
Kybernetika

Katarína Cechlárová; Tamás Fleiner
Optimization of an SMD placement machine and flows in parametric networks

Kybernetika, Vol. 47 (2011), No. 5, 722--731

Persistent URL: http://dml.cz/dmlcz/141687

Terms of use:
© Institute of Information Theory and Automation AS CR, 2011

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to
digitized documents strictly for personal use. Each copy of any part of this document must
contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://project.dml.cz

http://dml.cz/dmlcz/141687
http://project.dml.cz


KYB ERNET IK A — VO LUME 4 7 ( 2 0 1 1 ) , NUMBER 5 , PAGES 7 2 2 – 7 3 1

OPTIMIZATION OF AN SMD PLACEMENT MACHINE
AND FLOWS IN PARAMETRIC NETWORKS

Kataŕına Cechlárová and Tamás Fleiner

In the minimization of the number of subtours made by the insertion head of an SMD
placement machine a variant of the network flow problem arose. In a network with n vertices
and m arcs a set F of arcs (parametrized arcs) is given. The task is to find a flow of a
given size such that the maximum of flow values along the arcs from F is minimized. This
problem can be solved by a sequence of maximum flow computations in modified networks
where the capacities of the parametrized arcs are successively set to an increasing sequence
of target parameter values. We show that it suffices to consider at most O(|F |) different
target values and so this approach leads to a strongly polynomial algorithm consisting of
at most O(|F |) maximum flow computations.
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1. INTRODUCTION

Surface mount technology, compared with manual assembly, brought a real advance
into the production of various electronic devices. An important part of the produc-
tion process is the placement of electronic components onto their prescribed positions
on the substrate. This requires a high degree precision when manipulating with tiny
elements. Therefore it is usually performed by special sophisticated pick-and-place
machines. Such machines are very expensive, so it is economically very important to
use them efficiently and maximize their production throughput. The optimization
of a pick-and-place machine is a very complicated task, involving several mutually
dependent combinatorial optimization problems, many of them hard already in the
stand alone setting (like e. g. the quadratic assignment problem [7], traveling sales-
man problem, bin location and sequencing problems [9] etc.).

Moreover, there are many various types of SMD placement machines that differ
in their characteristics and operational modes. For each type, a different, specific
optimization problem has to be formulated and solved. A detailed survey of opti-
mization methods applied to different machine technologies can be found in [3]. The
authors included more than 80 references and among the methods used they men-
tion various types of heuristics for the involved location and sequencing problems,
integer linear programming, genetic algorithms, knowledge-based systems, dynamic
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programming, simulated annealing etc.
We study the operation of a special pick-and-place SMD machine that consists of

three main parts: a worktable for holding the printed circuit boards (PCBs), feeder
racks and a placement head. The PCB is firstly moved onto the worktable by a
conveyor belt, where it remains fixed at a predefined location during the placement
process. The feeder racks for small components are located on both sides of the
PCB conveyor. In addition, on its one side is a tray feeder for large components
(like integrated circuits) and on its other side is a vision camera. The placement
head of the moving arm has four positions and each one of them can be equipped
by a different vacuum nozzle, capable of processing different types of components.

One pick-and-place cycle (briefly: a subtour) consists of the following: the place-
ment head picks one (or none) component by each nozzle, moves above the camera
(to check the components, read their real dimensions, the positions of their pins etc)
and places them onto their prescribed positions on the PCB. During one subtour,
time savings can be achieved by a suitable choice of the sequence of picking and
placing the components, but as the number of possibilities is small (remember that
in one subtour there are at most 4 components) this task is computationally not so
demanding. However, optimization of the throughput of such a machine requires
to optimally choose a) the assignment of nozzles to the positions in the placement
head, b) the assignment of the components to particular feeders, c) the sequence
of the component pick-ups. Changing the nozzles is time consuming, changing the
positions of components in feeders has to be done manually, and so it is prone to
human mistakes. Practical experiences with the operation of the machine showed,
in particular in the production of small series, that relatively greatest time savings
can be achieved if the sequence of placed components is chosen so as to minimize
the number of idle nozzles in the process which is equivalent to the minimization of
the number of subtours.

