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KYBERNET IK A — VOLUME 4 5 ( 2 0 0 9 ) , N U MBE R 6 , P AG E S 9 7 2 – 9 9 1

SEMIPARAMETRIC ESTIMATION OF THE
PARAMETERS OF MULTIVARIATE COPULAS

Eckhard Liebscher

In the paper we investigate properties of maximum pseudo-likelihood estimators for the
copula density and minimum distance estimators for the copula. We derive statements on
the consistency and the asymptotic normality of the estimators for the parameters.

Keywords: multivariate density estimation, copula, maximum likelihood estimators, min-
imum distance estimators
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1. INTRODUCTION

Let X = (X(1), . . . , X(d))T be a d-dimensional random vector. We denote the
marginal density and the marginal distribution function of X(m) by fm and Fm,
respectively (m = 1, . . . , d). H and h denote the joint distribution function and the
joint density of X, respectively. According to Sklar’s theorem, we have

H(x1, . . . , xd) = C(F1(x1), . . . , Fd(xd)) (xi ∈ R)

where C : [0, 1]d → [0, 1] is the d-dimensional copula. If H is absolutely continuous
with density h, then copula C is uniquely determined, and the density h satisfies
the following formula

h(x1, . . . , xd) = ϕ(F1(x1), . . . , Fd(xd)) f1(x1) . . . fd(xd) (1)

where ϕ(u1, . . . , ud) = ∂d

∂u1...∂ud
C(u1, . . . , ud) is the so-called copula density. Con-

cerning the detailed theory of copulas, we refer to the monographs by Joe [12] and
by Nelsen [17]. In these monographs the reader also finds surveys of most usable
copulas which are symmetric. Who is interested in asymmetric families of copulas
may consult the author’s paper [16].

In this paper we consider the parametric family C = (Cθ)θ∈Θ of copulas on [0, 1]d.
Here Θ ⊂ Rq is the parameter space. The symbol ϕθ denotes the density of Cθ. The
aim of this paper is to analyse asymptotic properties of semiparametric estimation
procedures for the copula and the copula density. We consider maximum pseudo-
likelihood estimators (MPLE) and minimum distance estimators (MDE) where no
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model for the marginal distribution is needed. The asymptotic behaviour of MPLE
has been studied in Genest and Rivest [7], Oakes [18], Genest et al. [5], Shih and
Louis [20], and Chen and Fan [1]. The efficiency of such estimators has been analysed
in Genest and Werker [8]. An efficient estimation method for parametric classes of
copula densities is introduced and investigated in Chen et al. [3]. The asymptotic
behaviour of two-stage estimation procedures is studied in Joe [12]. Tsukahara [22]
examined minimum distance estimators for the parameters of copulas. The paper by
Chen and Fan [2] deals with the asymptotic behaviour of MPLE in the time series
framework.

In the present paper we provide statements on the strong consistency and the
asymptotic normality of MPLE and MDE for the parameters of the copula. We
extend the definition of the estimators in the way that the estimator can be an
output of a numerical algorithm solving the corresponding optimisation problem
approximately. Because of the complexity of the multivariate distribution, it is
frequently not possible to find an appropriate model for a given dataset. In these
cases we have to be satisfied with reasonable approximation for the true model.
Then we estimate not the true model but an approximation of it, and efficiency of
the estimators is not well-defined. This situation is often called misspecification and
is covered by our results. The parametric families copulas often include cases of non-
identifiable distributions. In this specific situation we do not obtain the consistency
of the estimator but a convergence to the set of minimisers of the corresponding
nonstochastic optimisation problem. Although we assume that the sample contains
i.i.d. random variables, the proof techniques allow a straightforward extension to
stationary sequences of dependent random variables. In comparison to other papers
on estimation the reader can therefore notice the following points of novelty of the
present paper:

– We consider approximate estimators.

– It is not assumed that the underlying copula of the sample items belongs to
the parametric family or approximates a member of it.

– The situation of non-identifiability is incorporated.

– The definition of the minimum distance estimators differs significantly from
that in the paper Tsukahara [22].

In this paper we focus on the semiparametric estimation of the copula density or
the copula based on a parametric model. The advantage of parametric and semi-
parametric methods over nonparametric ones is that the latter methods show a bad
performance especially in higher dimensions (see Gijbels and Mielniczuk [9]) con-
cerning kernel estimators for copula densities). In the context of parametric copula
models the model selection problem arises. Goodness-of-fit tests are studied in the
papers by Fermanian [4] and Genest et al. [6] among others. The problem of model
selection is discussed in Wang and Wells [23] and Chen and Fan [1].

The problem of estimating copulas appears frequently in the context of the es-
timation of multivariate distributions. For this reason one can use formula (1) to
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fit the joint density h to a given sample. Especially in the situation of high dimen-
sions, it is convenient to split the estimation problem into two steps. In our settings
it is possible to estimate the marginal densities and the copula density separately.
This makes the estimation procedure more tractable for the implementation on the
computer. Otherwise it will lead to a high-dimensional estimation problem. The
marginal distributions can be fitted using parametric or nonparametric standard
methods. Applying nonparametric kernel estimators for the marginal density, we
obtain a semiparametric estimator for h which is studied in Hall and Neumayer [10]
and Liebscher [15].

The paper is organised as follows: In Section 2 we provide the results concern-
ing the maximum-likelihood estimators. Section 3 is devoted to minimum distance
estimators. The reader finds the proof of the results in Sections 4 and 5.

