estimation of p = 8 objects in n = 15
measurements operations.

Thus we consider the balanced incomplete block design with the parameters v = 7,
b = 14, r = 6, k = 3, λ = 2 given by the incidence matrix N and its complementary
design with the parameters v∗ = 7, b∗ = 14, r∗ = 8, k∗ = 4, λ∗ = 4 given by the
incidence matrix N∗, where

N =



1 1 1 0 0 0 0 1 1 1 0 0 0 0
1 0 0 1 1 0 0 1 0 0 1 1 0 0
0 1 0 1 0 1 0 0 1 0 1 0 1 0
1 0 0 0 0 1 1 1 0 0 0 0 1 1
0 0 1 1 0 0 1 0 0 1 1 0 0 1
0 0 1 0 1 1 0 0 0 1 0 1 1 0
0 1 0 0 1 0 1 0 1 0 0 1 0 1


,



900 M. GRACZYK

N∗ =



0 0 0 1 1 1 1 0 0 0 1 1 1 1
0 1 1 0 0 1 1 0 1 1 0 0 1 1
1 0 1 0 1 0 1 1 0 1 0 1 0 1
0 1 1 1 1 0 0 0 1 1 1 1 0 0
1 1 0 0 1 1 0 1 1 0 0 1 1 0
1 1 0 1 0 0 1 1 1 0 1 0 0 1
1 0 1 1 0 1 0 1 0 1 1 0 1 0


.

For x = 17,

X =



1 1 1 1 1 1 1 1
1 1 1 0 1 0 0 0
1 1 0 1 0 0 0 1
1 1 0 0 0 1 1 0
1 0 1 1 0 1 0 0
1 0 1 0 0 0 1 1
1 0 0 1 1 0 1 0
1 0 0 0 1 1 0 1
1 1 1 0 1 0 0 0
1 1 0 1 0 0 0 1
1 1 0 0 0 1 1 0
1 0 1 1 0 1 0 0
1 0 1 0 0 0 1 1
1 0 0 1 1 0 1 0
1 0 0 0 1 1 0 1



∈ Ψ15×8(0, 1)

is the regular A-optimal biased spring balance weighing design for the estimation of
ŵ, and Var(ŵ1) = 1

2σ2, whereas Var(ŵ) = 1
4σ2.

Moreover, for x = 07,

X =



1 0 0 0 0 0 0 0
1 0 0 1 0 1 1 1
1 0 1 0 1 1 1 0
1 0 1 1 1 0 0 1
1 1 0 0 1 0 1 1
1 1 0 1 1 1 0 0
1 1 1 0 0 1 0 1
1 1 1 1 0 0 1 0
1 0 0 1 0 1 1 1
1 0 1 0 1 1 1 0
1 0 1 1 1 0 0 1
1 1 0 0 1 0 1 1
1 1 0 1 1 1 0 0
1 1 1 0 0 1 0 1
1 1 1 1 0 0 1 0



∈ Ψ15×8(0, 1)

is the regular A-optimal biased spring balance weighing design for the estimation of
ŵ, and Var(ŵ1) = 1

2σ2, whereas Var(ŵ) = 1
4σ2.
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