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YANG-MILLS BAR CONNECTIONS
OVER COMPACT KAHLER MANIFOLDS

HONG VAN LE

ABSTRACT. In this note we introduce a Yang-Mills bar equation on complex
vector bundles E provided with a Hermitian metric over compact Hermitian
manifolds. According to the Koszul-Malgrange criterion any holomorphic
structure on E can be seen as a solution to this equation. We show the
existence of a non-trivial solution to this equation over compact Ké&hler
manifolds as well as a short time existence of a related negative Yang-Mills
bar gradient flow. We also show a rigidity of holomorphic connections among
a class of Yang-Mills bar connections over compact Kéahler manifolds of
positive Ricci curvature.

1. INTRODUCTION

Let M?" be a compact Hermitian manifold of real dimension 2n and E be a
complex vector bundle over M?". The following Koszul-Malgrange criterion [6],
see also [2], 2.1.53, 2.1.54], establishes the equivalence between the existence of a
holomorphic structure on E and a partial flatness of E.

Koszul-Malgrange criterion. A complex vector bundle E over a complex mani-
fold M?™ carries a holomorphic structure, if and only if there is a connection A on
E such that the (0,2)-component Fg’2 of the curvature Fq of A vanishes.

Thus we call a connection A satisfying the Koszul-Malgrange criterion a holomor-
phic connection. It is well-known (see e.g. [2]) that we can replace the connection A
in the Kozsul-Malgrange criterion by a unitary connection A for any given choice
of a compatible (Hermitian) metric h on E.

We introduce in Section [2] (see (2.5.1)) and (2.5.2])) a Yang-Mills bar equation as
the Euler-Lagrange equation for the Yang-Mills bar functional which is the square
of the Ly-norm of the (0,2)-component F3 of a unitary connection A on (E, h).
Solutions of a Yang-Mills bar equation are called Yang-Mills bar connections. The
Yang-Mills bar equation has an advantage over the equation for a holomorphic
connection, because the later one is overdetermined if the complex dimension of
the bundle is greater or equal to 2 and n > 4, and the first one is elliptic modulo a
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degeneracy which is formally generated by an action of the complex gauge group of
the complex vector bundle E (the degeneracy is formal generated since the action
of this group on the “small” space does not preserve the Yang-Mills bar functional,
see 2.7.b and Remark . Thus we hope that by using this equation we will
be able to find useful sufficient conditions under which a complex vector bundle
carries a holomorphic structure. Appropriate sufficient conditions for the existence
of a holomorphic structure on complex vector bundles over projective algebraic
manifolds could be a key step in solving the Hodge conjecture, if the conjecture
is correct. A particular result in this direction is our Theorem which states
that an almost holomorphic connection over a compact Kahler manifold of positive
Ricci curvature is holomorphic, in particular any Yang-Mills bar connection on a
4-dimensional compact Kéhler manifold of positive Ricci curvature is holomorphic.

In Section [2] after introducing the Yang-Mills equation we also discuss the sym-
metry of this equation in In Section 3 we give a proof of the Hodge-Kahler
identities for general unitary connections over K&hler manifolds and show the
existence of non-trivial Yang-Mills bar connections. In Section [4] we derive a
Bochner-Weitzenbdck type identity on compact Kéahler manifolds and prove Theo-
rem In Section [5] we introduce the notion of affine integrability condition, a
negative Yang-Mills bar gradient flow and find an affine integrability condition
for this flow (Theorem . Unlike previously known cases for weakly parabolic
equations (Ricci flow, Yang-Mills flow), our affine integrability is not derived from
an action of a group, which preserves the Lagrangian on the space, where our flow is
considered (see 2.7.b and Remark ) The automorphism group of the Yang-Mill
bar equation gives us only "half" of the integrability condition. In particular, the
DeTurck approach to weakly parabolic equations seems inapplicable to our flow. In
the last Section [6] we prove the short time existence, uniqueness and smoothness
of a solution of an evolution equation with affine integrability condition, slightly
extending a Hamilton’s result.

Let (V,(,)) be a Euclidean space. Denote by V¢ its complexification. Then
(,) extends uniquely to a complex bilinear form {,)c: V¢ x Vg — C. Denote by
(v,w) := (v, w)¢ the associated Hermitian form on V¢ and by (v, w) = Re(v,w)
the Euclidean metric on the space (V) ® R. We note that the restriction of this
metric to V' coincides with the original metric (,). Conversely any Hermitian
metric (J-invariant Euclidean metric) on a complex space (V,J) considered as a
complexification of a real vector space Vj is obtained in this way.

In this note we define by the same (,) (and resp. (,)) the Hermitian form (resp.
the Euclidean metric) extended in the above way from any vector bundle (E, (,))
provided with a fiber-wise Euclidean metric (,) to its complexification F¢ (resp.
considered as a real space). If A is a connection on (E, (,)) then A can be extended
to a unitary connection also denoted by A on the complexification E¢ with that

extended metric by setting da(v/—1¢) := v/ —1da(¢).
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2. YANG-MILLS BAR EQUATION

Now let A be a connection on a complex vector bundle (E,J) over a Her-
mitian manifold M?". Denote by QP4(E) the space of E-valued (p, q)-forms on
M?": QP4(E) = QP9(M) @c E. We have the decomposition

da =04 ®0a: QE) - Q"(E) 6 Q" (E).
In general we have the inclusion
da(@P9(E)) C PFHI(E) & QP (B),
since for ¢ € QY(E) and ¢ € QP9(M?") we have
da(Y ® ¢) =da() ® ¢+ ¥ @ dg € QTHIE) & QPITH(E)

(The operator d4 is well defined on Q79(E), since da(Jy) = Jda(y).) For ¢ €
OP4(E) we denote by d4(¢) the projection of da(¢) on the first factor and by
04(¢) the projection on the second factor w.r.t. the above decomposition.

We note that the curvature F4 € Q?(End; E) of A can be considered as an
element in Q2 (End;(E)).