2. ASYMPTOTIC PROPERTIES
OF MAXIMUM LIKELIHOOD ESTIMATORS

In this section we consider a family F = (ϕθ)θ∈Θ of models for the copula density
with continuous functions θ Ã ϕθ(x) = ϕ(x | θ) for all x ∈ [0, 1]d. Let X1, . . . , Xn

with Xi = (X
(1)
i , . . . , X

(d)
i )T be a sample of random d-dimensional vectors having a

distribution with copula density ϕ. Obviously, Ȳl = (F1(X
(1)
l ), . . . , Fd(X

(d)
l ))T has

the joint density ϕ. Because of the complexity of the multivariate distribution, we
do not assume ϕ ∈ F . Thus the aim is to estimate the vector θ0 ∈ Θ of parameters
maximising

Φ(θ) = E ln
(
ϕ(Ȳi | θ)

)
=

∫

[0,1]d
ln (ϕ(u | θ))ϕ(u) du.

Vector θ0 represents the vector with the property that ϕ(· | θ0) approximates best the
true copula density ϕ concerning the Kullback–Leibler divergence. We denote the

empirical marginal distribution function of X
(j)
i by F̂nj . Let Fnj = n

n+1 F̂nj be the

rescaled empirical marginal distribution function. We introduce Ynji = Fnj(X
(j)
i )

for i = 1, . . . , n, j = 1, . . . , d, Yni = (Yn1i, . . . , Yndi)
T , and

Φn(θ) =
1

n

n∑

i=1

ln (ϕ(Yni | θ)) . (2)

The maximum pseudo-likelihood estimator θ̂n (MPLE, sometimes called canonical
maximum likelihood estimator) of the parameter θ of the copula is determined by

θ̂n ∈ arg max
θ∈Θ

Φn(θ)

(see Genest et al. [5]). In many situations an explicit formula for θ̂n is not avail-
able. In these cases we have to perform a numerical algorithm which gives out an
approximate value instead of the exact one. Here the consideration of approximate
MPLE can be useful. This kind of estimators θ̂n is defined by

Φn(θ̂n) ≥ max
θ∈Θ

Φn(θ) − εn, (3)
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Φn as in (2) and {εn} is a sequence of random variables with εn → 0 a.s. Hess
[11] introduced this kind of estimators and studied it thoroughly. The following
two examples show that identifiability problems occur in the context of copulas and
cannot be avoided in a simple way without excluding important cases.

Example 1. Cook–Johnson product copula (see Liebscher [16])

C(u1, . . . , ud) =

(
1 +

d∑

i=1

(u−γτi

i − 1)

)−1/γ (
1 +

d∑

i=1

(u
−δ(1−τi)
i − 1)

)−1/δ

.

This copula has d+2 parameters: γ, δ ∈ [0,+∞), τ1, . . . , τd, where τi ∈ [0, 1]. In the
case γ = δ there are models which are not identifiable: parameters (γ, γ, τ1, . . . , τd)
and (γ, γ, 1 − τ1, . . . , 1 − τd) lead to the same distribution of Ȳl.

Example 2. Convex combination of Cook–Johnson copulas

C(u1, . . . , ud) = λ

(
1 +

d∑

i=1

(u−γ
i − 1)

)−1/γ

+ (1 − λ)

(
1 +

d∑

i=1

(u−δ
i − 1)

)−1/δ

with parameters λ ∈ [0, 1], γ, δ ∈ [0, +∞). Here an identifiability problem occurs:
parameters (0, γ, δ) and (1, δ, γ) lead to the same distribution of Ȳl which is the
Cook–Johnson copula.

Theorem 2.1 provides the consistency result for the estimator θ̂n.

Theorem 2.1. Assume that Θ is compact, and lnϕ(· | ·) is continuous on D × Θ
where D ⊂ [0, 1]d and the interior of D has Lebesgue measure 1. Suppose that the

estimator θ̂n satisfies (3), and F1, . . . , Fd are continuous.

a) Then

lim
n→∞

d(θ̂n,Ψ) = 0 a.s.

where Ψ = arg maxθ∈Θ Φ(θ), d(x,A) = infy∈A ‖x − y‖, ‖.‖ is the Euclidean norm.

b) If in addition the condition

Φ(θ) < Φ(θ0) for all θ ∈ Θ\{θ0} (4)

(i. e. Ψ = {θ0}) is satisfied, then

lim
n→∞

θ̂n = θ0 a.s. (5)

In the case εn = 0, strong consistency of θ̂n has been proven in the paper by Chen
and Fan ([1], Proposition 1), but the proof of Lemma 1(c) is not correct. One can
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construct a function h such that the assumptions of Lemma 1(c) are fulfilled and the
conclusion fails to hold. An assumption on the function h like continuity is missing
there. Theorem 2.1 fills the gap in Chen and Fan’s paper and incorporates the case
of nonidentifiability (part a)) as well as approximate estimators. The property (5) is
called minimum Kullback–Leibler information consistency (cf. Suzukawa et al. [21]).
The assumption on compactness of Θ may be weakened in some way at a price of
higher technical complexity in the proofs. Note that discontinuity of lnϕ(· | θ) is
allowed here on a set having a closure with Lebesgue measure 0.

In the classical case ϕ ∈ F ; i. e. ϕ = ϕ(· | θ0) for some θ0 ∈ Θ, the identifiability
condition

ϕ(· | θ) 6= ϕ(· | θ0) for all θ 6= θ0

is sufficient for the assumption (4) which means that θ0 is the unique maximiser
of Φ.

