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Abstract. In this paper we deal with the four-point singular boundary value problem

{

(ϕp(u
′(t)))′ + q(t)f(t, u(t), u′(t)) = 0, t ∈ (0, 1),

u′(0)− αu(ξ) = 0, u′(1) + βu(η) = 0,

where ϕp(s) = |s|p−2s, p > 1, 0 < ξ < η < 1, α, β > 0, q ∈ C[0, 1], q(t) > 0, t ∈ (0, 1), and
f ∈ C([0, 1] × (0,+∞) × R, (0,+∞)) may be singular at u = 0. By using the well-known
theory of the Leray-Schauder degree, sufficient conditions are given for the existence of
positive solutions.

Keywords: singular, four-point, positive solution, p-Laplacian

MSC 2010 : 34B10, 34B16, 34B18

1. Introduction

Singular boundary value problems (BVPs) arise in applied mathematics and

physics such as gas dynamics, nuclear physics, chemical reactions, studies of atomic

structure and atomic calculation [7]. They also appear in the study of positive radial

solutions of nonlinear elliptic equations. Therefore, they have been extensively stud-

ied in recent years, see, for instance, [1]–[5], [8], [13] and references therein. After

studying singular two-point BVPs in detail, some authors began to pay attention to

singular multi-point BVPs [9]–[12], [14]–[17]. They studied multi-point BVPs with
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several types of boundary conditions such as

u(0) = 0, u(1) = βu(η); u(0) = αu(ξ), u(1) = 0;

u(0) = 0, u(1) =

m−2
∑

i=1

βiu(ηi); u(0) =

m−2
∑

i=1

αiu(ξi), u(1) = 0;

u′(0) = 0, u(1) =

m−2
∑

i=1

βiu(ηi); u(0) =

m−2
∑

i=1

αiu(ξi), u
′(1) = 0;

u′(0) = 0, u(1) = u(η); u(0) =

m−2
∑

i=1

αiu(ξi), u
′(1) =

m−2
∑

i=1

βiu
′(ηi);

u(0) = αu(ξ), u(1) = βu(η); u(0) =

m−2
∑

i=1

αiu(ξi), u(1) =

m−2
∑

i=1

βiu(ηi),

where α, β, αi, βi > 0, 0 < ξ, η, ξi, ηi < 1 (i = 1, 2, . . . ,m− 1).

All the above multi-point boundary conditions are generalizations of the classical

Dirichlet boundary, Neumann and mixed conditions. Due to its difficulty, few work

has been done concerning the Sturm-Liouville-type multi-point boundary condition.

It is an interesting problem to establish similar results for Sturm-Liouville-type BVP.

In this paper we aim at investigating the singular four-point BVP

(1.1)

{

(ϕp(u
′(t)))′ + q(t)f(t, u(t), u′(t)) = 0, t ∈ (0, 1),

u′(0) − αu(ξ) = 0, u′(1) + βu(η) = 0,

where ϕp(s) = |s|p−2s, p > 1, 0 < ξ < η < 1, α, β > 0, q ∈ C[0, 1], q(t) > 0,

t ∈ (0, 1), and f ∈ C([0, 1] × (0,+∞) × R, (0,+∞)) may be singular at u = 0.

Sufficient conditions are given to guarantee the existence of positive solutions.

The method we use mainly depends on the theory of the Leray-Schauder degree.

First, the positive solutions are considered for a constructed nonsingular BVP, then

using the Arzelà-Ascoli theorem, we obtain positive solutions for the singular problem

which is approximated by the family of solutions to the nonsingular BVPs. The key

for finding a pseudo-lower-bound is by no means an easy task.

In this paper we consider the Banach space X = C1[0, 1] equipped with the norm

‖u‖ = max{|u|0, |u′|0}, where |u|0 = max
06t61

|u(t)|.
We say a function u(t) is a positive solution to problem (1.1) if u ∈ C1[0, 1],

ϕp(u
′) ∈ C1[0, 1], u > 0 on [0, 1], the differential equation is satisfied for all t ∈ (0, 1)

and the boundary conditions hold.

The following hypotheses are adopted throughout this paper:

(H1) 0 < ξ < η < 1, 0 < α 6 1/ξ, 0 < β 6 1/(1 − η), q ∈ C[0, 1], q(t) > 0,

t ∈ (0, 1);
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(H2) f : [0, 1]× (0,+∞)×R → (0,+∞) is continuous, there are functions f1, f2

and h such that 0 < f(t, y, z) 6 h(z)[f1(y)+ f2(y)] on (0, 1)× (0,+∞)×R

where f1 is continuous, positive and nonincreasing on (0,+∞) and such

that
∫ r

0
f1(s) ds < +∞ for all r > 0, f2 is continuous, nonnegative and

nondecreasing on [0,+∞) and h is continuous, positive and nondecreasing

on R;

(H3) for given H > 0 and L > 0, there are a function ψH,L and a constant

γ ∈ [0, 1) such that ψH,L is continuous on [0, 1], positive on (0, 1) and the

inequality

f(t, y, z) > ψH,L(t)(ϕp(|z|))γ

holds for t ∈ [0, 1], y ∈ (0, H ] and z ∈ [−L,L];

(H4) I1(x) =
∫ x

0 (ϕ−1
p (u))/(h(ϕ−1

p (u))) du < +∞, x > 0.