Let (E,h) be a Hermitian vector bundle, i.e. a complex vector bundle (FE,J)
provided with a Hermitian metric h but £ need not to be holomorphic. There is a
natural (Killing) metric on the space ug of skew-Hermitian endomorphisms of E,
defined by (61, 602) = — Re Tr(6; - 02). We can also write Endy E = ug ® v/—1lug.
Thus the metric h extends to a positive definite bilinear form on End; E (defined
by (01,62) = Re Tr(6; - 63)). Here 0 is the conjugate transpose of 6, the adjoint
of 6 w.r.t. the unitary metric h. We note that this metric is invariant under the
original complex structure on End;(E) induced by J which we denoted above by
multiplication with v/—1. Hence by the remark at the beginning of the section,
this metric extends to a metric on the space Q(’[“:(End J E) by combining the Killing
metric with the Hermitian metric on M?". The decomposition QX (End; E) =
> gk P9(End; E) is an orthogonal decomposition w.r.t. this metric.

If A is a unitary connection on (E,h), then Fa € Q?(ug) C Q*(End; E). We
also note that in the decomposition for the curvature of unitary connection A:

FA — (FA)Q,O + (FA)l,l + (FA)O’Z

we have (F4)%2 = —((F4)*°)*. The Kozsul-Malgrange criterion suggests us to
consider the following Yang-Mills bar functional on the space of all unitary connec-
tions A on (E,h) over M?"

M) = /2 [ .
M2n
It is easy to see that the functional Y M? is invariant under the gauge trans-
formation of the Hermitian vector bundle (E,h). Let us derive the first varia-
tion formula for the Yang-Mills bar equation. First we extend the usual Hodge
operator *: QP(M?") — Q2=P(M?") to *: QP(End; E) — Q*""P(End; E) de-
fined as follows. We extend *: QP(End; E) — Q?""P(End; E) so that for each
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a € Qf(End; F) and § € Q% (End; E) we have
(2.1) (a(x), B(x)) = { vol, M*" a(z) AD (%8(x))) .

Here A() denotes the composition of the wedge product with the contraction of
the coefficients in End; E via the natural Hermitian form (,) on End; E.

Next we note that A induces naturally a connection, also denoted by A, on
the Hermitian vector bundle End; E provided with the metric described above.
It is known that the curvature F4 of this induced connection acts on the space
Q°(End; E) as follows

(2.2) Fu(¢p) = FaNg:=[Fa,¢],

see e.g. [1, (2.7)]. (The wedge product of differential forms with coefficients in a
Lie algebra bundle is the composition of the wedge product and the Lie bracket).

Now we define the operator 9%: QP4(End; E) — QP%1(End; E) as follows
(see also [5, Chapter III, (2.19)], or [3, Chapter 1, §2], for the case that F is absent)

(2.3) (0%)BP9 := (—1)%0 %3P .
Using the following identity for the formal adjoint d% of d4 on an even dimensional

manifold M?" (see e.g. [1, (2.27)], for the real case, the complex case can be proved
by the same way by using the Stocks formula locally):

()8 = (—1)*da*3
and taking into account (2.3 which implies that 5:‘2‘ is the component with correct
bi-degree of d%, we conclude that 9% is the formal adjoint of 94. Now using the

formula (Faitq)%? = (Fa)%? +t04a%" +1t2a%' Aa®' and taking into account (2.2))
we get immediately

Lemma 2.4. Let M?" be a compact Hermitian manifold with (possibly empty)
boundary. The first variation of the Yang-Mills bar functional is given by the
formula

4 YMP(A+ta) = /

3 \x 70,2 ) = 0,2
dt =0 M2"<(8A) Fy7,a) +/ (volg,a AL *F 7).

OM?2n

We call a smooth unitary connection A a Yang-Mills bar connection, if it satisfies
the following two conditions

(2.5.1) (04)*F3° =0,
(2.5.2) (*F3*)jopzn = 0.

Let Ag = 5,4(5,4)* + (5,4)*5,4. Using the Bianchi identity éAFg’Q = 0, which
follows from the usual Bianchi identity, and using the equality (vol,,a AG) xb) =
(volg, b AG) *a), we conclude that we can replace in the system of two
equations (2.5.1)) and (2.5.2)) by the following condition

(2.6.1) A9 (Fu)22% =0,

to get an equivalent system of equations.
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2.7. Symmetries of the Yang-Mills bar equation. a) We can vary the
Yang-Mills bar functional among all compatible Hermitian metrics ' on (E, J)
in order to get an invariant of the complex vector bundle E. Let A; be a family
of unitary connections w.r.t. a compatible metric h;. We note that we can write
hi = g¢(h), where g; is a (complex) gauge transformation of (E, J). Clearly (g;) Ay
is a unitary connection w.r.t. h ( ie. d(g,)-14,h = 0). Now we have Fg’f =
Adg, F 0-2 . Moreover

(g¢) 71 Ay
(2.7.1) ||F,2;2 hy = ||Adg_t1F,g;2| h = ||F(Og’f)—1(,4t)||h~

(We can get (2.7.1)) easily by noticing that the inner products on End; E induced
by h and g(h) satisfy the following relation

(A, B)gy = Y (A(g(e:), B(g(e:))gny = D _(Ady-1 A(e;), Ady-1 B(e;))n

i i

where e; is an orthonormal basis in F w.r.t. h.)

Hence the infimum of the Yang-Mills bar functional is a constant which does
not depend on the unitary metric h.

b) The linearization of the Yang-Mills bar equation is not elliptic because the
equation is invariant under the gauge group G(E,h) of (E,h), see . The
complexification of this group is the gauge group G(E). This complexified group
acts also on the space A(F, h) of all unitary connections w.r.t. a fixed compatible
metric h [2, (6.1.4)]. For g € G(E) we denote by § the new (non-canonical) action
of g on A(FE, h) defined as follows

Jy(ay = 909" =04 — (0ag)g™",
D1y =0+ [(0ag)g™ "

Though this action of G(E) does not preserve the Yang-Mills bar functional,
infinitesimally it fails to do it at a connection A only by a quadratic term in Fg’Q

(see (5.3)).

3. YANG-MILLS BAR CONNECTIONS OVER COMPACT KAHLER MANIFOLDS

Suppose that A is a unitary connection on a Hermitian vector bundle F over a
Kihler manifold M?" with a Kihler form w. As before denote by 07 the formal
adjoint of 94 : QP1(E) — QP9t1(E) defined by (2.3)), and by 9% the formal adjoint
of da: OP4(E) — QPTLY(E) defined in the same way.

