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THE ALGEBRAIC CLOSURE 
OF A p-ADIC NUMBER FIELD 

IS A COMPLETE TOPOLOGICAL FIELD 

JosÉ E. M A R C O S 

(Communicated by Stanislav Jakubec) 

ABSTRACT. The algebraic closure of a p-adic field is no t a complete field with 
the p-adic topology. We define ano ther field topology on this algebraic closure so 
tha t it is a complete field. This new topology is finer than the p-adic topology 
and is not provided by any absolute value. Our topological field is a complete , 
not locally bounded and no t first coun table field extension of the p-adic number 
field, which answers a question of Mutylin. 

1. Introduction 

A topological ring (R,T) is a ring R provided with a topology T such that 
the algebraic operations (x,y) i-> x ± y and (x,y) \-> xy are continuous. A 
topological field (K, T) is a field K equipped with a ring topology T such that 
the inversion x i-> x~x is also continuous. For an introduction to topological 
fields, the books [3], [15], [17] are recommended. 

We consider the field of p-adic numbers Q^ and its algebraic closure Q . 
There is a unique extension of the p-adic absolute value | \p from Q^ to Q . 
The field ( Q p , | L) is not complete, its completion Cp is an algebraically closed 
and complete field with an absolute value extended from O . This field C is 
called the p-adic analog of the field of complex numbers. The cardinality of 
the three fields, O , Q and C , is 2^°. See, for instance, the books of p-adic 
analysis [2], [4], [6], [11], [14], [16]. 

In this paper, we propose a change in the above scheme. Instead of performing 
the completion of ( Q p , | \p), we introduce a field topology 7^ on Qp such 
that (Q.pjT) is a complete topological field. Our field topology T^ is finer 

2000 M a t h e m a t i c s S u b j e c t C l a s s i f i c a t i o n : Pr imary 12J99. 
K e y w o r d s : topological field, p-adic field. 
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than the p-adic topology on Q . Nevertheless, for each finite field extension 
K/Qp, with K C Qp, the subspace topology that K inherits from (Qp,T) 
is just the p-adic topology on K. Our topology 7^ does not satisfy the first 
axiom of countability, and therefore does not correspond to any absolute value. 
The topological field (Q p , 7^ ) is a complete, not locally bounded and not first 
countable field extension of the p-adic number field, which answers a question 
of M u t y l i n [12; Table 2]. In the last section we make some comments about 
the possibility of defining analytic functions on (Qp, T). 

P o o n e n [13] constructs a p-adic version of a Mal'cev-Neumann field of 
series in which the elements are formal series of the form Yl a

QP9 ? where S is 
ges 

a well-ordered subset of Q and the a 's are residue class representatives. This 
field contains C strictly; both fields share similar properties. This construction 
is inspired by [7]. Besides, the closed subfields of (C , | \p) are studied in [1], [5]. 

Given an element a e Q , we denote by deg(a) the degree of a over the 

p-adic field Q . We denote by vp(a) the p-adic valuation which corresponds to 

the unique extension of the p-adic absolute value to Qp (and also to C ), that 

is, \a\ = p~vp^. We recall that the value group of Q is Q. We denote the 

open and closed disks in Qp by 

B(0,r) = {aeQp: \a\p < r } , H(0,r) - {a e Qp : |a | p < r } . 

We recall that for a family {U^^j of subsets of a commutative ring R to be 
a fundamental system of neighbourhoods of zero for a Hausdorff ring topology 
T o n i£, it suffices that the following properties hold. 

(1) For all ieT OeUi, U{ = -U%. 
(2) For all ij el there exists kel such that UkCU{il U-. 
(3) For all i e I there exists kel such that Uf.+Uj^CU^ 
(4) For all i e I there exists kel such that UkUk C U{. 
(5) For all z G I and x e R there exists kel such that xUk C Ui. 
(6) nc! i = {o}. 

id 

If, in addition, R is a field, then T is a field topology if {U^^j also satisfies 
the following condition. 

(7) For all i e I there exists kel such that (1 + t / j , ) '1 Cl + u^ 

See [15; p . 4] or [17; p . 3], for instance. 
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2. The field topology on Qp 

In this section we define a field topology on Qp (the algebraic closure of the 
p-adic field Qp ) and show some of its properties. Throughout this article we will 
denote by T the set of strictly increasing functions / : N —r N. The family T 
is a directed set with the partial order / > g if f(n) > g(n) for all n G N. We 
recall a result about the intermediate fields of the extension Q / O which will 
have important consequences in the sequel. 