Example 1, continued. Let θ0 = (γ0, γ0, τ01, . . . , τ0d)
T with τ0i 6= 0.5 for at least

one i. Then θ̂1n → γ0 and θ̂2n → γ0 a.s. where θ̂n = (θ̂in)i=1,...,d+2.

In the asymptotic normality results, we need the following assumptions:

Assumption D. The derivatives ∂3

∂θi∂θj∂θk
lnϕ(u | θ), ∂3

∂θi∂θj∂ul
lnϕ(u | θ) and

∂3

∂θi∂ul∂um
ln ϕ(u | θ) exist for θ ∈ Θ, u ∈ [0, 1]d and all possible i, j, k, l,m. Let

Gil(u) = ∂2

∂θi∂ul
lnϕ(u | θ)

∣∣∣
θ=θ0

and Ḡi(u) = ∂
∂θi

ln ϕ(u | θ)
∣∣∣
θ=θ0

. Let θ0 be an

interior point of Θ. There is a function M : [0, 1]d → [0, ∞), an ε̄ > 0 and a
neighbourhood U(θ0) ⊂ Θ of θ0 such that

|Gil(u)| ≤ M(u), Ḡ2
i (u) ≤ M(u),

sup
θ∈U(θ0)

sup
v:‖u−v‖<ε̄

∣∣∣∣
∂3

∂θi∂θj∂θk
lnϕ(v | θ)

∣∣∣∣ ≤ M(u),

sup
v:‖u−v‖<ε̄

∣∣∣∣
∂3

∂θi∂θj∂ul
lnϕ(v | θ0)

∣∣∣∣ ≤ M(u),

sup
v:‖u−v‖<ε̄

∣∣∣∣
∂3

∂θi∂ul∂um
lnϕ(v | θ0)

∣∣∣∣ ≤ M(u)

for i, j, k = 1, . . . , q, l,m = 1, . . . , d, u ∈ [0, 1]d and EM(Ȳl) < +∞. Moreover, there
is a positively definite matrix I(θ0) = (Iij(θ0))i,j=1,...,q such that

E
∂2

∂θi∂θj
lnϕ(Ȳl | θ)

∣∣∣∣
θ=θ0

= −Iij(θ0).

In the case ϕ = ϕ(· | θ0), this matrix I(θ0) is usually called the information matrix.
2

Now we give the asymptotic normality result for estimators θ̂n.
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Theorem 2.2. Assume that εn = o(n−1). Let the assumptions of Theorem 2.1 b)
be satisfied. Then, under condition D, we have√

n(θ̂n − θ0)
D−→ N (0, Σ).

Here Σ = I(θ0)
−1Σ1I(θ0)

−1, and

Σ1 = (cov (Γi(X11, . . . , Xd1), Γk(X11, . . . , Xd1)))i,k=1,...,q ,

Γi(z1, . . . , zd) =

∫∫

[0,1]d

d∑

j=1

Gij(t)1(Fj(zj) ≤ tj) dC(t) + Ḡi(F1(z1), . . . , Fd(zd)).

This result was provided in Chen and Fan ([1], Proposition 2) for εn = 0, but
the proof uses Lemma 1(c) which is problematic as mentioned above. Similarly to
Genest et al. [5], one can use the following estimator for Σ1:

(
Σ̂1

)
i,j

=
1

n − 1

n∑

k,l=1

(
Γ̂i(Ynk) − Γ̄i

)(
Γ̂j(Ynl) − Γ̄j

)
,

Γ̂i(z1, . . . , zd) =
1

n

n∑

k=1

d∑

j=1

Gij(Ynk | θ̂n) I(zj ≤ Ynjk) + Ḡi(F1(z1), . . . , Fd(zd)).

3. MINIMUM DISTANCE ESTIMATORS

Let X1, . . . , Xn be the sample of random vectors as in the previous section. Consider
the family F◦

= (Cθ)θ∈Θ of copulas where θ Ã Cθ = C(u | θ) is continuous
for all u ∈ [0, 1]d. We denote the marginal empirical joint distribution function
by Ĥn. Let Fn(x) = (F1n(x1), . . . , Fdn(xd))

T with Fnj as in the previous section,
F (x) = (F1(x1), . . . , Fd(xd))

T for x = (x1, . . . , xd)
T ∈ Rd, and

Φn(θ) =
1

n

n∑

i=1

(
Ĥn(Xi) − C(Fn(Xi) | θ)

)2

=

∫

Rd

(
Ĥn(x) − C(Fn(x) | θ)

)2

dĤn(x).

Further we introduce

Φ(θ) =

∫

Rd

(H(x) − C(F (x) | θ))
2

dH(x).

The aim is to estimate the vector θ0 which minimises Φ. In this section we want to
study minimum distance estimators (MDE) θ̂n satisfying

Φn(θ̂n) ≤ min
θ∈Θ

Φn(θ) + εn,

where {εn} is a sequence of random variables with εn → 0 a.s. This estimator θ̂n is
not the exact minimiser of Φn but an approximate minimiser. The definition of the
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MDE differs significantly from that in the paper by Tsukahara [22] in the respect
that the calculation of multiple integrals is avoided. Tsukahara’s [22] estimator is
given by

θ̌ = arg min
θ∈Θ

∫

[0,1]d
(Cn(u) − C(u, θ))

2
du.

The following theorem provides the result about consistency of the MDE.

