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Circulants and the factorization of
the Fibonacci–like numbers

Jaroslav Seibert and Pavel Trojovský

Abstract. Several authors gave various factorizations of the Fibonacci and Lu-

cas numbers. The relations are derived with the help of connections between
determinants of tridiagonal matrices and the Fibonacci and Lucas numbers
using the Chebyshev polynomials. In this paper some results on factorizations
of the Fibonacci–like numbers Un and their squares are given. We find the
factorizations using the circulant matrices, their determinants and eigenvalues.

1. Introduction

There are several well–known factorizations of the Fibonacci or Lucas numbers
and some specific linear subsequences of them. In [1] Cahill et al. studied certain
families of tridiagonal matrices and their correspondence to these sequences. In [2]
the same authors derived these complex factorizations:

Fn =

n−1
∏

k=1

(

1 − 2i cos
kπ

n

)

, n ≥ 2 ,

and

Ln =

n
∏

k=1

(

1 − 2i cos
(2k − 1)π

2n

)

, n ≥ 1 .

They proved them by considering in what way these numbers can be connected
to Chebyshev polynomials by determinants of sequences of suitable tridiagonal
matrices.

In [3] Cahill and Narayan extended the previous results to construct families of
tridiagonal matrices whose determinants generate an arbitrary linear subsequence
Fan+b or Lan+b, where a, n are positive integers and b is a nonnegative integer.
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They chose a specific linear subsequence of the Fibonacci numbers and used it to
derive the factorization

F2mn = F2m

n−1
∏

k=1

(

L2m − 2 cos
kπ

n

)

,

which was a generalization of the factorization

F2n =

n−1
∏

k=1

(

3 − 2 cos
kπ

n

)

presented in [2].
We have chosen a new way how to find out the factorization of squares of

one type of the generalized Fibonacci numbers. Our method is based on the using
of suitable circulant matrices and expressing the determinants of them by their
eigenvalues.

Throughout the paper we adopt the conventions that the sum and the product
over an empty set is 0 and 1, respectively.

2. Preliminary results

Lemma 1. ([2], Lemma 1) Let {H(n), n = 1, 2, . . .} be a sequence of tridiagonal
matrices of the form:

H(1) =
(

h1,1

)

, H(2) =

(

h1,1 h1,2

h2,1 h2,2

)

and for n ≥ 3

H(n) =





















h1,1 h1,2

h2,1 h2,2 h2,3

h3,2 h3,3 h3,4

h4,3 h4,4
. . .

. . .
. . . hn−1,n

hn,n−1 hn,n





















.

Then the successive determinants of H(n) are given by the following recurrence
formula

|H(1)| = h1,1 ,

|H(2)| = h1,1h2,2 − h1,2h2,1 ,

|H(n)| = hn,n |H(n− 1)| − hn−1,n hn,n−1 |H(n− 2)| for n ≥ 3 . (1)

In the notation of Horadam [5], we define the sequence of numbers
Wn = Wn(a, b ; p, q), with arbitrary integer parameters a, b, p, q, so that

Wn = pWn−1 − qWn−2 , n ≥ 2 , 2

where W0 = a, W1 = b.
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The n-th terms of the Fibonacci and Lucas sequences are

Fn = Wn(0, 1; 1,−1) , Ln = Wn(2, 1; 1,−1) .

More generally, we name the Fibonacci–type sequence Un = Wn(0, 1; p, q) and the
Lucas–type sequence Vn = Wn(2, p; p, q). The Binet formulas for Un and Vn have
forms similar to the formulas for Fn, Ln

Un =
γn − δn

γ − δ
, Vn = γn + δn ,

where γ =
p+

√
p2−4q

2 and δ =
p−

√
p2−4q

2 are the roots (mutually distinct) of the

quadratic equation x2 − px+ q = 0. It means that the following relations hold for
the numbers γ, δ:

γ + δ = p , γ − δ =
√

p2 − 4q , γδ = q , γ2 + δ2 = p2 − 2q .

The properties of circulant matrices are well known and widely used. A circulant
matrix C(n) = (ck)n

k=1 of type n×n has such form where each row is a cyclic shift
of the row above it. Its structure can also be characterized by noting that the (i, j)
entry Ci,j of C(n) is given by

Ci,j = c(j−i) (mod n)+1 ,

which identifies C(n) as a special type of Toeplitz matrix.
For example Gradshteyn and Ryzhik expanded determinants of circulant ma-

trices and gave eigenvalues of them.