Denote by A: QP4(E) — QP~1971(E) the adjoint of the wedge multiplication
by w, an algebraic operator. The following Hodge-Kahler identities

(3.1) 94 = V1[04, Al
(3-2) 94 = —V~1[0a, Al

are well-known for the case of a holomorphic bundle E and A being a unitary

holomorphic connection [5, Chapter III, (2.39)], or [3| Chapter 0, §7, Chapter 1,
§2], where they are called the Hodge identities. These identities have been called
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Kiébhler identities in [2, §6.1]. We give a proof of the general case here, assuming
the validity of and for unitary holomorphic connections A.

Note that it suffices to prove these identities locally, so we can assume that the
bundle is U(n)-trivial and 94 = 0+ A"Y, where A*0 =" | A,dz;, A; € End;(E).
Similarly 94 = 0 + A%! with AM0 = 3"  —(A;)*dz;. Here we define 9 and 0
to be the (1,0) and (0,1) components of the unique unitary connection which is
compatible with the trivial holomorphic structure.

Since the Hodge-Ké&hler identities are valid for A = 0, it is easy to see that
and are equivalent to following algebraic identities

(3.3) [A%1]* = /=1[AY0 A],

(3.4) [AVO) = —/—1[A%1 A].
In view of the Hermitian linearity of LHS of (3.3]) and (3.4)):

(M ++yB)* = AA* + 4B*
for A,y € C, and taking into account the unitary of A which implies A10 = —(A%1)*
it suffices to prove these identities for a C-basic {A? = eijdz, | 1 < i, <
dimc E, 1 < k < dim¢ M?" = n} of (0,1)-forms in Q%! (End; F). Here e;; is an
elementary matrix in End ;(E). We also assume that the Kéhler metric at a given

point x is ), dz;dz;. Denote by i;, and i}, the adjoint of the multiplication operators
dzp\ and dzp A correspondingly. Then we have

[Al,O]* — (ejiik), [AO,l]* _ _(eijgk)
/=1 no
A= _T Tkl -
k=1

Substituting these identities in LHS of (3.3) and (3.4) we conclude that (3.3) and
(3.4) are equivalent to the following identities for all 4, j, k

(35) —(61']'516) = le[eijdzk, —g nglk} s
k=1

(36) (ejiik) = —\/jl[ - Ejidék, —g Z;klk] s
k=1

In their turn (3.5) and (3.6]) are immediate consequences of the following identities

(3.7) —Ek = %[dzk/\, kz_lgkik} .
(3.8) —1 = ;[dzk/\,;ikik} ,

To prove (3.7) (and (3.8) resp.) we compare the action of LHS of (3.7) (and of
(3.8) resp.) and the action of RHS of (3.7) (and of (3.8) resp.) on ¢ = dzj A dZk.
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We use the following formulas proved in p.112-113 of [3]

(39) ik(dZJ A dZK) = 0, if k ¢ J,
(310) ik(dzk/\dzj/\déx) =2dzy; Ndzg ,
(3.11) ip(dzg NdzZg) =0, if k¢ K,
(312) Ek(dék Ndzy N\ dEK) =2dzy Ndzg .

With help of (3.9)—(3.12) we get (3.7) immediately. It is easy to see that (3.8)) can
be obtained from (3.7) by changing the complex orientation.

Set A9 := Qa4 + 8404, N = 940% + 049

Corollaries 3.13. For ¢,v € Q"P(E) we have the following simple expressions

(3.13.1) D¢ = —V—1A04(0),
| WaE o) = [ —@i0.550)
M2n M2n B -
(3.13.2) + (040, 04v) — (949, 0a1)) .
More generally, for all ¢ € QP9(FE) we have
(3.13.3) (A) — AY)p = —V=I[FL A, Alg;
(3.13.4) Adp = %(A‘i +VEA[-F? 4+ FRO+ Y Ao,

Proof. 1) The first statement follows immediately from the Hodge-Kéahler identity

).
2) Substituting Fj"l = 0404 + 0404 we get

| WFIAFY ) = [ (VETAGa0+ 0400100

M?2n

Now applying the Hodge-Kéhler identities to this equation we get

| IR0 = [ (ET@an0s - VIO ) - [ (0h0a0n)

M2n M2n
(3.14) = /M2n<\/j1AaA¢7 i) +/M2n<3A¢,8A1/J> —/M2§5A¢, oat)

Using we get Corollary 3.13.2 immediately from .
3) Using the Hodge-Kéhler identities and , we get
—V=IAY = 0a(ADg — OaN) + (ADg — DaN)Da

(3.15) = 0aN0s — 040AN + ND4OA — OaNODA .
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In the same way we have
V=IAG = 04(ADA — OaN) + (MDA — DaN)Da
(3.16) = 5,4/\8,4 —5A8AA+A8A5A —8,4/\5,4.

Using the identities
—(8,45,4 + 5,48,4) = —Fj"l/\

we get from and
—V=I(AG =A%) = —[Fy'A AL
which yields immediately.
4) We have
AQ = (04 + 0a) (04 + T4) + (94 + 04)(9a + a)
(3.17) = A + A+ (0407 + 0405 + 0504 + 504)
Using the Hodge-Kéhler identity , and replacing 0494 by FZ’O/\, we get
(0407 + 0304) = —vV—104(AD4 — OaN) — V/—1(ADa — D4N)Da

(3.18) = V=1[F3A,A].
Similarly

(040" + 0%04) = —v/—104(0aN — ADx) — V—1(DaA — AD4)D 4
(3.19) = —V=1[F}?A A

Using Corollary (3.13.3)), we get from (3.17)), (3.18), (3-19)
A =208 — V=AFYIA A + V=I[FY?A, A] — V=1[F?A, A
which yields (3.13.4) immediately. O

Remark 3.20. Clearly (3.13.2)) follows directly from (3.13.3)). Furthermore, taking
into account (2.2]), we conclude that all the formulas in Corollaries (3.15]) are valid,

if we replace bundle E by bundle End; E.