Theorem 3.1. Let Φ be continuous.

a) Then

lim
n→∞

d(θ̂n, Ψ) = 0 a.s.,

where Ψ = arg minθ∈Θ Φ(θ), d(·, ·) as in Theorem 2.1.

b) If in addition the condition

Φ(θ) > Φ(θ0) for all θ ∈ Θ\{θ0} (6)

(i. e. Ψ = {θ0}) is satisfied, then

lim
n→∞

θ̂n = θ0 a.s.

If C = C(· | θ0) ∈ F◦
is continuous, then the identifiability condition

C(· | θ) 6= C(· | θ0) for all θ 6= θ0

is sufficient for the assumption (6). The next Theorem 3 states that θ̂n is asymp-
totically normally distributed in the case Ψ = {θ0}. The following assumption on
partial derivatives of the copula is needed in this theorem.

Assumption A. C̄k(· | ·), C̄kl(· | ·), C̃j(· | ·), C̃jk(· | ·) denote the partial deriva-

tives ∂
∂θk

C(. | θ), ∂2

∂θj∂θk
C(· | θ), ∂

∂uj
C(u | ·), ∂2

∂θk∂uj
C(u | θ), respectively. We as-

sume that these derivatives exist, and for k, l = 1, . . . , q, j = 1, . . . , d, the functions
(u, t) Ã C̄kl(u | t), (u, t) Ã C̃jk(u | t) are continuous on [0, 1]d × U(θ0), where
U(θ0) ⊂ Θ is a neighbourhood of θ0. θ0 is an interior point of Θ.

Theorem 3.2. Assume that εn = o(n−1), Assumption A and the assumptions of
Theorem 3.1 b) are satisfied. Then

√
n(θ̂n − θ0)

D−→ N (0, Σ).

Here Σ = Σ−1
2 Σ1Σ

−1
2 , Σ1 = cov (Zi) , Zi = (Zij)j=1,...,q ,

γkj(x | θ0) = (H(x) − C(F (x) | θ0)) C̃jk (F (x) | θ0) − C̃j (F (x) | θ0) C̄k(F (x) | θ0),
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Zij =

d∑

j=1

∫

Rd

I
(
X

(j)
1 ≤xj

)
γkj(x | θ0) dH(x)+

∫

Rd

I (X1 ≤x) C̄k(F (x) | θ0) dH(x)

+ (H(X1) − C(F (X1) | θ0)) C̄k(F (X1) | θ0),

Σ2 = (Hij)i,j=1,...,q,

Hij =

∫

Rd

(
(H(x) − C(F (x) | θ0)) C̄ij(F (x) | θ0)

+ C̄i(F (x) | θ0)C̄j(F (x) | θ0)
)

dH(x).

Tsukahara [22] proved consistency and asymptotic normality for the estimator θ̌
in the case where the copula C of Xi belongs to a small neighbourhood of a member
of the parametric family. Since the covariance structure of the estimator is rather
complicated and the covariances are hard to estimate directly, it is recommended to
use alternative techniques like bootstrap to estimate the covariances.

4. PROOFS OF THE RESULTS OF SECTION 2

Let

Φ̄n(θ) =

∫

E

ψ(t, x) dPn(x), Φ̄(t) =

∫

E

ψ(t, x) dP (x)

for t ∈ Θ with a measurable function ψ : Θ × E → R. We assume that these
Lebesgue integrals exist. Pn and P are a random and respective a nonrandom
probability measure on E. Let θ̂n be an estimator satisfying

Φ̄n(θ̂n) ≤ min
θ∈Θ

Φ̄n(θ) + εn

and {εn} is a sequence of random variables with εn → 0 a.s. The following theorem
is a direct consequence of Theorem 2.2 in Lachout et al. [14].

Proposition 4.1. Suppose that Θ is a compact set, and for every θ, function
ψ(·, x) is lower semicontinuous at θ for all x except a set Vθ of P -measure zero.
Assume that

∫
E

inft∈Θ ψ(t, x) dP (x) > −∞,
∫

E
ψ(θ, x) dP (x) < +∞ for all θ ∈ Θ.

Let B(θ,R) = {t ∈ Θ : ‖t − θ‖ ≤ R}. Assume also that for any θ ∈ Θ\{θ0}, R > 0,

lim inf
n→∞

∫

E

inf
t∈B(θ,R)

ψ(t, x) dPn(x) ≥
∫

E

inf
t∈B(θ,R)

ψ(t, x) dP (x) a.s., (7)

lim sup
n→∞

∫

E

ψ(θ0, x) dPn(x) ≤
∫

E

ψ(θ0, x) dP (x) a.s. (8)

(a) Then

lim
n→∞

d(θ̂n,Ψ) = 0 a.s.
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where Ψ = arg minθ∈Θ

∫
E

ψ(θ, x) dP (x), d(·, ·) as above.

(b) Moreover, if in addition, Φ̄(θ) > Φ̄(θ0) holds for all θ ∈ Θ\{θ0}, then

lim
n→∞

θ̂n = θ0 a.s.

Throughout the remainder of this section, let the settings of Section 2 be valid.

P r o o f o f T h e o r em 2.1. Here Pn is a discrete measure with Pn({Yni}) =

n−1, Yni = (Fn1(X
(1)
i ), . . . , Fnd(X

(d)
i ))T ) and Pn([0, 1]d) = 1. Moreover, P is the

distribution measure of Ȳi = (F1(X
(1)
i ), . . . , Fd(X

(d)
i ))T . Let ψ(t, x) = − ln(ϕ(x | t)).