Lemma 2. ([4], pp. 1111 – 1112) Let ck, k = 1, . . . , n, be complex numbers.
Then

∣

∣

∣

∣

∣

∣

∣

∣

c1 c2 · · · cn
cn c1 · · · cn−1

· · ·
c2 c3 · · · c1

∣

∣

∣

∣

∣

∣

∣

∣

=

n
∏

k=1

(c1 + c2εk + c3ε
2
k + · · · + cnε

n−1
k ) , 3

where εk, k = 1, . . . , n, are the n-th roots of unity. The eigenvalues λk of the
corresponding n× n circulant matrix are

λk = c1 + c2εk + c3ε
2
k + · · · + cnε

n−1
k . 4

Let us denote by B(n) the n× n tridiagonal matrix

B(n) =





















b c
a b c

a b c

a b
. . .

. . .
. . . c
a b





















,
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where a, b, c are any complex numbers. Further let A(n) be the n × n circulant
matrix obtained from B(n) by adding only two “corner” entries a, c.

A(n) =





















b c a
a b c

a b c

a b
. . .

. . .
. . . c

c a b





















.

Lemma 3 Let n > 1 be any integer. For the determinant of A(n) the recursive
relation

|A(n+ 1)| = b |B(n)| − 2ac |B(n− 1)| + (−1)n(cn+1 + an+1) 5

holds.

Proof The determinant |A(n+ 1)| can be expanded with respect to the first row

|A(n+ 1)| = b |B(n)| − c

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

a c 0
0 b c

a b
. . .

. . .
. . . c

c a b

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

+ (−1)na

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

a b c

0 a b
. . .

0 a
. . . c

. . .
. . . b
0 a

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

Expanding the last two determinants with respect to the first column or to the last
row, respectively, we have

|A(n+ 1)| = b|B(n)| − c





















a|B(n− 1)| − (−1)nc

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

c 0
b c 0
a b c 0

a b c
. . .

. . .
. . .

. . . 0
a b c

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣





















+ (−1)na























a

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

a b c
0 a b c

0 a b
. . .

0 a
. . . c

. . .
. . . b
0 a

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

+ (−1)n+1c |B(n− 1)|























=

= b |B(n)| − ac |B(n− 1)| + (−1)ncn+1 + (−1)nan+1 − ac |B(n− 1)| =

= b |B(n)| − 2ac |B(n− 1)| + (−1)n(cn+1 + an+1) . (1)
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Lemma 4 Let n be any nonnegative integer. Then

(i) Un+4 − q2Un = pVn+2 , (2)

(ii) V2n − 2qn = (p2 − 4q)U2
n . (3)

Proof We can prove these identities by the Binet formulas for Un and Vn.
(i)

Un+4 − q2Un =
γn+4 − δn+4

γ − δ
− γ2δ2 γ

n − δn

γ − δ
(4)

=
1

γ − δ
(γn+4 − δn+4 − γn+2δ2 + γ2δn+2) (5)

=
1

γ − δ
(γ2 − δ2)(γn+2 + δn+2) = p Vn+2 , (6)

(ii)

V2n − 2qn = γ2n + δ2n − 2(γδ)n = (γn − δn)2 (7)

= (γ − δ)2

(

γn − δn

γ − δ

)2

= (p2 − 4q)U2
n . (8)

3. The main result

Our main result is concentrated into the following theorem.

Theorem 1 The factorization of squares of the Fibonacci–like numbers is given as
follow

U2
n =

n−1
∏

k=1

(

p2 − 2q − 2q cos
2kπ

n

)

, n ≥ 1 .

Proof First, consider the n× n tridiagonal matrix B(n) given by

B(n) =





















p2 − 2q −q
−q p2 − 2q −q

−q p2 − 2q −q
−q p2 − 2q

. . .

. . .
. . . −q
−q p2 − 2q





















.

We will show by induction that the determinant |B(n)| = 1
pU2n+2. It is easy to see

that |B(1)| = p2 − 2q = 1
pU4 and |B(2)| = p4 − 4p2q + 3q2 = 1

pU6.