Hence the optimization problem we deal with in this paper assumes that

• the assignment of components to particular feeders is fixed;

• the assignment of nozzles to the positions on the insertion head is fixed

and we want to minimize the number of subtours needed to handle the given set of
components.

More formally, suppose the machine is to assemble a module where k types of
components are used. The numbers of components of each type are q1, q2, . . . , qk,
respectively, hence the total number of components to be placed onto the module is
Q =

∑k
i=1 qi. The insertion head is equipped with r vacuum nozzles and it is known

which nozzle can handle which types of components.
Based on the data of the module we construct a flow network N in the follow-

ing way. There is a source s and a sink t, vertices u1, u2, . . . , uk corresponding to
component types and vertices w1, w2, . . . , wr corresponding to the nozzles. For each
i = 1, 2, . . . , k there is an arc (s, ui) with capacity qi. The pair (ui, wj) is an arc of the
network if and only if nozzle j can handle component type i and the capacity of this
arc is ∞. There is also one arc (wj , t) with infinite capacity for each j = 1, 2, . . . , r.
(Instead of infinity, it is sufficient to set the respective capacities to Q.)
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Each integer s − t flow x of value Q corresponds to a feasible organisation of
module assembly. Each arc (s, ui) has to be saturated in x as each components of
type i must be placed. Clearly, the number of such components handled by nozzle
j is the value of flow x on arc (ui, wj). The values of flow x along the arcs (wj , t)
correspond to the numbers of all components that were handled by nozzle j. Since
in one subtour all the nozzles work simultaneously, the number of the subtours
corresponding to the assignment of nozzles to particular components defined by flow
x is equal to the maximum of flow values on arcs (wj , t), j = 1, . . . , r.

Hence the minimization of the number of subtours leads to computing a flow
of a given size and minimum cost in a bipartite network, where the cost of the
flow is equal to the maximum of flow values along a subset of arcs, later to be
called parametrized arcs. One possibility is to consider this problem as a special
combinatorial optimization problem with max-linear objective function; however,
they are NP-hard in general [6].

On the other hand, there is a close connection of the minimization of the max-
imum flow value on the parametrized arcs with the parametric maximum flow. If
the capacities of all parametrized arcs are set to be equal to some parameter λ then
the optimum cost of the flow is equal to the minimum value of λ that makes the
parametric network to admit a flow of the prescribed size. The subtour minimization
problem is a special case of a pre-emptive scheduling problem, that was represented
by a parametrized maximum flow problem in [5, 10, 13].

Algorithms for parametric maximum flow problem have been considered in several
papers. Hamacher and Foulds [11] and Zhang, Ward and Li [15] propose algorithms
for simultaneously computing the maximum flows for all values of the parameter
in the given interval, however, they do not consider the computational complexity
of their algorithms. If the only parametrized arcs are those incident with s (or t)
and their capacities are increasing (or decreasing, respectively) functions of the pa-
rameter, Gallo, Grigoriades and Tarjan [10] showed how to modify the push-relabel
maximum flow algorithm to compute the complete chain of maximum flows (and
minimum cuts) for an increasing sequence of parameter values by performing just
one maximum flow computation. This algorithm was extended to cases where the
capacity functions are piece-wise linear, there are multiple parameters or the sub-
graph induced by parametrized arcs has an aborescence-shaped structure [13], all
parametrized arcs are incident to one (critical) vertex different from s and t [2] and
the parametrized arcs may be incident to s,t and one more critical vertex [14].

The low complexity bound of the above algorithms was ensured thanks to the
fact that the minimum cuts have a so-called nesting property and hence the number
of breakpoints of the function expressing the dependency of maximum flow size on
the value of the parameter is not greater than the number of vertices in the network.
However, this is due to the special structure of the set of parametrized arcs; if this
is not the case, exponentially many breakpoints may occur [4].