By the Glivenko–Cantelli theorem, we have

sup
z∈R

|Fnj(z) − Fj(z)| → 0 for j = 1 . . . d, ω ∈ Ω∗, P(Ω∗) = 1. (9)

Let ε,R > 0 and θ ∈ Θ\{θ0}. We use the notation D̃ := D\[0, 1]d and Eη = {x ∈
[0, 1]d : ∃y ∈ E : ‖x − y‖ ≤ η}. By the continuity of the Lebesgue measure there
exist an open set A ⊂ D such that P{Ȳi ∈ Ac} ≤ ε with Ac := [0, 1]d\A, and
lnϕ is continuous on the closed set Aη × Θ for some η > 0. In the following we
show that the assumptions of Proposition 4.1 are satisfied. Now lnϕ is uniformly
continuous on A1 ×Θ and supx∈[0,1]d supθ∈Θ ln (ϕ(x | θ)) = C1 < +∞. Now there is
a δ : 0 < δ < η such that

sup
t∈B(θ,R)

ln (ϕ(u1 | t)) < ln (ϕ(u1 | t0(u1))) +
ε

2

< ln (ϕ(u2 | t0(u1))) + ε

≤ sup
t∈B(θ,R)

ln (ϕ(u2 | t)) + ε, t0(u1) ∈ B(θ,R)

for all u1 ∈ [0, 1]d, u2 ∈ A with ‖u1 − u2‖ < δ. Hence, by the strong law of large
numbers and (9),

lim sup
n→∞

1

n

n∑

i=1

sup
t∈B(θ,R)

ln (ϕ(Yni | t))

≤ lim sup
n→∞

1

n

n∑

i=1

sup
t∈B(θ,R)

ln (ϕ(Yni | t)) I(Ȳi ∈ A)

+C1 lim sup
n→∞

1

n

n∑

i=1

I(Ȳi ∈ Ac)

≤ lim sup
n→∞

1

n

n∑

i=1

sup
t∈B(θ,R)

ln
(
ϕ(Ȳi | t)

)
I(Ȳi ∈ A)

+C1P{Ȳi ∈ Ac} + ε

≤ E sup
t∈B(θ,R)

ln
(
ϕ(Ȳi | t)

)
+ ε(C1 + 1)
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for n ≥ n0(ω), ω ∈ Ω∗∗ ⊂ Ω∗, P(Ω∗∗) = 1. Now we obtain (7) by letting ε → 0.
Inequality (8) can be shown in a similar way. Theorem 2.1 follows now from Propo-
sition 4.1. 2

Next we prove asymptotic normality of the MLE. In this proof we need the asymp-

totic normality of the random vector ∇θΦn(θ0) =
(

1
n

∑n
`=1

∂
∂θi

ln (ϕ(Ynl | θ))
)

i=1,...,q

which will be shown in the next lemma.

Lemma 4.1. Under the conditions of Theorem 2.2, we have

√
n∇θΦn(θ0)

D−→ N (0, Σ1)

with the covariance matrix Σ1 introduced in Theorem 2.2.

P r o o f . Remember that Ḡi(u) = ∂
∂θi

ln (ϕ(u | θ))
∣∣∣
θ=θ0

. Obviously, we have

E Ḡi(Ȳl) =

∫
∂

∂θi
ln (ϕ(y | θ))ϕ(y) dy

∣∣∣∣
θ=θ0

=
∂

∂θi
Φ(θ0) = 0.

We obtain

√
n

∂

∂θi
Φn(θ0) =

1√
n

n∑

l=1

∂

∂θi
ln (ϕ(Ynl | θ))

∣∣∣∣
θ=θ0

= Ani + Bni for i = 1, . . . , q,

where

Ani =
1√
n

n∑

l=1

(
Ḡi(Ynl) − Ḡi(Ȳl)

)
, Bni =

1√
n

n∑

l=1

Ḡi(Ȳl).

By the strong law of large numbers,

1

nδ

n∑

l=1

∣∣M(Ȳl)
∣∣ → 0 a.s. for δ > 1.

Thus

Ani =
1√
n

n∑

l=1

d∑

j=1

Gij(Ȳl)
(
Fnj(X

(j)
l ) − Fj(X

(j)
l )

)

+
1√
n

n∑

l=1

d∑

j=1

(
Gij(Y

∗
nl) − Gij(Ȳl)

) (
Fnj(X

(j)
l ) − Fj(X

(j)
l )

)

=
1

n
√

n

d∑

j=1

n∑

l=1

n∑

k=1

Gij(Ȳl)
(
I(X

(j)
k ≤ X

(j)
l ) − Fj(X

(j)
l )

)
+ o(1) a.s.,
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where Gij(u) = ∂2

∂θi∂uj
ln (ϕ(u | θ))

∣∣∣
θ=θ0

and Y ∗
nl = Ȳl + η(Ynl − Ȳl), η ∈ (0, 1). Now

we consider the convergence in distribution of

Dn =
√

n

q∑

i=1

λi
∂

∂θi
Φn(θ0)

=
1

n
√

n

q∑

i=1

λi




d∑

j=1

n∑

l=1

n∑

k=1

Gij(Ȳl)
(
I(X

(j)
k ≤ X

(j)
l ) − Fj(X

(j)
l )

)

+(n − 1)
n∑

l=1

(
Ḡi(Ȳl) − E Ḡi(Ȳl)

)
)

+ o(1)

=
1

n
√

n

n−1∑

l=1

n∑

k=l+1

κ(Xk, Xl) + o(1) a.s. for λi ∈ R,

where

κ(x̄1, x̄2) =

q∑

i=1

λi




d∑

j=1


Gij(F1(x̄12), . . . , Fd(x̄d2)) (1(x̄j1 ≤ x̄j2) − Fj(x̄j2))