LEMMA 1. ([14; p. 132]) For any integer n > 1. there are only finitely many 

extensions of O of degree n in Q . Thus, Q is the union of a countable 

number of finite field extensions of Q . 

Applying the previous lemma, we conclude that, for each n G N U {0}, there 
exists a finite field extension 

KJ%, KnC%, (8) 

such that every a G Qp with deg(a) < n belongs to Kn (see also [2; p. 74]). 
We also assume that Kn $1 Kn+1 for all n and K1=Qp. We define 

X(n) = [Kn:0}; (9) 

notice that A G T. Certainly, for n > 1, there are /3 G Kn such that deg(/3) > n. 
It is clear that 

%=\JKn-
nGN 

We introduce some subsets of Qp. For r, n G N we define 

B[t, n\ = {aeKn: vp(a) > t} = B(0,p-*) n Kn . 

Each of these subsets is a compact additive subgroup of Kn (provided with the 
p-adic topology). If t1 > t2 and n1 < n2, we have the inclusion B[t1,n1\ C 
B\t2,n2\. In particular, we set 

An = B[l,n\=B(0,p-1)nKn. (10) 

It is clear that An C An+1 and An + Am = As, where s == max{n, m}. 

For each / G T, we define the following subset, which is an additive subgroup 
o f Q p . 

oo / m \ 
wf= U EB-1M'B- • (n) 

m = l \ 5=1 
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THEOREM 2. The family {Wf}fe:F is a neighbourhood base at zero for a Haus-

dorff field topology on Qp finer than the p-adic topology. We denote this topology 

P r o o f . We shall check that the family {Wf}fe:F satisfies properties (l)-(7). 

Properties (1) and (2) are immediate. Since each Wf is an additive subgroup 

of Q , the property (3) is satisfied. We verify property (4). Let us see that 

WfWf C Wf for all / e T. It suffices to show that, if n > s, then 

B[f(s),s\B[f(n),n\CB[f(n),n\. 

Let as e B[f(s),s\ and an e B[f(n),n\. We have that asan e Kn, 

and vp(asan) = vp(as) + vp(an) > f(s) + f(n) > f(n). Therefore asan e 

B[f(n),n\. 
We check property (5). Given Wf and f3 e Ks C Q p , we define g e T as 

k 

g(n) = f(n + s) + m, where m e N U {0} satisfies -m < v ((3). Let a = Yl a

n 

n=l 

e W , where an e B[g(n),n\. We have that (3an e Kt, where t = max{n, s}. 
Besides, 

vp(0an) > -m + vp(an) > -m + g(n) = f(n + s) > f(t). 

Therefore pan G B[f(t),t\, and so (5a e Wf. We have proven that (3Wg C Wf. 

Now we verify property (7) by showing that (1 + Wf)~l C 1 + Wf for all 
t 

f e T. Let a = ^ an e Wf, where cYn e B[f(n),n\. In order to construct 
n = l 

the inverse of 1 + a we write 

П = l 7 Ч 71=1 ' 

where the j3n are defined inductively according to the following rule: 

0 = ^ + ^ + X>4-' n=l,...,t. 

That is, 

max{ѓ,j}=n 

— гv 

ß2 

1 + a, ' 

1 + aг + a2 

n-l 

л(i+ ft) 
l^n n 

I + E « І 
i = l 
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It is easy to check inductively that vp(/3n) = vp(an) > f(n) and f3 G K . 

Hence 0 = EPn^
Wf 

Finally, we check that the topology 7^ is finer than the p-adic topology 

on Q , which implies property (6). Given an open ball B(0,p~s) of center 0 

and radius p~s, we choose / G T such that / ( l ) > 5, it is clecir that Wf C 

B(0:p~s)- • 

Later, we shall see that T is strictly finer than the p-adic topology. Now 
we show some immediate consequences from the definition of the topology 7^. 

oo 

Since each Wf in the basis {Wf}fe:F is an additive subgroup, a series £ an 
n = l 

converges in ( Q T) if and only if an -•» 0. Let a G Q p such that deg(a) < m 
and v (a) > f(m) for some / G JF and m G N, it is immediate that a eWf. 