2. Preliminaries

In this section we give some lemmas which are important in the proof of our main

results.

Lemma 2.1. Suppose that e ∈ C[0, 1], e(t) > 0, t ∈ (0, 1), A > 0 is a constant.

Then the BVP

(2.1)







(ϕp(u
′(t)))′ + e(t) = 0, t ∈ (0, 1),

u′(0) − αu(ξ) = −A, u′(1) + βu(η) =
β

α
A,

has a unique solution. Moreover, this solution can be expressed by

(2.2) u(t) =















1

α
ϕ−1

p

(
∫ σ

0

e(τ) dτ

)

+

∫ t

ξ

ϕ−1
p

(
∫ σ

s

e(τ) dτ

)

ds+
A

α
, 0 6 t 6 σ,

1

β
ϕ−1

p

(
∫ 1

σ

e(τ) dτ

)

+

∫ η

t

ϕ−1
p

(
∫ s

σ

e(τ) dτ

)

ds+
A

α
, σ 6 t 6 1,

where σ satisfies

1

α
ϕ−1

p

(
∫ σ

0

e(τ) dτ

)

+

∫ σ

ξ

ϕ−1
p

(
∫ σ

s

e(τ) dτ

)

ds(2.3)

=
1

β
ϕ−1

p

(
∫ 1

σ

e(τ) dτ

)

+

∫ η

σ

ϕ−1
p

(
∫ s

σ

e(τ) dτ

)

ds.
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P r o o f. First, we show (2.3) has a unique solution. Set

v1(t) :=
1

α
ϕ−1

p

(
∫ t

0

e(τ) dτ

)

+

∫ t

ξ

ϕ−1
p

(
∫ t

s

e(τ) dτ

)

ds,

v2(t) :=
1

β
ϕ−1

p

(
∫ 1

t

e(τ) dτ

)

+

∫ η

t

ϕ−1
p

(
∫ s

t

e(τ) dτ

)

ds.

Clearly, v1 is continuous and strictly increasing on [0, 1], v2 is continuous and strictly

decreasing on [0, 1], and v1(0) < v2(0), v1(1) > v2(1), so v1(t) = v2(t) has a unique

solution, and we denote it by σ ∈ (0, 1).

Then it is easy to verify that (2.2) is a solution of (2.1). On the other hand, if u is a

solution of (2.1), then (ϕp(u
′(t)))′ = −e(t) < 0 on (0, 1). Since u′(0) − αu(ξ) = −A,

u′(1) + βu(η) = βα−1A, there exists a unique σ̂ ∈ (0, 1) such that u′(σ̂) = 0.

Integrating the equation in (2.1) on [0, σ̂], we arrive at

(2.4) u′(t) = ϕ−1
p

(
∫ σ̂

t

e(s) ds

)

, t ∈ [0, σ̂],

which implies u′(0) = ϕ−1
p

(∫ σ̂

0
e(τ) dτ

)

. Integrating (2.4) from 0 to t one obtains

(2.5) u(t) = u(0) +

∫ t

0

ϕ−1
p

(
∫ σ̂

s

e(τ) dτ

)

ds,

and then u(ξ) = u(0) +
∫ ξ

0 ϕ
−1
p

(∫ σ̂

s e(τ) dτ
)

ds. Together with the boundary condi-

tions we have

u(t) =
1

α
ϕ−1

p

(
∫ σ̂

0

e(τ) dτ

)

+

∫ t

ξ

ϕ−1
p

(
∫ σ̂

s

e(τ) dτ

)

ds+
A

α
, 0 6 t 6 1,

which is, evidently, the unique solution to (2.1).

Similarly, we obtain

u(t) =
1

β
ϕ−1

p

(
∫ 1

σ̂

e(τ) dτ

)

+

∫ η

t

ϕ−1
p

(
∫ s

σ̂

e(τ) dτ

)

ds+
A

α
, 0 6 t 6 1.

Let t = σ̂, then v1(σ̂) = v2(σ̂). Having in mind the definition of σ we can see that

σ̂ = σ. Therefore the unique solution to (2.1) can be expressed by (2.2). The proof

is complete. �

In order to solve (1.1), we consider the nonsingular problem

(2.6)







(ϕp(u
′(t)))′ + q(t)F (t, u(t), u′(t)) = 0, t ∈ (0, 1),

u′(0) − αu(ξ) = −A, u′(1) + βu(η) =
β

α
A,

where ϕp, q are the same as in (1.1), F ∈ C([0, 1] × R
2, (0,+∞)), A > 0.
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Let u ∈ X and define the operator T : X → X by

(2.7) (Tu)(t) =







































































1

α
ϕ−1

p

(
∫ σ

0

q(τ)F (τ, u(τ), u′(τ)) dτ

)

+

∫ t

ξ

ϕ−1
p

(
∫ σ

s

q(τ)F (τ, u(τ), u′(τ)) dτ

)

ds+
A

α
,

0 6 t 6 σ,

1

β
ϕ−1

p

(
∫ 1

σ

q(τ)F (τ, u(τ), u′(τ)) dτ

)

+

∫ η

t

ϕ−1
p

(
∫ s

σ

q(τ)F (τ, u(τ), u′(τ)) dτ

)

ds+
A

α
,

σ 6 t 6 1,

where σ is determined by (2.3) with e(t) replaced by q(t)F (t, u(t), u′(t)). �

Lemma 2.2. T : X → X is completely continuous.