+Gij(F1(x̄11), . . . , Fd(x̄d1)) (1(x̄j2 ≤ x̄j1) − Fj(x̄j1))




+Ḡi(F1(x̄11), . . . , Fd(x̄d1)) − E Ḡi(Ȳ1)

+ Ḡi(F1(x̄12), . . . , Fd(x̄d2)) − E Ḡi(Ȳ1)




and x̄k = (x̄1k, . . . , x̄dk)T . Obviously, κ is symmetric,

Eκ(x̄1, X1) =
d∑

i=1

λi




∫

[0,1]d

d∑

j=1

(Gij(t) (1(Fj(x̄j1) ≤ tj) − tj)) dC(t)

+ Ḡi(F1(x̄11), . . . , Fd(x̄d1)) − E Ḡi(Ȳ1)




and Eκ(X1, X2) = 0. Applying a central limit theorem for U -statistics (cf. Theorem
A in Serfling [19], p. 192) and the Cramér–Wold device, we obtain the asymptotic
normality of

√
n∇θΦn(θ0). ¤

P r o o f o f Th e o r em 2.2. Let θ̃n = arg maxθ∈Θ Φn(θ). The Taylor expansion
leads immediately to

θ̃n − θ̂n = oP(n−1/2). (10)
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We define the q × q-matrix

Wn(θ) =
1

n

(
∂2

∂θi∂θj

n∑

l=1

ln
(
ϕ(Ȳl | θ)

)
)

i,j=1,...,q

with Ȳl as above. By the definition of the estimator, ∇θΦn(θ̃n) = 0. Using the mean
value theorem, we obtain

−∇θΦn(θ0) = W ∗
n

(
θ̃n − θ0

)
,

where W ∗
n = 1

n

(
∂2

∂θi∂θj

∑n
l=1 ln (ϕ(Ynl | θ))

∣∣∣
θ=θ∗

in

)

i,j=1,...,q

. Here, θ∗
n1, . . . , θ

∗
nq are

random variables with θ∗
nj = θ0 + (θ̃n − θ0)ηj , ηj ∈ (0, 1). By Theorem 2.1, θ∗

nj →
θ0 a.s.for all j. Further

√
n

(
θ̃n − θ0

)
= −W ∗−1

n

(√
n ∇θΦn(θ0)

)
. (11)

In the sequel we show that

W ∗
n − Wn(θ0)

P−→ 0 and (12)

W ∗
n

P−→ −I(θ0). (13)

The quantity (W ∗
n)ij denotes the entry of matrix W ∗

n in the ith row and the jth
column. Let ε > 0 and i, j ∈ {1, . . . , q} arbitrary. Applying the triangle inequality,
we can derive

|(W ∗
n)ij − (Wn(θ0))ij |

≤ 1

n

n∑

l=1

∣∣∣∣∣

(
∂2

∂θi∂θj
ln (ϕ(Ynl | θ))

∣∣∣∣
θ=θ∗

ni

− ∂2

∂θi∂θj
ln (ϕ(Ynl | θ))

∣∣∣∣
θ=θ0

)∣∣∣∣∣

+
1

n

n∑

l=1

∣∣∣∣∣

(
∂2

∂θi∂θj
ln (ϕ(Ynl | θ))

∣∣∣∣
θ=θ0

− ∂2

∂θi∂θj
ln

(
ϕ(Ȳl | θ)

)∣∣∣∣
θ=θ0

)∣∣∣∣∣

≤
√

d
1

n

n∑

l=1

H(Ȳl) ‖θ∗
ni − θ0‖ +

√
d

1

n

n∑

l=1

H(Ȳl) ‖Ynl − Ȳl‖.

The right hand side of this inequality tends to zero almost surely in view of (9).

Hence (12) is valid. We apply the law of large numbers to obtain Wn(θ0)
P−→ −I(θ0).

Together with (12), it follows that (13) holds true. Since I(θ0) is positive definite,
its inverse matrix I(θ0)

−1 exists and we have

W ∗
n

−1 P−→ −I(θ0)
−1. (14)

Let Y ∼ N (0, Σ1). Combining Lemma 4.1, (10), (11) and (14), we obtain

√
n

(
θ̂n − θ

) D−→ −I(θ0)
−1Y

which completes the proof. 2
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5. PROOFS OF THE RESULTS OF SECTION 3

Let Φ̄n : Θ → R, and θ̂n be an estimator satisfying

Φ̄n(θ̂n) ≤ min
θ∈Θ

Φ̄n(θ) + εn.

Here {εn} is a sequence of random variables with εn → 0 a.s. Theorem 2.2 of the
paper Lachout et al. [14] leads to the following proposition.

Proposition 5.1. Assume that Θ is compact, and lim
n→∞

supt∈Θ

∣∣Φ̄n(t) − Φ̄(t)
∣∣ = 0

a.s. holds for a continuous function Φ̄.

(a) Then

lim
n→∞

d(θ̂n, Ψ) = 0 a.s.,

where Ψ = arg mint∈Θ Φ̄(t), d(·, ·) as above.

(b) Moreover, if in addition, Φ̄(θ) > Φ̄(θ0) holds for all θ ∈ Θ\{θ0}, then

lim
n→∞

θ̂n = θ0 a.s.

Let Φ̄n = Φn and Φ̄ = Φ with Φn and Φ as in Section 3. The following lemma
concerns the justification of the assumptions of Proposition 5.1.

Lemma 5.2. Assume that Θ is compact. Then

lim
n→∞

sup
t∈Θ

|Φn(t) − Φ(t)| = 0 a.s.