We consider a more general version of the parametrized maximum flow prob-
lem, where the set of parametrized arcs can be arbitrary, but the capacity of each
parametrized arc is equal to λ. We show that in this case it suffices to consider at
most as many parameter values as is the number of parametrized arcs and show how
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to jump to the next (greater) parameter value.
The organisation of the paper is as follows. The necessary definitions and basic

properties for the parametrized maximum flow problem are introduced in Section 2.
Section 3 is devoted to the computation of the next parameter value and the efficiency
of this approach. We conclude in Section 4.

2. DEFINITIONS AND NOTATION

Suppose we are given a directed network N = (V,E, s, t, c) with the node set V ,
|V | = n, arc set E, |E| = m, source and sink s, t ∈ V , arcs capacities c : E → N.
We use a standard terminology and notation used in Graph Theory (see e. g. [12]).
In particular, we shall denote by δ+(X) the set of arcs leaving a set of vertices
X ⊆ V , i. e. δ+(X) = {e = (u, w) ∈ E;u ∈ X, w /∈ X}; the notation δ+({u})
will be abbreviated to δ+(u). A flow in N is a function x : E → R+

0 satisfying
the flow conservation conditions in all vertices except s and t; the size of flow x is
v(x) =

∑
e∈δ+(s) x(e). A flow in N is said to be feasible, if x(e) ≤ c(e) holds for each

e ∈ E. The maximum size of a feasible flow in N will be denoted by v(N). A feasible
flow is called acceptable with respect to the given value of v (or simply acceptable,
if no confusion can arise) if it is integer and its size v(x) is equal to a given v.
Clearly, a necessary and sufficient condition for the existence of an acceptable flow
in a network N is v(N) ≥ v.

Suppose further that a set F ⊂ E is given, called the set of parametrized arcs.
An instance of the Parametrized Maximum Flow Problem, PMF for short, is a triple
(N,F, v) and the task is to find an acceptable flow x in N such that its cost, expressed
by the objective function

z(x) = max
e∈F

x(e), (1)

is minimized. z(N,F, v) will denote the cost z(x) of an optimal flow in an instance
(N,F, v) of PMF.

An approach to find an optimal flow for the given instance of PMF is a standard
technique used in parametric programming, called Newton’s method (see also [5, 13])
and it consists of the following: for a given parameter value λ redefine the capacity
of each e ∈ F by

cλ(e) = min{c(e), λ}

and denote the modified network by N(λ). (Notice that in what follows, we assume
that the capacities of parametrized arcs are big enough, practically not smaller than
v, so actually we shall always have cλ(e) = λ.) Obviously, z(x) ≤ λ for any feasible
flow in N(λ). So finding an acceptable flow achieving the minimum value of (1) is
equivalent to finding minimum λ such that N(λ) admits a feasible flow of size v.

Now appropriately choose a sequence λ0 < λ1 < · · · < λ` (as the first value one
can set λ0 = 0) of target parameter values until N(λi) admits an acceptable flow.
As x(e) ≤ v for each acceptable flow x and each arc e, we have that z(x) ≤ v.
Hence when applying a binary search on integers in the interval 〈0, v〉 of possible
target values, one needs at most O(log v) iterations, each one consisting of finding a
maximum feasible flow in the modified network N(λi). However, this approach will
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not ensure a strongly polynomial algorithm. In particular, when applied to networks
corresponding to SMD machine optimization problems, where the number of placed
components v = Q is usually much bigger than the size of the network (determined
by the number of different component types), this will not be an efficient approach.
In what follows we show that for the general PMF the number of necessary iterations
can be bounded by the number of parametrized arcs.

3. MINIMUM CUTS IN PARAMETRIZED NETWORKS

An s− t cut in a network N = (V,E, s, t, c) is a set of arcs δ+(X) determined by a
set of vertices X ⊆ V with s ∈ X and t /∈ X. The capacity of cut δ+(X) is

c(δ+(X)) =
∑

e∈δ+(X)

c(e).