Using Corollary , we observe that a connection A over a compact Kahler
manifold is Yang-Mills bar, iff AaAFg’Q = 0. We call a connection A almost
holomorphic, if 5‘AF2’2 = 0. Using the Bianchi identity 5‘AF2’2 = 0, we get that
0sF%2 =0, iff dAF2’2 = 0. Since Fj’o = f(Fg’Q)*, we observe that dAF2’2 =0,
iff d4F?° = 0. Using the Bianchi identity d4F4 = 0, we observe that A is almost
holomorphic, iff dFj"l =0.1If Fj"l = 0 we call A almost flat holomorphic connection.

If dimension of M equals 4, it is easy to check that

AIAFY? =0 = 9aF)° =0.

Thus any Yang-Mills bar connection over M* is an almost holomorphic connection.
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3.21. Existence of almost holomorphic connections. Let 7% be a 2-dimensional
complex torus with coordinates z; = x1 + v—1y1, 22 = T2 + vV—1ya. Let L
be a complex line bundle whose Chern class is represented by the cohomology
class ¢; of dzy A dzy + dz; N dzy. Let A be a unitary connection of L. Then
Fy = /—1(dzy ANdzo + dzy A dZs) + /—1da, where o € QY (T*). The new connec-
tion A’ = A — a has the curvature v/—1(dz; A dzs + dz; A dz), whose component
Fjl’,l vanishes. Thus A’ is an almost flat holomorphic connection. We observe that
by the Hodge theorem L carries no holomorphic structure.

The same argument provides us a differential-geometric proof of the Hodge
conjecture for Hodge classes of dimension 2.

To get an almost holomorphic connection in vector bundles of higher dimension
we can take the sum of line bundles or a tensor product of a complex line bundle
with a holomorphic vector bundles.

In the next section we show that if M?" is a Kahler manifold of positive Ricci
curvature, then any almost holomorphic connection is a holomorphic connection
(Theorem , in particular any almost flat holomorphic connection is a flat
connection.

In general, the Hodge theory implies that on any Hermitian complex line bundle
over a Kéahler manifold there is a Yang-Mills bar connection which realizes the
infimum of the Yang-Mills bar functional.

4. YANG-MILLS BAR EQUATION OVER COMPACT KAHLER MANIFOLDS
OF POSITIVE RICCI CURVATURE

Suppose that A is a unitary connection on a Hermitian vector bundle F over a

Kéhler manifold M?2". Let D be the Levi-Civita connection on 7% M?":
D: QY (M) — QY (M) @ T* M.

The connection D extends C-linearly to a connection also denoted by D: QL(M?") —
QL(M*™) @c TEM?™ =g QL(M?") ®g T*M?". Since M?" is Kihler, we have
Dy(¢ £ V—-1J¢) = Dy(¢) £ V/—1JD,(¢) for all v € TEM?" and for all ¢ €
Q0L (M2™). Tt follows that D(Q01(M?™)) C Q01 (M?™) @c T M?", and iterating
we have D(QOP(M?")) C QOP(M?") @c TiM?" for all p. Now we denote by D
the composition 7%! o D: QOP(M?") — QOP(M?") @c T M?", where 7! is
the projection to the corresponding component with (0, 1)-forms. Clearly for all
¢ € Q%P(M) the following formula holds

(4.1) Do ((b) = Dv0’1(¢) )
where v%'1 denotes the (0, 1)-component of v: v% = (1/2)(v 4+ /=1Jv). Similarly,
we use the notation v = (1/2)(v — v—=1Jv).

Combining D with d4: Q(E) — QO1(E), we define the following partial connec-
tion

Va: QOP(E) — T'(E @c A°PTEM*™ @c T M),
In view of (4.1) we have
Va=n%0o VAqor(k),



56 HONG VAN LE

where V 4 is the tensor product of d4 and D, which preserves the natural induced
metric on the bundle F ®¢ APTEMQ”:

Va: QUE) — T(E ®c APTEM" @c TEM?™).

In view of we also have V4 (Q0P(E)) C Q"P(E) @c TEM>".

For any element ¢ € QP(E) the expression ¢y, ... ., denotes the value of ¢ at
(v1,...,vp) € AP(T.M?™).

Now we define a basic zero order operator R4: QL(End; E) — QL(End; E) by
setting

2n
(4.2) RAS)x =Y _[(Fa)e, x:e,] € End, E,
j=1
where (e1,...,e,1k = Jeg,...,ea,) is a unitary basis of the tangent space T, M2

at the point x in question. We also regard F4 as an element in Q%( End,](E)).
Recall that the Ricci transformation Ric: T, M?" — T, M?" is defined by

Ric(X ZRX ;€5 s

where R denotes the curvature tensor of the Levi-Civita connection on the tangent
space TM?". We denote by the same Ric the C-linear extension of Ric from T}, M?2"
(6] (TxM2n)(C.
We modify this transformation by setting

Ric™ ZRX ej M2n)

Since J o R = Ro J, we have Ric™(X) = 7%! o Ric(X). Here 7! denotes the
projection on the (0, 1)-component.

Given ¢ € Q'(End; E) we define a new 1-form ¢oRic € Q! (End; E) by requiring
that for all X € TM we have

(¢ o Ric)x = PRric(x) -
We also define ¢ o Ric™ € Q'(End; E) by requiring that for all X € TM we have
(poRicT)x = dRic-(x) -
If p € Q¥1(End; E), it is easy to see that ¢ o Ric™ = ¢ o Ric.

Lemma 4.3. Suppose that (E,h) is a Hermitian vector bundle provided with a
unitary connection A. We have the following simple formulas for any ¢ € Q0P (E)
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and for arbitrary (0, 1)-vectors X
P

(4.3.1) (040) xo.....x, = Z(—1)k((VA)XM)XO,M,X,W“.XP ;
k=0
2n
(4.3.2) (040)x1..0. %, = = D _(Va)aod)on x, x,
j=1
where (e1,...,entk = Jek,...,e2,) is an unitary frame at a given point.