P r o o f. It is easy to prove that T : X → X is well defined. T is completely

continuous if it is continuous and maps bounded subsets of X into relatively compact

ones.

Now we show that T is continuous. Let lim
n→+∞

‖un − u‖ = 0. By Lemma 2.2, for

any n = 1, 2, . . . there exists a unique σn ∈ (0, 1) such that A1,n(σn) = A2,n(σn),

where

A1,n(t) =
1

α
ϕ−1

p

(
∫ σn

0

q(τ)F (τ, un(τ), u′n(τ)) dτ

)

+

∫ t

ξ

ϕ−1
p

(
∫ σn

s

q(τ)F (τ, un(τ), u′n(τ)) dτ

)

ds,

A2,n(t) =
1

β
ϕ−1

p

(
∫ 1

σn

q(τ)F (τ, un(τ), u′n(τ)) dτ

)

+

∫ η

t

ϕ−1
p

(
∫ s

σn

q(τ)F (τ, un(τ), u′n(τ)) dτ

)

ds

for t ∈ [0, 1]. Since the sequence {σn} ⊂ (0, 1) is bounded, it contains a converging

subsequence. Replacing, if necessary, {σn} by such a subsequence, we denote σ0 =
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lim
n→+∞

σn and

A1,0(t) =
1

α
ϕ−1

p

(
∫ σ0

0

q(τ)F (τ, un(τ), u′n(τ)) dτ

)

+

∫ t

ξ

ϕ−1
p

(
∫ σ0

s

q(τ)F (τ, un(τ), u′n(τ)) dτ

)

ds,

A2,0(t) =
1

β
ϕ−1

p

(
∫ 1

σ0

q(τ)F (τ, un(τ), u′n(τ)) dτ

)

+

∫ η

t

ϕ−1
p

(
∫ s

σ0

q(τ)F (τ, un(τ), u′n(τ)) dτ

)

ds

for t ∈ [0, 1]. Then lim
n→+∞

|Ai,n − Ai,0|0 = 0 for i = 1, 2. Let σn = min{σn, σ0}
and σn = max{σn, σ0}, n = 1, 2, . . .. Of course, lim

n→+∞
tn = σ0 holds for each

sequence {tn} such that σn 6 tn 6 σn for all n ∈ N.

Noticing that

max
t∈[σ

n
,σn]

|Ai,n(t) −Aj,0(t)| 6 max
t∈[σ

n
,σn]

|Ai,n(t) −Ai,n(σn)| + |Aj,n(σn) −Aj,0(σ0)|

+ max
t∈[σ

n
,σn]

|Aj,0(σ0) −Aj,0(t)| → 0

as n→ +∞, i, j = 1, 2, i 6= j,

we have

|Tun − Tu0|0 6 max
{

max
t∈[0,σ

n
]
|A1,n(t) −A1,0(t)|, max

t∈[σn,1]
|A2,n(t) −A2,0(t)|,

max
t∈[σ

n
,σn]

|A1,n(t) −A2,0(t)|, max
t∈[σ

n
,σn]

|A2,n(t) −A1,0(t)|
}

→ 0

as n→ +∞.

Also,

A′
1,n(t) = ϕ−1

p

(
∫ σn

t

q(τ)F (τ, un(τ), u′n(τ)) dτ

)

, 0 6 t 6 σn,

A′
2,n(t) = − ϕ−1

p

(
∫ t

σn

q(τ)F (τ, un(τ), u′n(τ)

)

dτ, σn 6 t 6 1.

We have

|(Tun)′ − (Tu0)
′|0 6 max

{

max
t∈[0,σ

n
]
|A′

1,n(t) −A′
1,0(t)|, max

t∈[σn,1]
|A′

2,n(t) −A′
2,0(t)|,

max
t∈[σ

n
,σn]

|A′
1,n(t) −A′

2,0(t)|, max
t∈[σ

n
,σn]

|A′
2,n(t) −A′

1,0(t)|
}

→ 0

as n→ +∞,

so T is continuous.
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Suppose D ⊂ X is a bounded set. Then there exists r > 0 such that ‖u‖ 6 r for

all u ∈ D. When u ∈ D, we have

|Tu|0 =
1

2
max

t∈[0,1]

∣

∣

∣

∣

1

α
ϕ−1

p

(
∫ σ

0

q(τ)F (τ, u(τ), u′(τ)) dτ

)

+

∫ t

ξ

ϕ−1
p

(
∫ σ

s

q(τ)F (τ, u(τ), u′(τ)) dτ

)

ds

+
1

β
ϕ−1

p

(
∫ 1

σ

q(τ)F (τ, u(τ), u′(τ)) dτ

)