The following theorem is the basic result in the theory of network flows ([8], see also
[12], Lemma 8.3 and Theorem 8.6).

Theorem 3.1. Let x be any s − t flow and δ+(X) any s − t cut in a network N .
Then v(x) ≤ c(δ+(X)). Moreover, v(N) is equal to the minimum capacity of an
s− t cut.

Let λ be any nonnegative number. Then for the capacity c(δ+(X)) of a cut δ+(X)
in N(λ) we have

c(δ+(X)) = c∗(δ+(X)) + λξ(δ+(X))

where c∗(δ+(X)) is the capacity of non-parametrized arcs in δ+(X) and ξ(δ+(X)) is
the number of parametrized arcs in δ+(X). Denote by P(λ) the set of all cuts with
minimum capacity in N(λ). We shall also use v(λ) to denote the size of a maximum
feasible flow in N(λ).

Theorem 3.2. Let λ be such that v(λ) < v. Then

(i) If there exists a minimum capacity cut in N(λ) containing no parametrized
arc then there exists no acceptable flow in N .

(ii) Let each minimum capacity cut in N(λ) contain at least one parametrized arc.
If N admits an acceptable flow then

z(N,F, v) ≥ max
δ+(X)∈P(λ)

⌈
v − c∗(δ+(X))

ξ(δ+(X))

⌉
. (2)

P r o o f . (i) is implied by Theorem 3.1.
(ii) If N admits an acceptable flow then there exists λ∗ such that N(λ∗) admits a
feasible flow of size v. This means that for each cut δ+(X) in N(λ∗):

c∗(δ+(X)) + λ∗ξ(δ+(X)) ≥ v > v(λ).
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Hence a necessary condition for N(λ∗) to admit an acceptable flow is that

λ∗ ≥ v − c∗(δ+(X))
ξ(δ+(X))

for each cut δ+(X) in N(λ∗) with ξ(δ+(X)) > 0. As each cut in P(λ) fulfills
ξ(δ+(X)) > 0 and each acceptable flow is integer, inequality (2) follows. �

However, the previous Theorem alone does not lead to an efficient algorithm, as
it requires to find not just one minimum capacity cut, but to find one that fulfills an
additional optimality criterion. In the following Theorem we show that to get a new
target parameter value λi+1, it suffices to take any minimum capacity cut δ+(X) in
N(λi). Moreover, the number of parametrized arcs in any minimum capacity cut in
N(λi+1) will be smaller than in δ+(X).

Theorem 3.3. Let λi be any integer such that v(λi) < v and let δ+(X) ∈ P(λi)
with ξ(δ+(X)) > 0 be arbitrary. Denote

λi+1 =
⌈

v − c∗(δ+(X))
ξ(δ+(X))

⌉
. (3)

Then

(i) λi+1 > λi;

(ii) if v(λi+1) < v then ξ(δ+(Y )) < ξ(δ+(X)) for each cut δ+(Y ) ∈ P(λi+1);

(ii) if ξ(δ+(X)) > 0 for each δ+(X) ∈ P(λi) then v(λi+1) > v(λi).

P r o o f . (i) Since δ+(X) is a minimum capacity cut in N(λi), Theorem 3.1 implies

c∗(δ+(X)) + λiξ(δ+(X)) = v(λi),

hence, as λi is integer and v(λi) < v, we get

λi =
v(λi)− c∗(δ+(X))

ξ(δ+(X))
<

⌈
v − c∗(δ+(X))

ξ(δ+(X))

⌉
= λi+1

since rounding the second fraction up keeps the strict inequality.
(ii) As δ+(X) is a minimum cut in N(λi) and δ+(Y ) is also a cut in this network,
we have

c∗(δ+(X)) + λiξ(δ+(X)) ≤ c∗(δ+(Y )) + λiξ(δ+(Y )). (4)

Further, definition of λi+1 and the assumptions of this Theorem imply

c∗(δ+(X)) + λi+1ξ(δ+(X)) ≥ v > v(λi+1) = c∗(δ+(Y )) + λi+1ξ(δ+(Y )). (5)

By subtracting (4) from (5) we get

(λi+1 − λi)ξ(δ+(X)) > (λi+1 − λi)ξ(δ+(Y )),
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or, equivalently (
ξ(δ+(X))− ξ(δ+(Y ))

)
(λi+1 − λi) > 0.