LEMMA 3. Let K C Q be a finite field extension of Qp, then the p-adic 

topology on K coincides with the subspace topology inherited from (Q p , 7^ ) . 

P r o o f . For each open ball J3(0,p~5), we consider / G T such that 
/ ( l ) > s; it is clear that Wf n K C S ( 0 , p " 5 ) . On the other hand, let 
[K : QL] = m be the degree of the field extension. For each neighbourhood Wf, 
we take the ball 5 ( 0 ^ " ^ ) C K. Every element a G B(0,p~f{m)) C K satis­
fies that deg(a) < m and vp(a) > / ( m ) , and so a G B[f(m),m\nK C TV^DX. 
That is, H(0,p-^m') C Wy, n K . • 

An immediate consequence is that all the sets B\t,n\ and An are compact 

LEMMA 4. The topological space (Qp,T) is separable and a -compact. 

P r o o f . Each finite field extension K/O is separable and a-com pact with 
the p-adic topology. By Lemma 3, this topology coincides in K with the sub-
space topology T^\K. Therefore (Q p , 7^ ) is a countable union of subspaces 
which are separable and cr-compact, and so (Q p , 7^ ) satisfies both conditions. 

• 

We introduce another family of subsets of Q which also constitutes a neigh­
bourhood base at zero. They give a more clear vision of the underlying idea in 
the topology T . For each / G T, we define 

zf = { E «„ : * € N> /(d egK)) < vp(an)} c Qp • (12) 
^ n=l 
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Notice that the subscript in the above sum ^ ®,n does not play any role, it only 
matters that the sum is finite. Observe that each Z , is an additive subgroup 

ofQp-

LEMMA 5. The family { Z , } , G J r is another fundamental system of zero neigh­

bourhoods for the topological field (Qp,T). 

t 
P r o o f . First, we show that Z , C W, for each / G T. Given a — J2 a

n 
n=l 

G Z, written according to (12), we sum the terms which have the same degree: 

E 
deg(a n ) = s 

ßs= Ьan^Ks 

We have that vp(j3s) > mm{vp(an) : deg(a n ) = s] > f(s). Therefore f3s G 
B[f(s),s\, and so 

m oo / m \ 

5 = 1 m=l \ 5 = 1 / 

Second, we prove that W,oX C Z , for each / G JF, where A is the function 

defined in (9). Since Z , is an additive subgroup of Q , it suffices to prove 

that B[f(X(s)),s\ C Zf for every s G N. Now, if /? G B[f(X(s)), s\ , then 

deg(/3) < X(s) and vp(0) > f(X(s)) > f(deg(p)), that is,0eZf. • 

Since both Zf and VV, are additive subgroups and neighbourhoods of zero, 

then both are open (and closed) subgroups of ( Q p , 7 7 j . 

We are going to prove that ( Q p , 7 ^ ) is complete. We follow a development 
analogous to that in [8; §8], which is highly inspired in [18], [19]. First, we study 
the convergent sequences in ( Q p , 7 ^ ) , we need the compact sets An, defined 
in (10). 

LEMMA 6. Let (hn)nen be a sequence converging to zero in (Qp,T). Then 
there exists I G N such that hn G Al for all n but a finite number, that is, there 
exists a bound m G N such that deg(hn) < m for all n. 

P r o o f . We reason by the way of contradiction. We may assume that 

hn G F>(0,I>_1) and hn £ An for all n , after passing to subsequences if required. 
We shall construct a neighbourhood of zero W* not containing any value of 
the sequence (hn)neN, which is an absurd. We define Hn = {^} i G N H An, 

which is a finite set for every n. Since H(0,p_1) = |J An, it is clear that 
n<EN 

{/*.}.eN = |J Hn. There exists tx > 1 such that Hx n B\_tx, l j = 0. If 
nGN 
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H2 n {B\t1, lJ+F?|_ra,2j) 7̂  0 for all m > t1, then, since H2 is finite set, 
there exists a G H2 n {B[tl, lJ+J5[ra, 2J) for all m > tx. This means that 
a = Pm + 7m» where /?m G -5[^, l j and 7 m G 2?[ra, 2J for all m > t1. Since 
7 m -» 0, then /?m -> a . The set -S[^, l j is closed, thus a G l ? ^ , lj C A1, 
and so a G H±; but this contradicts the choice of ^ . Hence there exists t2 > t1 

satisfying H2 D (I?|_ î> 1]+B[t2, ^J) = 0 . Continuing in the same manner, at the 
5th step we find ts > ts_1 such that 

Hsn{B[t1,l\+Blt2,2\ + ...+B[ts,S\)=(H. 