Using Lemma 1 we can write for n > 2

|B(n)| = (p2 − 2q) |B(n− 1)| − q2 |B(n− 2)|
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and further as Un = pUn−1 − qUn−2 or Un−2 = p
qUn−1 − 1

qUn

|B(n)| = (p2 − 2q)
1

p
U2n − q2 1

p
U2n−2

=

(

p− 2
q

p

)

U2n − q2

p

(

p

q
U2n−1 −

1

q
U2n

)

=

(

p− q

p

)

U2n − q

(

p

q
U2n − 1

q
U2n+1

)

= U2n+1 −
q

p
U2n =

1

p
U2n+2 . (6)

Consider now a circulant matrix A(n) = (ai,j) of type n × n which has the
same entries as B(n) only a1,n = an,1 = −q. With respect to Lemma 3 we can
express for n > 2 the determinant of A(n) in the following form

|A(n)| = (p2 − 2q) |B(n− 1)| − 2q2 |B(n− 2)| − 2qn .

Using relation (6) and Lemma 4 we can write

|A(n)| = (p− 2
q

p
)U2n − 2

q2

p
U2n−2 − 2qn

=
1

p
U2n+2 −

q2

p
U2n−2 − 2qn = V2n − 2qn = (p2 − 4q)U2

n . (7)

But we can calculate the determinant of the circulant matrix A(n) in an alter-
native way using Lemma 2. Then

|A(n)| =

n
∏

k=1

(p2 − 2q − qεk − q εn−1
k ) ,

where εk, k = 1, 2, . . . , n, are the n-th roots of unity. Obviously,

εk = cos
2kπ

n
+ i sin

2kπ

n
, k = 1, 2, . . . , n

and

εn−1
k = cos

(n− 1)2kπ

n
+ i sin

(n− 1)2kπ

n

= cos

(

2kπ − 2kπ

n

)

+ i sin

(

2kπ − 2kπ

n

)

= cos
2kπ

n
− i sin

2kπ

n
. (9)

Therefore

|A(n)| =

n
∏

k=1

(

p2 − 2q − 2q cos
2kπ

n

)

8

and combining (7) and (8) we have

U2
n =

1

p2 − 4q

n
∏

k=1

(

p2 − 2q − 2q cos
2kπ

n

)

.

As for k = n the corresponding factor is p2 − 4q the proved relation follows. �
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Theorem 2 The factorization of the Fibonacci–like numbers has the form

Un =

n−1
∏

k=1

(

p− 2
√
q cos

kπ

n

)

, n ≥ 1 .

Proof From Theorem 1 we have U2
n =

∏n−1
k=1

(

p2 − 2q − 2q cos 2kπ
n

)

. Using the
well–known formulas for cosines we can write successively

U2
n =

n−1
∏

k=1

(

p2 − 4q
1 + cos 2kπ

n

2

)

=

n−1
∏

k=1

(

p2 − 4q cos2 kπ

n

)

=

n−1
∏

k=1

(

p− 2
√
q cos

kπ

n

)(

p+ 2
√
q cos

kπ

n

)

=

n−1
∏

k=1

(

p− 2
√
q cos

kπ

n

)(

p− 2
√
q cos

(n− k)π

n

)

=

n−1
∏

k=1

(

p− 2
√
q cos

kπ

n

)2

and the factorization of Un follows as the coefficient of the highest power of p on
the both sides is equal to 1. �

4. Concluding remarks

Special cases of the sequence {Wn} which interest us in the number theory are
above all the following ones. Their factorizations are derived from Theorem 1:
the Fibonacci sequence {Fn}:

F 2
n =

n−1
∏

k=1

(

3 + 2 cos
2kπ

n

)

, n ≥ 1 ,

the Pell sequence {Pn} = {Wn(0, 1; 2,−1)}:

P 2
n =

n−1
∏

k=1

(

6 + 2 cos
2kπ

n

)

= 2n−1
n−1
∏

k=1

(

3 + cos
2kπ

n

)

, n ≥ 1 ,

the Fermat sequence {fn} = {Wn(0, 1 ; 3, 2)} (its terms are also known as the
Mersenne numbers Mn = 2n − 1):

f2
n =

n−1
∏

k=1

(

5 − 4 cos
2kπ

n

)

, n ≥ 1 .

Some open questions arise if we want to use circulants to factorizations of the
numbers related to the generalized Fibonacci numbers. For example, is it possible
to find out suitable circulant matrices for factorizations of the Lucas–like numbers
or their squares?
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