Proof. First we extend a well-known formula for real forms (see e.g. [I, (2.12),
(2.13)]) to complex forms ¢ € QL(E) and X; € T M?™:
P
(4.4) (dad)xo,..x, = Y (1) ((Va)xx0)
k=0
Formula (£4)) holds, since it holds for all real forms ¢ € Q*(E) C QX (E) and
for all X; € T, M?>", and because both LHS and RHS of (4.4) are C-linear w.r.t. to
variables ¢ and Xj.
By definition the LHS of (4.3.1)) equals the LHS of (4.4) and clearly the RHS of
1) equals the RHS of (4.4)). Hence we get (4.3.1).
Now let us prove (4.3.2)). For ¢ € Qo’p( ) and for a set of a (1, 0)-vector X, and
(0,1)-vectors X;, 1 <14 < p, using , we have
P
(45) (6A¢)XO7X1...,XP = Z(_:l)k<(VA)Xk¢)X0,...,Xk,...Xp )
k=0
since LHS of (4.5)) coincides with the value (da¢)x,,x,....x,- Since ¢ € O0P(E), we
get

X0y Xpeyoo Xp

P

46) D DV Dxy . 50x, = (Va)x,8) (X1, Xp).
k=0
Thus we get

M@

(4.7) (((0a9) = Zdzz 106

ke

Now using the Kéhler identity 8:5‘ = —v/—1A04, we get from (4.7))

N 1 n n
(O40)x1,0 Xy = - ) D [iwikdz A (Va)erod)]x,  x,

k=1j=1
(48) == [5((Va)rod)] 5, x,
j=1
Clearly, the last term of (4.8) equals the RHS of (4.3.2). This completes the proof
of Lemma, O

The following proposition is a complex analogue of Theorem 3.2 in [I].
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Proposition 4.9. For any ¢ € Q! (End; E) the following identity holds

(4.9.1) A% = ViV a(9) + ¢ o Ric+RA(4).
Proof. Let X € T2 (M?"). We extend X locally on M?" so that DX (x) = 0.
We also extend the unitary frame {ej,...,e g := Jek,...,e2,} locally so that

De;(z) = 0. Ubing 1} and (4.3.2), and taking into account (Je;)%! = —\/—16?’1,

(Je)t0 = /— e , we get at the point

(04036)x = (Va)x {330} = ~(Va)x { 3 [(Va)ey6] o }
(4.10) = =2 [(Va)x(Va)e, 8] o
(94040)x Z{ (Va)e, (0ad)} oo x

2n

- —Z (Va)e, {[(Va)eodlx = [(Va) o }

2n

(4.11) = =3 {l(Va)e, (Ta)onlx = [(Ta)e, (Va)xlon }

Jj=1

Summing ((4.10]) and (| -7 we get
(4.12) Biox=-3 {[(Va)e, (V) 010 + Z A x0)01 )

j=1

Here we denote by R4 the curvature of the tensor product connection on the
bundle T3 M?" @c End; E = (I'*M?" @g End; E)c. This curvature coincides with
the one on T* M?" ®g End; E, if we consider Q?(T*M ®g End; E) as a subspace
in Q2(TEM* @c End; E). Now we observe that for ¢ € Q%! (End; E) we get

2n

(413) (=Y [Va)e, (Va)oadl,v)

j=1
2n

= =2 [(Va)e, (Va)016,8) = (Va) 016, (Va)e, ¥)] -
j=1

We define a 1-form o, depending on ¢ and 3, on M by

o(X) = ((Va)xo1¢,1) .
Then

2n

(4.14) =Y (V) (Va)ord,9)(2) = (=d"o)(z),

j=1
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and

(Va)o16, (Va)e, ) = (Vad, Vaw) + 3 (Va) @16, (Va) o)) -

Since (Je;)0! = —y/—Tel" and (Je;)t0 = —1e;*, we get

J Jj

<(VA)5?’1 o, (VA)ejl_,ow> + <<VA>(Jei)O,1 o, (VA)(Jej)l,o’(/J> =0

= 3 ((Va)210: (Va)pott) = 0
(415) — <(VA)6(J),1(;57 (VA)ej'Q/J> — <@A¢7 €A¢>

From (4.13), (4.14)), (4.15) we get

(4.16) /M ~((Va)e;(Va)or ) = /

M

—d*0+/ (Vad,Vay).
2n M2n

Next we have

(4.17) (R, x®)e0r = (Fa)e, x0 01 — ¢(Re, x€5").
Clearly Proposition [£.9] follows from (£.12)), (4.13) and (£.17). O

Denote by R4 the following linear operator: Q2(End; E) — Q%2(End; E) such
that for all (0,1)-vectors X,Y we have

2n

(418) (RA(¢))X vy — Z {[(FA)CJ',X’ ¢ej7Y] - [(FA)CJ',Y’ (bej,X]} :

s

j=1

We also associate to each ¢ € Q%?(End; E) a new (0,2)-form ¢ o (RicAI) €
0%2(End; E) by setting

(¢ o (Ric /\I))X7Y := ¢(Ric(X),Y) — ¢(Ric(Y), X).
Proposition 4.19. For any ¢ € Q%%(End s E) the following identity holds
(4.19.1) Ad¢ = ViV ad+ ¢ o (RicAT) + RA(4).

Proof. (Cf. [1, Theorem 3.10]) We use the notations X,Y,es,...,e, as in the
proof of Proposition Then at the point  and for (0, 1)-vectors X and Y we
have

(04030)x,y = ((éA)Xéﬁmb)y — ((04)y 043 0) x

2n 2n
= —(VA)X{ D ((Va)e, ¢)63717y} + (VA)Y{ > ((VA)ejqb)eg,l,X}
j=1 j=1
2n
(4.20) == {l(Va)x(Va)e, oty —[(Va)y(Va)e, ¢]egﬂl,x} :

Jj=1
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We also have
2n

(ézéAQZ))X,Y - - Z((V‘A)ej 5A¢)e?’1,X,Y

j=1
2n

= =S T {(Ta)r0)xy + (V@) x + (Va)xdlyon)

Jj=1
2n

== {l(Va)e, (Va)eordlxy +[(Va)e,(Va)ylos x

=1

(4.21) - [(VA)ej(vA)X(b]e?vl)y} .
Summing ((4.20]) and (4.21)) we get

2n

(Ai )X,Y =— Z [(VA)ej (VA)82’1¢] XY

Jj=1

(4.22) + D ARE x0lor y = [RE yolor 1}

As in the proof of Proposition (see ([4.13))) we have for ¢ € Q%2(End; E)