+

∫ η

t

ϕ−1
p

(
∫ s

σ

q(τ)F (τ, u(τ), u′(τ)) dτ

)

ds

∣

∣

∣

∣

+
A

α

6
1

2
ϕ−1

p

(

max
t∈[0,1], |y|06r, |z|06r

F (t, y, z)
)( 1

α
+

1

β
+ 2

)

ϕ−1
p

(
∫ 1

0

q(s) ds

)

+
A

α

and

|(Tu)′|0 6 ϕ−1
p

(

max
t∈[0,1], |y|06r, |z|06r

F (t, y, z)

)

ϕ−1
p

(
∫ 1

0

q(s) ds

)

=: Γ,

so T (D) is bounded.

Moreover, for any t1, t2 ∈ [0, 1] we have

|(Tu)(t1) − (Tu)(t2)| =

∣

∣

∣

∣

∫ t2

t1

(Tu)′(s) ds

∣

∣

∣

∣

6 Γ|t1 − t2| → 0 uniformly as t1 → t2,

and

|ϕp((Tu)
′(t1)) − ϕp((Tu)

′(t2))| =

∣

∣

∣

∣

∫ t2

t1

q(s)F (s, u(s), u′(s)) ds

∣

∣

∣

∣

→ 0 as t1 → t2.

Since ϕ−1
p is continuous, so |(Tu)′(t1) − (Tu)′(t2)| → 0 uniformly as t1 → t2.

By the Arzelà-Ascoli theorem, T (D) is relatively compact. Therefore, T is com-

pletely continuous. �

Now we give a existence principle which is important to the proof of the main

results.

Consider the BVP

(2.8 λ)







(ϕp(u
′(t)))′ + λq(t)F (t, u(t), u′(t)) = 0, t ∈ (0, 1),

u′(0) − αu(ξ) = −A, u′(1) + βu(η) =
β

α
A

where λ ∈ (0, 1), F , q, A are defined as before.
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Lemma 2.3 (Existence principle). Assume that there existsM > A/α such that

for all λ ∈ (0, 1) and all solutions u of problem (2.8)λ the relation

‖u‖ 6= M

holds. Then problem (2.8)1 has a solution u such that ‖u‖ 6 M .

P r o o f. For any λ ∈ [0, 1] define the operator

(Tλu)(t) =



















































λ
1

α
ϕ−1

p

(
∫ σ

0

q(τ)F (τ, u(τ), u′(τ)) dτ

)

+λ

∫ t

ξ

ϕ−1
p

(
∫ σ

s

q(τ)F (τ, u(τ), u′(τ)) dτ

)

ds+
A

α
, 0 6 t 6 σ,

λ
1

β
ϕ−1

p

(
∫ 1

σ

q(τ)F (τ, u(τ), u′(τ)) dτ

)

+λ

∫ η

t

ϕ−1
p

(
∫ s

σ

q(τ)F (τ, u(τ), u′(τ)) dτ

)

ds+
A

α
, σ 6 t 6 1.

Then by Lemma 2.2, Tλ : X → X is completely continuous. It is easy to verify

that u(t) is a solution to (2.8)λ if and only if u is a fixed point of Tλ in X . Let

Ω = {u ∈ X : ‖u‖ < M}, then Ω is an open set in X .

If there exists u ∈ ∂Ω such that T1u = u, then u(t) is a solution of (2.8)1 and

the conclusion follows. Otherwise, for any u ∈ ∂Ω we have T1u 6= u. If λ = 0 and

u ∈ ∂Ω, then (I − T0)u(t) = u(t) − T0u(t) = u(t) − A/α 6≡ 0, so T0u 6= u for any

u ∈ ∂Ω. For λ ∈ (0, 1) and u ∈ ∂Ω, the inequality Tλu 6= u follows directly from our

assumptions.

By the property of the Leray-Schauder degree, we get

deg{I − T1,Ω, θ} = deg{I − T0,Ω, θ} = 1,

so T1 has a fixed point u in Ω. That is, (2.8)1 has a solution u satisfying ‖u‖ 6 M .

The proof is completed. �

Lemma 2.4. Suppose (H1) and (H2) hold. If u is a solution to problem (2.6),

then

(i) u(t) is concave on [0, 1];

(ii) there exists a unique σ ∈ (0, 1) such that u′(σ) = 0, u′(t) > 0, t ∈ [0, σ],

u′(t) 6 0, t ∈ [σ, 1];

(iii) u(t) > A/α on [0, 1];

(iv) u(t) > t(1 − t)|u|0 on [0, 1];

(v) |u|0 6 K|u′|0 +A/α, where K = max
{

1/α+ 1, 1/β + 1
}

.
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P r o o f. Suppose u(t) is a solution to BVP (2.6), then

(i) (ϕp(u
′(t)))′ = −q(t)F (t, u(t), u′(t)) 6 0, t ∈ (0, 1), so ϕp(u

′) is nonincreasing,

therefore u′ is nonincreasing, which implies the concavity of u(t).