P r o o f . Utilising the Lipschitz continuity of copulas, we obtain

sup
t∈Θ

|Φn(t) − Φ(t)|

≤ sup
t∈Θ

∫

Rd

(
Ĥn(x) + H(x) + C(Fn(x) | t) + C(F (x) | t)

)

∣∣∣Ĥn(x) − H(x) − C(Fn(x) | t) + C(F (x) | t)
∣∣∣ dĤn(x) + Rn

≤ 4 sup
x∈Rd

∣∣∣Ĥn(x) − H(x)
∣∣∣ + 4 sup

t∈Θ,x∈Rd

|C(Fn(x) | t) − C(F (x) | t)| + Rn

≤ 4 sup
x∈Rd

∣∣∣Ĥn(x) − H(x)
∣∣∣ + 4

d∑

i=1

sup
x∈Rd

|Fni(x) − Fi(x)| + Rn,
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where Rn = supt∈Θ

∣∣∣
∫

Rd (H(x) − C(F (x) | t))
2

d(Ĥn(x) − H(x))
∣∣∣. By the strong

uniform ergodic theorem,

sup
x∈Rd

∣∣∣Ĥn(x) − H(x)
∣∣∣ → 0, sup

x∈Rd

|Fni(x) − Fi(x)| → 0,

Rn → 0 a.s.

This completes the proof. ¤

P r o o f o f Th e o r em 3.1. Theorem 3.1 is a direct consequence of Proposi-
tion 5.1 and Lemma 5.2. 2

Let θ̃n = arg minθ∈Θ Φn(θ). Throughout the remainder of this section we suppose
that Assumption A is satisfied. Since ∇θfn(θ̃n) = 0, we can derive

∇θfn(θ0) = −Hn(t∗)
(
θ̃n − θ0

)
, (15)

where t∗ = θ0 + η
(
θ̃n − θ0

)
, η ∈ (0, 1), Hn(θ) = (Hnij(θ))i,j=1,...,q,

∇θfn(θ) = 2

∫

Rd

(
Ĥn(x) − C(Fn(x) | θ)

)
∇θC(Fn(x) | θ) dĤn(x),

Hnij(θ) = 2

∫

Rd

(
Ĥn(x) − C(Fn(x) | θ)

)
C̄ij(Fn(x) | θ) dĤn(x)

+2

∫

Rd

C̄i(Fn(x) | θ)C̄j(Fn(x) | θ) dĤn(x).

Next we show the asymptotic normality of ∇θfn(θ0) and that Hn(t∗) converges in
probability to a certain matrix. The following four lemmas are used in the proof of
asymptotic normality.

Lemma 5.3. We have

Qnk :=
√

n

∫

Rd

(
Ĥn(x) − H(x)

)
C̄k(F (x) | θ0) d

(
Ĥn(x) − H(x)

)
P−→ 0

for k = 1, . . . , q.

P r o o f . Let

κ(x, y) = (1(y ≤ x) − H(x)) C̄k(F (x) | θ0)

−
∫

Rd

(1(y ≤ z) − H(z)) C̄k(F (z) | θ0) dH(z) .
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Note that

Qnk = n−3/2
n∑

i=1

n∑

j=1


(I(Xj ≤ Xi) − H(Xi)) C̄k(F (Xi) | θ0)

−
∫

Rd

(I(Xj ≤ x) − H(x)) C̄k(F (x) | θ0) dH(x)

)

= Q̄nk + O(n−1/2) a.s.,

where

Q̄nk = n−3/2
n−1∑

i=1

n∑

j=i+1

(κ(Xi, Xj) + κ(Xj , Xi)) .

Further

E (κ(x,X) + κ(X,x)) =

∫

Rd

(1(y ≤ x) − H(x)) dH(y)C̄k(F (x) | θ0)

−
∫

Rd

∫

Rd

(1(y ≤ z) − H(z)) C̄k(F (z) | θ0) dH(z) dH(y)

= 0.

Using Lemma 5.2.1A of Serfling [19], we obtain

var (Q̄nk) = O(n−1).

This completes the proof. ¤

Lemma 5.4. We have Tnk
P−→ 0 for k = 1, . . . , q, where

Tnk :=
√

n

∫

Rd

(C(Fn(x) | θ0) − C(F (x) | θ0)) C̄k(F (x) | θ0) d
(
Ĥn(x) − H(x)

)
.

P r o o f . Observe that
Tnk = Tn1k + Tn2k,

where

Tn1k =
√

n

d∑

l=1

∫

Rd

C̃l(F (x) | θ0) (Fnl(xl) − Fl(xl)) C̄k(F (x) | θ0) d
(
Ĥn(x) − H(x)

)
.

We introduce δn := maxl=1,...,d supz∈R |Fnl(z) − F (z)|. Further

|Tn2k| ≤ √
n

d∑

l=1

sup
v,w∈Rd:‖v−w‖≤dδn

∣∣∣C̃l(v | θ0) − C̃l(w | θ0)
∣∣∣ · δn = oP (1) .
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Let

κ(x, y) =
d∑

l=1

(1(yl ≤ xl) − Fl(xl)) C̄k(F (x) | θ0)C̃l(F (x) | θ0)

−
d∑

l=1

∫

Rd

(1(yl ≤ zl) − Fl(zl)) C̄k(F (z) | θ0)C̃l(F (z) | θ0) dH(z) .

Hence

Tn1 = n−3/2
n−1∑

i=1

n∑

j=i+1

(k(Xi, Xj) + k(Xj , Xi)) .

