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Abstract. Using the q-Bernstein basis, we construct a new sequence {Ln} of positive linear
operators in C[0, 1]. We study its approximation properties and the rate of convergence in
terms of modulus of continuity.
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1. Introduction

Let q > 0. For each non-negative integer k, the q-integers [k] and the q-factorials

[k]! are defined by

[k] =

{

1 + q + . . . + qk−1 if k > 1,

0 if k = 0

and

[k]! =

{

[1][2] . . . [k] if k > 1,

1 if k = 0.

For integers 0 6 k 6 n, the q-binomial coefficients are defined by

[

n

k

]

=
[n]!

[k]![n − k]!
.

Following [4], the q-Bernstein operators Bn,q : C[0, 1] → C[0, 1] are introduced by

(Bn,qf)(x) ≡ Bn,q(f, x) =
n

∑

k=0

f
( [k]

[n]

)

pn,k(q, x),
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where n = 1, 2, . . . , x ∈ [0, 1] and

(1.1) pn,k(q, x) =

[

n

k

]

xk(1 − x)(1 − xq) . . . (1 − xqn−k−1),

k = 0, 1, . . . , n, are the q-Bernstein basis polynomials (an empty product denotes 1).

For q = 1, we recover the classical Bernstein operators.

Taking into account [4, (13)–(15)], we have

Bn,q(e0, x) = 1,(1.2)

Bn,q(e1, x) = x(1.3)

and

(1.4) Bn,q(e2, x) = x2 +
1

[n]
x(1 − x),

where ei(x) = xi, x ∈ [0, 1] and i ∈ {0, 1, 2}. Due to (1.4), it is worth mentioning
that for a fixed value of q with 0 < q < 1 we obtain

(1.5) lim
n→∞

Bn,q(e2, x) = x2 + (1 − q)x(1 − x).

Further, let q = qn satisfy 0 < qn < 1 and let qn → 1 as n → ∞. Then Bn,q(f, x)

converges uniformly to f(x) on [0, 1] as n → ∞ (see [4, Theorem 2]). Moreover, due
to [4, (16)], we have

(1.6) ‖Bn,qf − f‖ 6
3

2
ω(f, [n]−1/2),

where ‖·‖ is the uniform norm on C[0, 1] and the modulus of continuity of f ∈ C[0, 1]

is defined by

(1.7) ω(f, δ) = sup{|f(u)− f(v)| : u, v ∈ [0, 1], |u − v| 6 δ}.

We mention, that an estimation of the rate of convergence of the q-Bernstein opera-

tors Bn,q (0 < q < 1) was also presented in [5, (17)]. The convergence properties of

Bn,q (0 < q < 1) in the complex plane were studied in [3].

The goal of the paper is to construct a new non-trivial sequence {Ln} of bounded
positive linear operators in C[0, 1] using the q-Bernstein basic polynomials (1.1), such

that Ln has different properties from (1.3), (1.4) and (1.5), but Ln(f, x) converges

uniformly to f(x) on [0, 1] as n → ∞. The rate of approximation ‖Lnf − f‖ will be
also estimated by the modulus of continuity (1.7).
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2. The construction of Ln

Let us consider the following q-Bernstein type operators Ln : C[0, 1] → C[0, 1]

defined by

(Lnf)(x) ≡ Ln(f, x) =

n
∑

k=0

λn,k(q, f) pn,k(q, x),

where q ∈ (0, 1), x ∈ [0, 1], f ∈ C[0, 1] and the bounded positive linear functionals

λn,k(q, ·) ∈ C[0, 1]∗ will be defined step by step as follows.

We set

(2.1) λn,0(q, f) = f(0), λn,n(q, f) = f(1),

λn,k(q, e0) = 1, λn,k(q, e1) =
[k − 1]

[n]

for k = 1, 2, . . . , n − 1, and

(2.2) λn,k(q, e2) =
[k][k − 1]

[n][n − 1]

for k = 1, 2, . . . , n − 1, where n > 2.