(ii) By the proof of Lemma 2.1, we know that there exists a unique σ ∈ (0, 1) such

that u′(σ) = 0, u′(t) > 0, t ∈ [0, σ], u′(t) 6 0, t ∈ [σ, 1].

(iii) By Lemma 2.1 and 0 < α 6 1/ξ, we have for t ∈ [0, σ]

u(t) =
1

α
ϕ−1

p

(
∫ σ

0

q(τ)F (τ, u(τ), u′(τ)) dτ

)

+

∫ t

ξ

ϕ−1
p

(
∫ σ

s

q(τ)F (τ, u(τ), u′(τ)) dτ

)

ds+
A

α

=
1

α
ϕ−1

p

(
∫ σ

0

q(τ)F (τ, u(τ), u′(τ)) dτ

)

−
∫ ξ

0

ϕ−1
p

(
∫ σ

s

q(τ)F (τ, u(τ), u′(τ)) dτ

)

ds

+

∫ t

0

ϕ−1
p

(
∫ σ

s

q(τ)F (τ, u(τ), u′(τ)) dτ

)

ds+
A

α

>
1

α
ϕ−1

p

(
∫ σ

0

q(τ)F (τ, u(τ), u′(τ)) dτ

)

− ξϕ−1
p

(
∫ σ

0

q(τ)F (τ, u(τ), u′(τ)) dτ

)

+

∫ t

0

ϕ−1
p

(
∫ σ

s

q(τ)F (τ, u(τ), u′(τ)) dτ

)

ds+
A

α

>

∫ t

0

ϕ−1
p

(
∫ σ

s

q(τ)F (τ, u(τ), u′(τ)) dτ

)

ds+
A

α
>
A

α
.

Similarly, by 0 < β 6 1/(1 − η), we can also obtain u(t) > A/α for t ∈ [σ, 1].

Therefore, u(t) > A/α for t ∈ [0, 1].

(iv) Since u is concave and u(t) > A/α on [0, 1], we have

u(t)

t
>
u(σ)

σ
> |u|0 ⇒ u(t) > t|u|0 > t(1 − t)|u|0, t ∈ [0, σ],

u(t)

1 − t
>

u(σ)

1 − σ
> |u|0 ⇒ u(t) > (1 − t)|u|0 > t(1 − t)|u|0, t ∈ [σ, 1],

thus, u(t) > t(1 − t)|u|0 for all t ∈ [0, 1].

(v) By the boundary condition, we have

|u|0 = max
06t61

|u(t)| = |u(σ)|

=

∣

∣

∣

∣

u(ξ) +

∫ σ

ξ

u′(t) dt

∣

∣

∣

∣

=

∣

∣

∣

∣

1

α
u′(0) +

A

α
+

∫ σ

ξ

u′(t) dt

∣

∣

∣

∣

6

(

1 +
1

α

)

|u′|0 +
A

α
;
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similarly, we can obtain |u|0 6 (1+1/β)|u′|0 +A/α. Let K = max{1+1/α, 1+1/β},
then |u|0 6 K|u′|0 +A/α. The proof is complete. �

3. Existence results

In this section we present some new existence results for positive solutions of the

singular four-point BVP (1.1).

Theorem 3.1. Assume (H1)–(H4) hold and

sup
0<c<+∞

c

Kϕ−1
p (I−1

1 (|q|0f2(c)c+ |q|0
∫ c

0
f1(s) ds))

> 1,(H5)

where K = max
{

1 +
1

α
, 1 +

1

β

}

.

Then (1.1) has a positive solution u.

P r o o f. Choose M0 > 0 and 0 < ε < M0 with

(3.1)
M0

ε+Kϕ−1
p (I−1

1 (|q|0f2(M0)M0 + |q|0
∫ M0

0
f1(s) ds))

> 1.

Let n0 ∈ {1, 2, 3, . . .} be chosen so that 1/n0 6 ε and let N0 = {n0, n0+1, n0+2, . . .}.
In what follows, we show that

(3.2 m)







(ϕp(u
′(t)))′ + q(t)f(t, u(t), u′(t)) = 0, t ∈ (0, 1),

u′(0) − αu(ξ) = − α

m
, u′(1) + βu(η) =

β

m
,

has a positive solution for each m ∈ N0.

To this end, we consider

(3.3 m)







(ϕp(u
′(t)))′ + q(t)f∗(t, u(t), u′(t)) = 0, t ∈ (0, 1),

u′(0) − αu(ξ) = − α

m
, u′(1) + βu(η) =

β

m
,

where

f∗(t, y, z) =















f(t, y, z), y >
1

m
, z ∈ R,

f
(

t,
1

m
, z

)

, y <
1

m
, z ∈ R;

then f∗(t, y, z) ∈ C([0, 1] × R
2, (0,+∞)).
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Consider

(3.3 m
λ)







(ϕp(u
′(t)))′ + λq(t)f∗(t, u(t), u′(t)) = 0, t ∈ (0, 1),

u′(0) − αu(ξ) = − α

m
, u′(1) + βu(η) =

β

m
.