Further

E (κ(x,X) + κ(X,x)) =

∫

Rd

d∑

l=1

(1(yl ≤ xl) − Fl(xl)) dH(y)C̄k(F (x) | θ0)C̃l(F (x) | θ0)

−
∫

Rd

∫

Rd

d∑

l=1

(1(yl ≤ zl) − Fl(zl))

C̄k(F (z) | θ0)C̃l(F (z) | θ0) dH(z) dH(y)

= 0.

By virtue of Lemma 5.2.1A of Serfling [19], we obtain

var (Tn1k) = O(n−1),

which proves the lemma. ¤

Analogously to the preceding lemma, one proves the following lemma.

Lemma 5.5. We have Un
P−→ 0 where

Un :=
√

n

∫

Rd

(H(x) − C(F (x) | θ0))

×
(
C̄k(Fn(x) | θ0) − C̄k(F (x) | θ0)

)
d(Ĥn(x) − H(x)).

Lemma 5.6. We have
√

n∇θfn(θ0)
D−→ N (0, Σ2),

where Σ2 as in Theorem 3.2.

P r o o f . Note that
∫

Rd

(H(x) − C(F (x) | θ0)) C̄k(F (x) | θ0) dH(x) = 0 for k = 1, . . . , q.
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Observe that

∇θfn(θ0) =

4∑

i=1

Ani + Bn,

where

An1 :=

∫

Rd

(
Ĥn(x) − H(x) − C(Vn(x) | θ0) + C(F (x) | θ0)

)

(∇θC(Fn(x) | θ0) − ∇θC(F (x) | θ0)) dĤn(x)

An2 :=

∫

Rd

(
Ĥn(x) − H(x)

)
∇θC(F (x) | θ0) d(Ĥn(x) − H(x)),

An3 :=

∫

Rd

(C(F (x) | θ0) − C(Fn(x) | θ0))∇θC(F (x) | θ0) d(Ĥn(x) − H(x)),

An4 :=

∫

Rd

(H(x)−C(F (x) | θ0)) (∇θC(Fn(x) | θ0)−∇θC(F (x) | θ0)) d(Ĥn(x)−H(x)),

Bn :=

∫

Rd

(H(x) − C(F (x) | θ0)) (∇θC(Fn(x) | θ0) − ∇θC(F (x) | θ0)) dH(x)

+

∫

Rd

(
Ĥn(x) − C(Fn(x) | θ0)

)
∇θC(F (x) | θ0) dH(x)

+

∫

Rd

(H(x) − C(F (x) | θ0))∇θC(F (x) | θ0) d(Ĥn(x) − H(x)).

By the law of iterated logarithm, we obtain

|An1| ≤
∫

Rd




∣∣∣Ĥn(x) − H(x)
∣∣∣ +

d∑

j=1

sup
z∈R

|Fni(z) − Fi(z)|




‖∇θC(Fn(x) | θ0) − ∇θC(F (x) | θ0)‖ dĤn(x)

= O(ln lnn/n) a.s.

Using Lemmas 5.3 to 5.5, we obtain

|An2| = oP(n−1/2), |An3| = oP(n−1/2), |An4| = oP(n−1/2).

Further we deduce

tT Bn =
1√
n

n∑

i=1

q∑

k=1

tk




d∑

j=1

∫

Rd

(
I

(
X

(j)
i ≤ xj

)
− Fj(xj)

)
γkj(x | θ0) dH(x)

+

∫

Rd

(I (Xi ≤ x) − H(x)) C̄k(F (x) | θ0) dH(x)

+ (H(Xi) − C(F (Xi) | θ0)) C̄k(F (Xi) | θ0)

−
∫

Rd

(H(x) − C(F (x) | θ0)) C̄k(F (x) | θ0) dH(x)

)
+ B̄n
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for t = (t1, . . . , tq)
T ∈ Rq. Further

∣∣B̄n

∣∣ ≤ √
n

q∑

k=1

d∑

j=1

|tk|
(

sup
v,w∈Rd:‖v−w‖≤dδn

∣∣∣C̃jk(v | θ0) − C̃jk(w | θ0)
∣∣∣ · δn

sup
v,w∈Rd:‖v−w‖≤dδn

∣∣∣C̃j(v | θ0) − C̃j(w | θ0)
∣∣∣
∣∣C̄k(F (x) | θ0)

∣∣
)

= oP (1)

with δn as in Lemma 5.4. The lemma follows by applying the central limit theorem
and the Cramér–Wold device. ¤

Lemma 5.7. We obtain
Hnij(t

∗)
P−→ Hij(θ0)

with Hij as in Section 3.

P r o o f . We deduce

Hnij(t
∗) =

∫

Rd

(H(x) − C(F (x) | θ0))
∂2

∂θi∂θj
C(Fn(x) | t∗) dĤn(x)

+

∫

Rd

C̄i(F (x) | θ0)C̄j(F (x) | θ0) dĤn(x) + oP(1)

=

∫

Rd

(H(x) − C(F (x) | θ0))
∂2

∂θi∂θj
C(F (x) | θ0) dĤn(x)

+

∫

Rd

C̄i(F (x) | θ0)C̄j(F (x) | θ0) dĤn(x) + oP(1).

The lemma follows by applying the law of large numbers. ¤

P r o o f o f Th e o r em 3.2. Note that θ̃n − θ̂n = oP(n−1/2). By (15), an
application of Lemmas 5.6 and 5.7 leads to Theorem 3.2. ¤
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