Furthermore, λn,k(q, ·), k = 0, 1, . . . , n, will be defined on the normed subspace

Y = {αe0 + βe1 + γe2 : α, β, γ ∈ R} of C[0, 1] as follows. For P (x) = α + βx + γx2,

x ∈ [0, 1], and k = 0, 1, . . . , n, we set

λn,k(q, P ) = αλn,k(q, e0) + βλn,k(q, e1) + γλn,k(q, e2).

We prove that λn,k(q, ·) ∈ Y ∗ are bounded positive linear functionals, k =

1, 2, . . . , n − 1. Obviously λn,k(q, ·) are linear. Moreover, λn,k(q, ·) are positive: if
P (x) > 0 for x ∈ [0, 1], then we distinguish the following two cases:

a) γ > 0. Then λn,k(q, P ) > P ([k − 1]/[n]) > 0, because λn,k(q, e2) > [k − 1]2/[n]2

for k = 1, 2, . . . , n − 1.

b) γ < 0. Then, by λn,k(q, e2) 6 [k − 1]/[n], k = 1, 2, . . . , n − 1, we get

λn,k(q, P ) > α + β
[k − 1]

[n]
+ γ

[k − 1]

[n]

= α
(

1 − [k − 1]

[n]

)

+ (α + β + γ)
[k − 1]

[n]

= P (0)
(

1 − [k − 1]

[n]

)

+ P (1)
[k − 1]

[n]
> 0

for k = 1, 2, . . . , n − 1.
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Further, λn,k(q, ·) are bounded on Y, k = 0, 1, . . . , n. Indeed, by positivity of

λn,k(q, ·) and (2.1) we have for all P ∈ Y that

|λn,k(q, P )| 6 λn,k(q, |P |) 6 λn,k(q, ‖P‖e0) = ‖P‖λn,k(q, e0) = ‖P‖.

Finally, we define λn,k(q, ·), k = 1, 2, . . . , n − 1, on the whole space C[0, 1]. The

real linear space C[0, 1] is an ordered Banach space with the uniform norm ‖ · ‖ and
the natural order relation: f 6 g if and only if f(x) 6 g(x), x ∈ [0, 1]. Using the

notation C[0, 1]+ = {f ∈ C[0, 1] : 0C[0,1] 6 f}, we have {f ∈ C[0, 1] : ‖f − e0‖ <

1} ⊂ C[0, 1]+. Thus intC[0, 1]+ 6= ∅ and e0 ∈ Y ∩ intC[0, 1]+. Now we can extend

λn,k(q, ·) onto the whole space C[0, 1] as bounded positive linear functionals, because

of the following Hahn-Banach type theorem: if (X, 6) is an ordered normed space

with int{x ∈ X : 0X 6 x} 6= ∅ and Y is a normed subspace ofX such that Y ∩int{x ∈
X : 0X 6 x} 6= ∅, then every bounded positive linear functional λ : Y → R can be

extended to a bounded positive linear functional λ̃ : X → R, i.e. λ̃(x) = λ(x) for all

x ∈ X. This result is a particular case of a more general theorem of [2, p. 82], where

R is replaced by a complete vector lattice with identity element. We mention that

the extension of bounded positive linear functionals was studied first in [1].

Consequently, Ln are positive linear operators. Moreover, ‖Lnf‖ 6 ‖f‖ for all
f ∈ C[0, 1], because the positivity of λn,k(q, ·), (2.1) and (1.2) imply for x ∈ [0, 1]

that

|Ln(f, x)| 6

n
∑

k=0

|λn,k(q, f)|pn,k(q, x) 6

n
∑

k=0

λn,k(q, |f |)pn,k(q, x)

6

n
∑

k=0

λn,k(q, ‖f‖e0)pn,k(q, x) = ‖f‖
n

∑

k=0

λn,k(q, e0)pn,k(q, x)

= ‖f‖
n

∑

k=0

pn,k(q, x) = ‖f‖Bn,q(e0, x) = ‖f‖.