As λi+1 − λi > 0, we get ξ(δ+(X))− ξ(δ+(Y )) > 0.

(iii) It is sufficient to show that the capacity of each cut δ+(Y ) in N(λi+1) is
greater than v(λi). This is trivial, if δ+(Y ) /∈ P(N(λi)). On the other hand, if
δ+(Y ) ∈ P(N(λi)), then ξ(δ+(Y )) > 0 and (i) implies the desired property. �

Corollary 3.4. To find an optimal solution in an instance (N,F, v) of the PMF or
to determine that no acceptable flow exists, O(|F |) maximum flow computations are
sufficient.
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Fig. 1. Example instance.

Now we present an illustration of the sequence of networks N(λi). The example
instance (N,F, v) is shown in Figure 1. Parametrized arcs are represented by wavy
lines, the prescribed flow value v = 18. Here and in the following figures, the numbers
accompanying the arcs are their capacities, the second number after slash denotes
the flow along the arc. If the flow along an arc is 0, the second number is simply
missing. Similarly, no capacity and/or flow is given for parametrized arcs, if it is
equal to 0. Vertices with the gray background represent the set X of a minimum
cut in the network, the cut arcs also have a gray background.

Figure 2 shows the maximum flow in N(λ0) for λ0 = 0. According to Theorem
3.3, λ1 = (18 − 4)/2 = 7. In Figure 3 one can see a maximum flow in N(λ1) and
from here we also get λ2 = (18− 9)/1 = 9. Finally, Figure 4 shows a minimum cut
containing no parametrized arcs in N(λ2). Since v(λ2) = 18, we got an acceptable
flow x with z(x) = 9.

4. CONCLUSION

In this paper we extended the study of the Parametric Maximum Flow problem to
a general structure of the set of parametrized arcs, so far not considered in litera-
ture. We derived a simple formula for the next parameter value to be considered
in Newton’s algorithm and we proved that the number of parametrized arcs in the
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Fig. 2. λ0 = 0.

s tv2 v5

v1

v3

v4

v6

3/3

8/5

9/8

2/2

6

4/3

2

4/4

8/5

5

5/4

6/4

7/5

7/7

Fig. 3. λ1 = 7.
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corresponding minimum capacity cuts strictly decreases. Hence at most O(m) maxi-
mum flow computations are necessary to compute the minimum cost of an acceptable
flow or to determine that the given network admits none.

Still some open problems remain.

• In [5, 10, 13, 14] a more general dependence of the capacities of parametrized
arcs on the parameter value is studied. If we suppose that these capacities
are linear functions of the parameter of the form cλ(e) = ceλ for positive
coefficients ce, formula (2) could be modified to

z(N,F, v) ≥ max
δ+(X)∈P(λ)


v − c∗(δ+(X))∑

e∈δ+(X)

ce

 . (6)

One can then show, similarly as in Theorem 3.3, that when moving to the
new parameter value computed according to (6), the value

∑
e∈δ+(X) ce will

decrease for the minimum capacity cut. However, this does not ensure the
bound O(m) for the number of relevant parameter values, as there may be
exponentially many, in the cardinality of the set F , different sums of its subsets.
Is it still possible to achieve a polynomial algorithm in this case?

• Exploiting the special structure of the set of parametrized arcs, it was shown
that suitable extensions of the push-relabel algorithm of Goldberg and Tarjan
enable to compute the minimum parameter value admitting an acceptable flow
in a single max-flow computation [10, 13, 14]. While we doubt that a similar
algorithm could be possible in the general case, it would be interesting to find
other structures admitting an algorithm with the same bound.
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Kataŕına Cechlárová, Institute of Mathematics, Faculty of Science, P. J. Šafárik Univer-
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