Let u ∈ X be a solution of (3.3)m
λ . From Lemma 2.4 we know that u

′′(t) 6 0 on

(0, 1), u(t) > 1/m on [0, 1], and there exists σ ∈ (0, 1) such that u′(σ) = 0, u′(t) > 0,

t ∈ [0, σ] and u′(t) 6 0, t ∈ [σ, 1].

Now, for t ∈ [0, σ], by (H2) we have

0 6 −(ϕp(u
′(t)))′ = λq(t)f∗(t, u(t), u′(t))(3.4)

= λq(t)f(t, u(t), u′(t))

6 q(t)h(u′(t))[f1(u(t)) + f2(u(t))].

Multiplying (3.4) by u′ one obtains

(3.5) −(ϕp(u
′(t)))′ϕ−1

p (ϕp(u
′(t))) 6 q(t)h(u′(t))[f1(u(t)) + f2(u(t))]u

′(t).

Integrating (3.5) from t to σ yields that

∫ ϕp(u′(t))

0

ϕ−1
p (s)

h(ϕ−1
p (s))

ds 6 |q|0
∫ u(σ)

u(t)

[f1(s) + f2(s)] ds

6 |q|0f2(u(σ))u(σ) + |q|0
∫ u(σ)

0

f1(s) ds,

i.e.

(3.6) I1(ϕp(u
′(t))) 6 |q|0f2(u(σ))u(σ) + |q|0

∫ u(σ)

0

f1(s) ds.

Similarly, for t ∈ [σ, 1], let I2(x) = I1(−x), x < 0. By (H2) and (H4) we have

(3.7) I1(−ϕp(u
′(t))) = I2(ϕp(u

′(t))) 6 |q|0f2(u(σ))u(σ) + |q|0
∫ u(σ)

0

f1(s) ds.

By (3.6) and (3.7) we obtain that

0 6 |u′(t)| 6 ϕ−1
p

(

I−1
1

(

|q|0f2(u(σ))u(σ) + |q|0
∫ u(σ)

0

f1(s) ds

))

.
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Considering Lemma 2.4 (v), we get

u(σ) 6
1

m
+Kϕ−1

p

(

I−1
1

(

|q|0f2(u(σ))u(σ) + |q|0
∫ u(σ)

0

f1(s) ds

))

6 ε+Kϕ−1
p

(

I−1
1

(

|q|0f2(u(σ))u(σ) + |q|0
∫ u(σ)

0

f1(s) ds

))

and

(3.8)
u(σ)

ε+Kϕ−1
p (I−1

1 (|q|0f2(u(σ))u(σ) + |q|0
∫ u(σ)

0 f1(s) ds))
6 1.

Now (3.1) together with (3.8) implies

(3.9) 0 < u(σ) = |u|0 < M0.

Next, we notice that any solution u of (3.3)m
λ with 1/m 6 u(t) 6 M0 for t ∈ [0, 1]

also satisfies

(3.10) |u′(t)| < ϕ−1
p

(

I−1
1

(

|q|0f2(M)M+|q|0
∫ M

0

f1(s) ds

))

+1 =: M1, t ∈ [0, 1].

Let M = max{M0,M1}. From (3.9) and (3.10) we have

‖u‖ 6= M.

Thus Lemmas 2.3 and 2.4 imply that for any m ∈ N0, (3.3)m has a positive solution

um ∈ C1[0, 1] and there exists σm ∈ (0, 1) such that u′m(σm) = 0, u′m(t) > 0 on

[0, σm] and u′m(t) 6 0 on [σm, 1].

In fact,

(3.11)
1

m
6 um(t) 6 M0, |u′m(t)| < M1 for t ∈ [0, 1]

and um(t) satisfies

(3.12)







(ϕp(u
′
m(t)))′ + q(t)f(t, um(t), u′m(t)) = 0, t ∈ (0, 1),

u′m(0) − αum(ξ) = − α

m
, u′m(1) + βum(η) =

β

m
.

Next we will give a sharper lower bound on um, i.e., we will show that there exists

a constant k > 0 independent of m such that um(t) > kt(1 − t) for t ∈ [0, 1].
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Notice that (H3) guarantees the existence of a function ψM0,M1
(t) which is contin-

uous on [0, 1] and positive on (0, 1) with f(t, um(t), u′m(t)) > ψM0,M1
(t)[ϕp(|u′m(t)|)]γ

for (t, um(t), u′m(t)) ∈ [0, 1] × (0,M0] × [−M1,M1]. For t ∈ [0, σm) we have

−(ϕp(u
′
m(t)))′ > q(t)ψM0,M1

(t)[ϕp(u′m(t))]γ ,

thus,

(3.13) −d(ϕp(u
′
m(t)))

[ϕp(u′m(t))]γ
> q(t)ψM0,M1

(t).

Integrating (3.13) from t to σm one gets

(3.14) u′m(t) > ϕ−1
p

([

(1 − γ)

∫ σm

t

q(s)ψM0,M1
(s) ds

]1/(1−γ))

.

By integrating (3.14) from 0 to t one obtains

(3.15) um(t) >

∫ t

0

ϕ−1
p

([

(1 − γ)

∫ σm

s

q(τ)ψM0,M1
(τ) dτ

]1/(1−γ))

ds.