2n

az) [ (T Taenow) = [ (Ta0.Taw).

j=1
Combining the following identity
(R y®)zw = [(Fa)xy,0zw] — d(RxyZ, W) — ¢(Z,Rx y W)
with (4.23)) to rewrite (4.22)) as follows
(839)xy = (VaVad)xy + RA(@)xy +d(Ric (X),Y)

2n 2n
(4.24) =D 000 n v —O(RICT(Y),X)+ D donp
j=1 j=1

Using the Bianchi identity

_Rej’XY - RY,er = RX,Yej 9
and taking into account that the following quantity vanishes for all ¢ € Q%2 (End; E)
and for all X,Y € TO1 2"

2n
(boR)xy =Y olej, Rx.ve;),
j=1
because (Je;)%! = —\/—le?’l and (Je;)0 = \/—16?’1, we get Propositionm
from (4.24) immediately. u
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Theorem 4.25. Let M be a compact Kihler manifold with positive Ricci curvature.
If A is an almost holomorphic connection, then A is holomorphic.

Proof. First let us prove the following formula for ¢ € Q%?(End; E).
(4.26) RA(9) = —V=I{AFY' A6 — (AF}1)6} = R(A).
Let us rewrite the expression in (4.18)) as follows

(4.27) RA(¢) =

> Z{[(FA)ej,@gwl,¢ej,eywl]—[( A)e, 0 P, o0t | 2R

1<k<i<n j=1
For any ¢ € Q%P?(Endy E) denote by
1,0 1,0 0,1 0,1
¢i1...ik,51...3p = d)(eil LA eik aejl [ 6Jp )
Since ¢ € Q%2(End; E), we get from

= > Z{ Fa) 1 051 — [(Fa),1, 657

1<k<i<n j=1

(4.28) + [(Fa)jr 051 — [(Fa)jp ¢55) Ydzrdz -
Since (J(ej))o’1 = —lee?’l and (J(ej))l’o = Jfle;’o, we get from

(4.29) RYG) =2 Y D AlFa)e b5 — [(Fa) ;i 655} dzrdz

1<k<i<n j=1
Now expanding the following expression in local coordinates

V-IAFY AN g = = ZZPZP{ZZ Fa)i5, dril dzldzjdzkdzl}

i, k<l

=V=IAFYe -2 Y > [(Fa)j ¢uldz;da

1<i<n 1<5,l<n

and comparing it with the RHS of (4.29)), we get (4.26) immediately.

Now let A be a Yang-Mills bar connection. Applying (4.19.1)) to FE’Q and using
(4.26) we get

0= / (VAFY? VAFY?) + (F$? o (Ric AD), FY?)
M2n

(4.30) + / (R(A)FY? FY?).

M
Since A is a Yang-Mills bar connection, differentiating (2.7.1), we get
(4.31) (AFYMFY? FG?) =0.

Now let A be an almost holomorphic connection. Using (4.26)), (4.30)), (4.31),
(3.13.2) (see also Corollary 3.20, we get Fg’z = 0 immediately. O
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Remark 4.32. Theorem [4.25| implies that any Yang-Mills bar connection on a
compact 4-dimensional Ké&hler manifold of positive Ricci curvature is holomorphic.

5. SHORT TIME EXISTENCE OF A YANG-MILLS BAR GRADIENT FLOW OVER A
COMPACT KAHLER MANIFOLD

5.1. Affine integrability condition. The following identity holds for any 6 €
Q(End; E) and any unitary connection A

(5.2) /M% ([0, F3?), Fy?) = — /M% ([F2,0), Fy?).
We prove that at any point z € M?2"
(5.3) ([0, F3%], FY?) = —2(0, AAFS* A FR0).

We write § = 0+ 4 /=10~ where 7,0~ € ug. In the same way at a fixed point
x € M?" we can take coordinates such that the Kihler metric g has the form
g(x) = dz; ® dz;. We write

F?= > (Ff+V=1F;;)dz dz; ,
1<i<j<n

where Fg € ug. Then F3° = Zij(F{;—\/—lFi;)dZide- Recall that ||dz;dz;||* =
A direct computation at a point x shows

(10, FR*, Fe?y = > ([67,Ffdz dz;, Fyj dz; dz;)

1<i<j<n
+ > (=07,F;)dz dz;, F)f dzdz;)
1<i<j<n
(5.4) :8<0*, 3 [F;,F*]>.
1<i<j<n

Now we compute

(O AAFR2ANFY0) =—2 > (07, AA[F}}, Fj]dz dz; dz; dz;)

1<i<j<n
=—4V=1 Y (07, A[F}, Fj;](dz; dz; + dz dz))
1<i<j<n
(5.5) :-16<0—, 3 [F;,F—]>.
1<i<j<n

Clearly . ) follows from and ( -

Now substituting [Fg’Q, 9] = 04040 in the RHS of (5.2), and taking into account
B3), we get

(5.6) /sz (0,2AAF3? A F20) = /Mz (0,044 FY?) .
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Thus we get the following identity

(5.7) D4IHFY? — 20AFY? ANFYY = 0.
Define the following operator P4: Q%!(End; E) x Q%! (End; E) — Q(End; E)
(5.8) Pa(a)¢ = 9400 — 20AFY2 AN FZ)

Clearly Pa(a)¢ is a differential operator of order 1 in a and order 1 in ¢. Mo-
reover Py(a)¢ is an affine differential operator w.r.t. ¢, i.e. Pa(a)¢ = La(a)¢ +
Ca(a), where La(a)¢ is a linear differential operator w.r.t. ¢. By (5.6) we have

PA(a)82+aFgfa = 0. Thus we call P4(a) an affine integrability condition for the

differential operator 0%, ,Fy?,: Q%! (End; E) — Q%!(End, E).

Proposition 5.9. Let & € T M?"\ {0}. All the eigenvalues of the eigenspace of
the symbol oeD(—1)0%  Fy?,: Q% (Endy E) — Q%'(End; E) in Null 0¢Pa(a)
are positive. Hence the evolution equation

da
dt
has a unique smooth solution for a short time which may depend on a.