Thus Ln are bounded operators, n > 2.

3. Main results

For the operators Ln introduced in Section 2 we have the following results.

Theorem 3.1. The operators Ln (n > 2 and 0 < q < 1) verify:

a) Ln(e0, x) = 1, x ∈ [0, 1];

b) 0 6 x − Ln(e1, x) 6 1/[n], x ∈ [0, 1];
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c) Ln(e2, x) = x2, x ∈ [0, 1].

For a fixed value q ∈ (0, 1) we have

d) lim
n→∞

Ln(e1, x) = x − (1 − q)q−1(1 − x)
{

1 −
∞
∏

s=1
(1 − xqs)

}

, x ∈ [0, 1].

P r o o f. a) By (2.1) and (1.2), we have Ln(e0, x) = Bn,q(e0, x) = 1.

b) Taking into account (2.1) and (1.3), we obtain

Ln(e1, x) =

n−1
∑

k=1

[k − 1]

[n]
pn,k(q, x) + pn,n(q, x)

=

n−1
∑

k=1

[k] − qk−1

[n]
pn,k(q, x) + pn,n(q, x)

= Bn,q(e1, x) − 1

[n]

n−1
∑

k=1

qk−1pn,k(q, x) = x − 1

[n]

n−1
∑

k=1

qk−1pn,k(q, x).

Hence, by (1.2),

0 6 x − Ln(e1, x) =
1

[n]

n−1
∑

k=1

qk−1pn,k(q, x) 6
1

[n]
Bn,q(e0, x) =

1

[n]
.

c) By (2.2) and (1.2), we have

Ln(e2, x) =

n−1
∑

k=1

[k][k − 1]

[n][n − 1]
pn,k(q, x) + pn,n(q, x)

=
n−1
∑

k=2

[

n − 2

k − 2

]

xk(1 − x)(1 − xq) . . . (1 − xqn−k−1) + xn

= x2
n−2
∑

k=0

pn−2,k(q, x) = x2Bn−2,q(e0, x) = x2.

d) Using [k] = 1 + q[k − 1], k > 1, we find

Ln(e1, x) =

n−1
∑

k=1

[k − 1]

[n]
pn,k(q, x) + pn,n(q, x) =

n−1
∑

k=1

[k] − 1

q[n]
pn,k(q, x) + pn,n(q, x)

=
1

q

n
∑

k=0

[k]

[n]
pn,k(q, x) +

(

1 − 1

q

)

pn,n(q, x) − 1

q[n]

n−1
∑

k=1

pn,k(q, x)

=
1

q
Bn,q(e1, x) − 1

q[n]
Bn,q(e0, x) +

1

q[n]
pn,0(q, x)

+
(

1 − 1

q
+

1

q[n]

)

pn,n(q, x).
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Hence, by (1.3) and (1.2),

(3.1) Ln(e1, x) =
1

q
x − 1

q[n]
+

1

q[n]
(1 − x)(1 − xq) . . . (1 − xqn−1)

+
(

1 − 1

q
+

1

q[n]

)

xn.

On the other hand, due to [6, (2.8)], we have

∣

∣

∣
(1 − x)(1 − xq) . . . (1 − xqn−1) −

∞
∏

s=0

(1 − xqs)
∣

∣

∣

= (1 − x)(1 − xq) . . . (1 − xqn−1)
∣

∣

∣
1 −

∞
∏

s=n

(1 − xqs)
∣

∣

∣

6
qn

q(1 − q)
ln

1

1 − q

for x ∈ [0, 1]. Hence

(3.2) lim
n→∞

(1 − x)(1 − xq) . . . (1 − xqn−1) =

∞
∏

s=0

(1 − xqs).