Similarly, for t ∈ (σm, 1] we have

(3.16) −u′m(t) > ϕ−1
p

([

(1 − γ)

∫ t

σm

q(s)ψM0,M1
(s) ds

]1/(1−γ))

and

(3.17) um(t) >

∫ 1

t

ϕ−1
p

([

(1 − γ)

∫ s

σm

q(τ)ψM0,M1
(τ) dτ

]1/(1−γ))

ds.

Case 1. If ξ < σm, by (3.15) we have

um(ξ) >

∫ ξ

0

ϕ−1
p

([

(1 − γ)

∫ ξ

s

q(τ)ψM0,M1
(τ) dτ

]1/(1−γ))

ds =: θ1 > 0.

By the concavity of um(t) on (0,1) we have

um(t)

t
>
um(ξ)

ξ
⇒ um(t) >

θ1
ξ
t >

θ1
ξ
t(1 − t) for t ∈ [0, ξ],

um(t)

1 − t
>
um(ξ)

1 − ξ
⇒ um(t) >

θ1
1 − ξ

(1 − t) >
θ1

1 − ξ
t(1 − t) for t ∈ [ξ, 1].

Let k0 = min{θ1/ξ, θ1/(1 − ξ)}, then um(t) > k0t(1 − t) for t ∈ [0, 1].
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Case 2. If η > σm, by (3.17) we have

um(η) >

∫ 1

η

ϕ−1
p

([

(1 − γ)

∫ s

η

q(τ)ψM0,M1
(τ) dτ

]1/(1−γ))

ds =: θ2 > 0.

By the concavity of um(t) on (0,1) we have

um(t)

t
>
um(η)

η
⇒ um(t) >

θ2
η
t >

θ2
η
t(1 − t) for t ∈ [0, η],

um(t)

1 − t
>
um(η)

1 − η
⇒ um(t) >

θ2
1 − η

(1 − t) >
θ2

1 − η
t(1 − t) for t ∈ [η, 1].

Let k1 = min{θ2/η, θ2/(1 − η)}, then um(t) > k1t(1 − t) for t ∈ [0, 1].

Consequently, there exists a constant k = min{k0, k1} > 0 with

(3.18) um(t) > kt(1 − t), t ∈ [0, 1].

First, we show that both {um}∞m=1, {u′m}∞m=1 are bounded and equi-continuous

on [0,1]. We need only to check the equi-continuity of {u′m}∞m=1 since (3.11) holds.

For any t ∈ [0, 1] we have

−(ϕp(u
′
m(t)))′ 6 q(t)h(u′m(t))[f1(um(t)) + f2(um(t))](3.19)

6 h(M1)[f2(M0) + f1(kt(1 − t))]|q|0,

which implies {u′m}∞m=1 is equi-continuous.

From (3.11), (3.18), (3.19) and (H2) we get that both {um}∞m=1, {u′m}∞m=1 are

bounded and equi-continuous on [0,1].

The Arzelà-Ascoli theorem guarantees that there is a subsequence N∗ ⊂ N0 and a

function z(t) ∈ X with u
(j)
m (t) → z(j)(t) uniformly on [0, 1] as m→ +∞ through N∗.

So z′(0) − αz(ξ) = 0, z′(1) + βz(η) = 0 with z(t) > kt(1 − t), t ∈ [0, 1]. Taking into

account that um(t) is the solution of (3.2)m and applying Lemma 2.1, we have

(3.20) um(t) =







































































1

α
ϕ−1

p

(
∫ σm

0

q(τ)f(τ, um(τ), u′m(τ)) dτ

)

+

∫ t

ξ

ϕ−1
p

(
∫ σm

s

q(τ)f(τ, um(τ), u′m(τ)) dτ

)

ds+
1

m
,

0 6 t 6 σm,

1

β
ϕ−1

p

(
∫ 1

σm

q(τ)f(τ, um(τ), u′m(τ)) dτ

)

+

∫ η

t

ϕ−1
p

(
∫ s

σm

q(τ)f(τ, um(τ), u′m(τ)) dτ

)

ds+
1

m
,

σm 6 t 6 1.
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Since the sequence {σm} ⊂ (0, 1) is bounded, it contains a converging subsequence.

Replacing {σm} by such a subsequence, if necessary, we denote σ0 = lim
m→+∞

σm. Let

m→ +∞ through N∗ in (3.20). Then by Lemma 2.2, one has

(3.21) z(t) =























































1

α
ϕ−1

p

(
∫ σ0

0

q(τ)f(τ, z(τ), z′(τ)) dτ

)

+

∫ t

ξ

ϕ−1
p

(
∫ σ0

s

q(τ)f(τ, z(τ), z′(τ)) dτ

)

ds, 0 6 t 6 σ0,

1

β
ϕ−1

p

(
∫ 1

σ0

q(τ)f(τ, z(τ), z′(τ)) dτ

)

+

∫ η

t

ϕ−1
p

(
∫ s

σ0

q(τ)f(τ, z(τ), z′(τ)) dτ

)

ds, σ0 6 t 6 1.