Proof. Since Fg’iaﬂh = Fg’Q +t0aya ANh+t2h A h for h € Q%Y(Endy E), we

have the following expression for the linearization of 9% +aF2’fa at point a €
Q%1(End, E)

(5.10) Da(52+aF2ﬁa)(h) = J%1041ah + {terms of lower order} .

We may assume that § = dz;. Then a direct computation using the Hodge-Kéhler

identity 0%, , = —vV—1Ada4, and (5.10) shows

(591) = _gquaFgﬁa 9

(5.11) — 0D (o Fal ) (a1 dZy, ... an dZy) = (0,a0dZ, ... dZy,) .

Clearly the linearization DyP4(a)¢ with respect to the variable ¢ is
[DuPA@OIh = 5 Dhal6+1h) ~ 24N, AFRY, = 0300,

We note that this linearization does not depend on ¢. A short computation shows

(5.12) 0¢DyPa(a)(andzy, . .., andz,) = V/—1ay .

Now (5.11) and (5.12)) imply the first statement of Proposition The second
statement follows from Hamilton’s theory for evolution equation with integrability

condition [4, Theorem 5.1], actually from its slightly extended version in Theorem
below. O

Remarks 5.13. 1. By taking derivative of (2.7.1) in the time ¢ we also get
(5.2) and hence (5.7)). In the same way we can get (5.2)) (and hence (5.7)) as an
infinitesimal consequence of the non-canonical action of the complex gauge group

on the space of unitary connections w.r.t. a fixed Hermitian metric on the bundle.
2. It is likely that GZFE’Q also satisfies an affine integrability condition analogous
to (5.§)), if the ground manifold M?" is Hermitian but not necessary Kihler.
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6. EVOLUTION EQUATIONS WITH AFFINE INTEGRABILITY CONDITION

In his work [4] Hamilton introduced the notion of an evolution equation with
integrability condition. Let us rapidly recall the Hamilton concept from Section 5
of that paper. We try to keep most of Hamilton’s notations in that paper, which
may have quite different meanings from that ones we used in previous sections.

We consider an evolution equation
daf
dt

where E(f) is a non-linear differential operator of degree 2 in f. We suppose that
the values of f belong to an open set U in a vector bundle F' over a compact
manifold X, and E(f) takes its values in F' also. (For the case we are dealing in
this note, we take U = F'. We shall write later, following Hamilton, f € U, meaning
that the values of f belong to U.) Then E is a smooth map

E:C*(X,U) CcC®(X,F)— C>*(X,F)
of an open set in a Fréchet space to itself.

We shall consider problems where some of the eigenvalues of the symbol c DE(f)&
are zero. This happens when E(f) satisfies an integrability condition.

Definition 6.1 ([4]). Let g = L(f)h: C*°(X,U) x C®(F) — C*(G) be a diffe-
rential operator of degree 1 on sections f € U C F', h € F', and G another vector
bundle over X. We call L(f)h the integrability condition for E(f), if the operator
Q(f) = L(f)E(f) only has degree at most one in f.

_ Suppose that L(f)h is an integrability condition for E(f). Taking a variation in
f we see that

(6.2) L(f)DE(f)f + DL(f{E(f). [} = DQ(f)f.

Since DQ(f)f as well as L(f)DE(f)f only have degree 1 in f the operator
L(f)DE(f)f also have degree 1. hence o L(f)(£)c DE(f)(£) = 0. Therefore we get

(6.3) Im e DE(f)(¢) € Null o L(f)(€) .

Theorem 6.4 (J4, Theorem 5.1]). Let df /dt = E(f) be an evolution equation with
integrability condition L(f). Suppose that all the eigenvalues of the eigenspaces of
oDE(f)(&) in Null o L(f)(&) is positive. Then the initial value problem f = fo at
t =0 has a unique smooth solution for a short time 0 < t < & where € may depend
on fo.

Remark 6.5. Hamilton’s notation in indicates that L(f)h is a linear w.r.t. h.
(In fact, in section 4 of that paper Hamilton stressed that L(f)h is linear w.r.t. h.)
A closer look at Hamilton’s proof (see also our proof of Theorem below) shows
that, the linearity of L(f)h w.r.t. h is important. We shall call such integrability
condition L(f)h linear in the argument (and f shall be considered as parameter).
Now we shall call an integrability condition L(f)h an affine integrability condition,
if L(f)h = Lo(f)h + A(f), where Lo(f)h is linear w.r.t. h. The linearization
(DgL(f)h)h = Lo(f)h does not depend on h.
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Theorem 6.6. Let df /dt = E(f) be an evolution equation with affine integrability
condition L(f): L(f)h = Lo(f)h + A(f). Suppose that all the eigenvalues of the
eigenspaces of cDE(f)(§) in Null oLo(f)(€) is positive. Then the initial value
problem f = fo at t =0 has a unique smooth solution for a short time 0 <t <e
where € may depend on fy.

Proof of Theorem [6.6l We follow Hamilton’s argument, replacing L(f)h in his
proof by Lo(f)h in some places, and re-arranging parameters which do not depend
on h. To keep our notations as close as possible with those of Hamilton, we denote
by DL the derivative of L(f)h w.r.t. the parameter f. We divide the proof in
3 steps. ([

STEP 1. Reduction of Theorem [6.6 to a version of the Nash-Moser inverse
function theorem.
In this step we reduce Theorem [6.6] to the following

Lemma 6.7. Suppose that f is a solution of the perturbed evolution equation by a
term h(t,x)

df(t,x)
dt

= E(J?(tvx)) + B(tvm)v

£(0,2) = fo(=)

over the interval 0 < t < 1. Then for any fo near fo and h near h there exists a
unique solution of the perturbed equation

df(t,z)
el E(f(t,z)) + h(t,z),

f(0,2) = fo(x)

over the interval 0 <t < 1.

Now we explain how to get Theorem from Lemma Let f(t,x) be any
function satisfying

dt =0

]?(071') = fO(x) :
Set

h(t,z) = W — BE(f(t,z)).