Now combining (3.1), (3.2) and lim
n→∞

[n] = 1/(1 − q), we obtain

lim
n→∞

Ln(e1, x) =
1

q
x − 1 − q

q
+

1 − q

q

∞
∏

s=0

(1 − xqs)

= x − 1 − q

q
(1 − x)

{

1 −
∞
∏

s=1

(1 − xqs)
}

,

which was to be proved. �

Theorem 3.2. Let q = qn ∈ (0, 1) satisfy qn → 1 as n → ∞. Then for each

f ∈ C[0, 1], the sequence {Ln(f, x)} converges uniformly to f(x) on [0, 1] as n → ∞.

Moreover, for each f ∈ C[0, 1] and n > 2 we have

(3.3) ‖Lnf − f‖ 6

(√
2 +

5

2

)

ω(f, [n]−1/2).

P r o o f. For any fixed positive integer k, we have [n] > [k] = 1 + q + . . . + qk−1

when n > k. But q = qn → 1 as n → ∞, therefore lim inf
n→∞

[n] > lim
n→∞

[k] = k. Since k

has been chosen arbitrarily, it follows that [n] → ∞ as n → ∞. Then (3.3) implies
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that {Ln(f, x)} converges uniformly to f(x) on [0, 1] as n → ∞. Thus it remains to

prove (3.3).

Let x ∈ [0, 1] and n > 2. Then (2.1) and (1.6) imply that

|Ln(f, x) − f(x)| 6 |Ln(f, x) − Bn,q(f, x)| + |Bn,q(f, x) − f(x)|(3.4)

6

n−1
∑

k=1

∣

∣

∣
λn,k(q, f) − f

( [k]

[n]

)
∣

∣

∣
pn,k(q, x) +

3

2
ω(f, [n]−1/2)

6

n−1
∑

k=1

λn,k

(

q,
∣

∣

∣
f − f

( [k]

[n]

)

e0

∣

∣

∣

)

pn,k(q, x) +
3

2
ω(f, [n]−1/2).

Further, using the property ω(f, aδ) 6 (a + 1)ω(f, δ), a > 0, we obtain

∣

∣

∣
f(t) − f

( [k]

[n]

)
∣

∣

∣
6 ω

(

f,
∣

∣

∣
t − [k]

[n]

∣

∣

∣

)

6

(

[n]1/2
∣

∣

∣
t − [k]

[n]

∣

∣

∣
+ 1

)

ω(f, [n]−1/2).

Then, by positivity of λn,k(q, ·), we find

(3.5) λn,k

(

q,
∣

∣

∣
f − f

( [k]

[n]

)

e0

∣

∣

∣

)

6

{

[n]1/2λn,k

(

q,
∣

∣

∣
e1 −

[k]

[n]
e0

∣

∣

∣

)

+ 1
}

ω(f, [n]−1/2).

Because λn,k(q, ·) are bounded linear functionals, we have λn,k(q, f) =
∫ 1

0 f dµn,k

for some positive measures µn,k. Applying the Hölder inequality, (2.1) and (2.2), we

get

∫ 1

0

∣

∣

∣
t − [k]

[n]

∣

∣

∣
dµn,k 6

(
∫ 1

0

dµn,k

)1/2( ∫ 1

0

(

t − [k]

[n]

)2

dµn,k

)1/2

= (λn,k(q, e0))
1/2

(

λn,k

(

q,
(

e1 −
[k]

[n]
e0

)2))1/2

=
( [k][k − 1]

[n][n − 1]
− 2

[k − 1]

[n]

[k]

[n]
+

[k]2

[n]2

)1/2

= [n]−1/2
(

qn−1 [k][k − 1]

[n][n − 1]
+ qk−1 [k]

[n]

)1/2

6
√

2 [n]−1/2.

Hence, for k = 1, 2, . . . , n − 1 we have

(3.6) λn,k

(

q,
∣

∣

∣
e1 −

[k]

[n]
e0

∣

∣

∣

)

6
√

2[n]−1/2.
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Now combining (3.4), (3.5), (3.6) and (1.2), we obtain

|Ln(f, x) − f(x)| 6

(√
2 +

5

2

)

ω(f, [n]−1/2),

which completes the proof of our theorem. �
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