From (3.21) we deduce immediately that z ∈ X and (ϕp(z
′(t))′+q(t)f(t, z(t), z′(t)) =

0, t ∈ (0, 1). The proof of Theorem 3.1 is complete. �

4. Examples

In this section we give some explicit examples to illustrate our results.

Example 4.1. Consider the singular four-point BVP with p-Laplacian

(4.1)







(ϕp(u
′))′ + µeu′

[u−b + λ0u
l + λ1] = 0, 0 < t < 1,

u′(0) − u
(1

4

)

= 0, u′(1) + u
(3

4

)

= 0,

where p > 1, 0 < b < 1, λ0 > 0, λ1 > 0, l > 0, µ > 0. If µ satisfies

(4.2) sup
0<c<+∞

c

2ϕ−1
p (I−1

1 (µecc+ µ(1 − b)−1c1/(1−b)))
> 1

then the BVP (4.1) has at least one positive solution.

P r o o f. Obviously, α = β = 1, ξ = 1
4 , η = 3

4 , q(t) = µ > 0 and q ∈ C[0, 1],

f(t, y, z) = ez(y−b +λ0y
l +λ1) ∈ C([0, 1]× (0,+∞)×R, (0,+∞)). It is easy to verify

(H1) 0 < α = 1 < 1/ξ = 4, 0 < β = 1 < 1/(1 − η) = 4;

(H2) 0 < f(t, y, z) = ez(y−b + λ0y
l + λ1) 6 h(z)[f1(y) + f2(y)], where f1(y) =

y−b > 0 is continuous, nonincreasing on (0,+∞) and for any x > 0,
∫ x

0 f1(u) du =
∫ x

0 u
−b du < +∞, f2(y) = λ0y

l + λ1 > 0 is continuous

on [0,+∞), h(z) = ez > 0 is continuous and nondecreasing on R;

(H3) for constants H > 0, L > 0 there exists a function ψH,L(t) = H−b >

0 continuous on [0, 1] and a constant γ = 1 with f(t, y, z) > ezH−b >
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ψH,L(t)ϕp(|z|) on [0, 1] × (0, H ] × [−L,L], where L satisfies the equation

|z|p−1 = ez.

By (4.2), we know (H4) holds. Therefore, by Theorem 3.1 we can obtain that

(4.1) has at least one positive solution u(t). �

Example 4.2. Consider the singular four-point BVP

(4.3)















u′′ +
1

9
(u−1/3 + 1) = 0, 0 < t < 1,

u′(0) − u
(1

4

)

= 0, u′(1) + u
(3

4

)

= 0.

Then the BVP (4.3) has at least one positive solution.

P r o o f. Let p = 2, α = β = 1, ξ = 1
4 , η = 3

4 , q(t) = 1
9 , f(t, y, z) = y−1/3 + 1.

Clearly (H1) holds and f1(y) = y−1/3 > 0 is continuous, nonincreasing on (0,+∞),

f2(y) = y + 1 > 0 is continuous on [0,+∞), h(z) = 1 > 0 is continuous and nonde-

creasing on R. So (H2) holds. Take ψH,L(t) = H−1/3, γ = 1, then (H3) holds.

From I1(x) =
∫ x

0
s ds = 1

2x
2, x > 0, I2(x) = I1(−x) = 1

2x
2, x < 0 we ob-

tain that (H4) holds. By q(t) = 1
9 , sup

0<c<+∞
c/(Kϕ−1

p (I−1
1 (f2(c)c+

∫ c

0 f1(s) ds))) =

sup
0<c<+∞

c/(2(2c(c+ 1) + 3c2/3)1/2 = 1/
(

2
√

2
)

> 1
3 = (|q|0)1/2, (H5) holds, too. By

Theorem 3.1 we conclude that (4.3) has at least one positive solution u(t). �
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eds.). Elsevier, 2006, pp. 607–723.

[14] Z. Wei, C. Pang: Positive solutions of some singular m-point boundary value problems
at non-resonance. Appl. Math. Comput. 171 (2005), 433–449.

[15] X. Xu: Positive solutions for singular m-point boundary value problems with positive
parameter. J. Math. Anal. Appl. 291 (2004), 352–367.

[16] X. Zhang, L. Liu: Eigenvalue of fourth-order m-point boundary value problem with
derivatives. Comput. Math. Appl. 56 (2008), 172–185.

[17] X. Zhang, L. Liu: Positive solutions of fourth-order four-point boundary value problems
with p-Laplacian operator. J. Math. Anal. Appl. 336 (2007), 1414–1423.

Authors’ addresses: C . M i a o, Department of Mathematics, Beijing Institute of Tech-
nology, Beijing 100081, P.R.China, e-mail: miaochunmei@yahoo.com.cn, and College of Sci-
ence, Changchun University, Changchun 130022, P.R. China; J . Z h a o, W. G e, Depart-
ment of Mathematics, Beijing Institute of Technology, Beijing 100081, P.R.China, e-mail:
zhao junfang@163.com, gew@bit.edu.cn.

973


		webmaster@dml.cz
	2020-07-03T18:17:47+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