Then h(0,z) = 0.

Since X is compact, for any d > 0 there exist a number € > 0 and a function
h(t,z) such that H(t,z) is 6-close to h(t,2) and moreover h(t,z) = 0 for a short
time 0 < ¢ < e. Applying Lemma to the pair (h,h) we conclude that the
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equation

df(t,z)
el E(f(t,z)) + h(t,z),

f(0,2) = fo(x)

has solution up to time e. This solution in the interval (0,¢) is a solution of our
original equation in that time interval. This completes the first step.

STEP 2. Reduction of Lemmal[6.7 to a case of a weakly parabolic linear system
of (6.14.1) and (6.14.2)). We can apply the Nash-Moser inverse function theorem
to the operator

£:C®(X x [0,1],F) — C®(X x [0,1], F) x C°(X, F)
E(f) = (df/dt — E(f), fI{t =0}).

Its derivative is the operator

_ df ——
DE = (5 — DE(NF.Fift =0}).

We must show that the linearized equation

(6.8) df/dt — DE(f)f =h

has a unique solution for the initial value problem f fo at t = 0, and verify that
the solution f is a smooth tame function of & and fj.
We make the substitution g = L(f) f. Then § satisfies the evolution equation

dg af - df
(6.9) I Lo(f)@ + DL(f Hﬁ@
Now differentiating the integrability condition L(f)E(f) = Q(f) we get
(6.10) Lo(f)DE(f)f = =DL(H){E(f), [} + DQ(f)f -

Substituting df /dt = DE(f)f + h from into and taking into account
(6.10) we rewrite as follows

(6.11) — = M(f)f =k,
where k = Lo(f)h and

()i = pen{7. LY~ prin{e). iy + paini

(612) pL({F. 5N 4 Lo(nDEGT

is a linear differential operator in f of degree 1 whose coefficients depend smoothly
on f and its derivatives.
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If we choose a measure on X and inner product on the vector bundle F' and G,
we can form a differential operator L§(f)g = h of degree 1 in f and g which is the
adjoint of Lo(f). Let us write

P(f)h = DE(f)h+ Lo(f)L(f)h.
We claim that the equation df /dt = P(f)f is parabolic (for a given f). To see this

we examine the symbol

(6.13) oP(f)§ = oDE(f)o + aLo(f)(§) - oLo(f)(&) -

Suppose v is an eigenvector in F' with eigenvalue A. Then oP(f)(§)v = 0. But
oLo(f)(&) - oDE(f)(§) =0, so applying oLo(f) to the LHS and RHS of (6.13) we

get
oLo(f)(€) - oLg(f)€ - aLo(f)(§)v = AaLo(f)(€)v.
Taking inner product of the above equality with oLo(f)(z)v we get

0 Lg(f)(€) - o Lo(f)(€)v]* = AloLo(f)(€)v]*.

Now if o L§(f) - o Lo(f)(§)v = 0 then oLo(f)(§)v = 0, and otherwise A is real
and strictly positive. When oLo(f)(§)v = 0, then o DE(f)(§)v = Av by and
A has strictly positive real part by our hypothesis in Theorem Thus P(f) is
parabolic.

We proceed to solve the system of equations

(614.1) Y P+ Lsna=h,
dg -
(6.14.2) D M(pf=t

for the unknown function fiand g for given h and k and given f, with initial data
f=foand g=go=L(fo)fo at t =0. )

In Step 3 below we prove that the solution (f,9) exists and is unique, and
is a smooth tame function of (f,h,k, fo,go). Then putting [ = § — L(f)f and
substituting k = Lo(f)h we get

dl dg df

pril i Lo(f)E
. df
= Lo(H)DE(f)f +k = Lo(f) 4,

B2 _Lo(NDE(] ~ Lo(H)P(H)F + Lo(NL§(N)3

Lo(F)| = Li(H LT + Ly(FLU) T + L))

(6.15) = Lo(f) Lo ()1,
and [ = 0 at t = 0. But then (6.15) implies the obvious integral inequality

d 5 5
G [ P2 [ L5l =o.
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Hence [ = 0. Then it follows that § = L(f)f. Using this and we get from (6.14.1)

df _
5 ~PEUNf=h.

This completes Step 2.

STEP 3. The system (6.14.1) and (6.14.2)) is a weakly parabolic linear system
whose smooth solution uniquely exists.

Set Po(f)h := DE(f)h + L§(f)Lo(f)h. Then Py(f)h is a linear differential
operator in h and P(f)h = Py(f)h + Li(f)A(f). Set h = h — Li(f)A(f). Since f
in the system of (6.14.1)) and (6.14.2)) is given, we shall re-denote a given constant
k by k, variables f, g, by f, g and linear differential operators Py(f), L§(f), M(f)
by P, L, M. Then the system of (6.14.1)) and (6.14.2)) is equivalent to the following
system of linear evolution equations on 0 <t < T for sections f of F' and g of G

df

dg
6.16 — =P L h — =M k.

Clearly the existence, uniqueness and smoothness of a solution of (6.16) is a
consequence of Hamilton’s theorem [4, Theorem 6]. He considered the following
equation

d d
(6.17) Y prirg+n, Y Mf+Ng+k

dt dt
where P, L, M and N are linear differential operators involving only space deriva-
tives whose coefficients are smooth functions of both space and time. He assumed
that P has degree 2, L and M have degree 1 and N has degree 0.

Theorem 6.18 ([4, Theorem 6]). Suppose the equation df /dt = Pf is parabolic.
Then for any given (fo, go, h, k) there exists a unique smooth solution (f,g) of the

system (6.17) with f = fo and g = go at t = 0.

The proof of this Theorem occupies the whole Section 6 in Hamilton’s paper.

Finally we formulate a conjecture which might be solved by using the Yang-Mills
bar equation and might be helpful for understanding the Hodge conjecture. A
unitary connection A on a Hermitian bundle E over a projective algebraic manifold
M is holomorphic, if the LL-norm of the component Fg’Q less than some positive
constant €(M), where p, ¢ are some integers depending on the dimension of M.

In a subsequent paper we shall show the long time existence of a Yang-Mills bar
gradient-like flow and discuss its consequences.
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