We choose / G T such that f(n) — tn for all n G N. Taking into account (11), 

we conclude that ( (J HJ D Wf = 0, that is, { i\J n G N f) W^ = 0 , which is an 
absurd. 5 ^ N • 

Let us give some immediate consequences: if a sequence (hn)neN converges to 

any value in ( Q , T), then there exists a bound ra G N such that deg(hn) < m 

for all n. If (gn)neN is a Cauchy sequence, then there also exists a bound ra 

such that deg(On) < ra for all n, and consequently gn G Km for gill n. By 

Lemma 3, Km is complete with the subspace topology inherited from ( Q , T), 

hence the Cauchy sequence (gn)ne^ has limit. We have proven that ( Q T) is 

sequentially complete. 

COROLLARY 7. The field topology 7^ On Q p zs strictly finer than the p-adic 
topology. 

P r o o f . We have seen that 7^ is finer than the p-adic topology. Consider 

a sequence of elements an G Qp such that ^p(LYn) > 0 and deg(a n ) > n for all 

n G N. Then we have that anp
n —r 0 with respect to the p-adic topology, but 

anp
n -A 0 with respect to the topology 7^. • 

Notice that certain sequences like the (a

nP
n)nGN

 m the proof above are used 

in [4; p. 165], [6; p. 71] and [11; p. 50] to show that neither Qp nor QlJnram a r e 

complete fields with the p-adic topology. The idea in these books is to prove 

that 

( E anp") 
mЄN 

is a Cauchy sequence without limit. A similar reasoning is not possible in 

We say that a set is sequentially closed if it contains the limits of all convergent 
sequences taking values in the set. A topological space is called sequential if every 
sequentially closed subset is closed. 
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LEMMA 8. The topological field (Qp,T) is sequential. 

P r o o f . We reason by the way of contradiction. If ( Q , T ) is not sequen­
tial, then there exists a sequentially closed subset F such that O G F \ F . There 
is not any sequence with their values in F converging to zero. There exists tx > 1 
such that B[t1: l j C\F = 0, otherwise there would be a sequence in F converging 
to zero. If we assume that F H (B[tx, l\+B[m,2\) ^ 0 for all ra > i_, then 
there exist 

am eFH (B[tvl\+B[m,2\) for all ra > t± . 

We have that am = /3m + 7 m with (3m G B[tv l j and 7 m G B[m, 2\. Thus the 
sequence 7 m —r 0, and since B[t1, l j is compact, after taking subsequences, we 
get that pm —> a G B[t1, l j . Hence am -> a G B[t1, l j . As F is sequentially 
closed, then a G F\ which contradicts the fact that B[tx, l j D F = 0. Therefore 
there exists £2 > tx such that F D (B[t111J+-B|_^2>2J) = 0- I n the same way, 
we get a strictly increasing sequence of natural numbers tx < t2 < • • • < ts such 
that 

Fn(B[t1,l\+B[t2,2\ + ...+B[t3,s\) = 0 

for all s G N. We define / G T such that f(n) = tn for all n G N and we take 
the zero neighbourhood Wf. It is clear that TV, C\F = 0. Since 0 G F, we have 
arrived to a contradiction. • 

THEOREM 9. The topological field (Q p ,7^) «s complete. 

P r o o f . We reason by the way of contradiction. We assume that (a^) i G / is 
a Cauchy net without limit, where / is a directed set. There exists j G I such 
that a- — a- G F>(0,p_1) for all z > j , and (a_ — ct-)ieI is also a Cauchy net 
without limit. Therefore we assume that { a i / i G / C L?(0,p_1). Since (Q p ,7Tj is 
separable, there exists a countable dense subset of jB(0 ,p _ 1 ) , which we denote 
by {7n}nGN- For each n G N we consider the Cauchy net (7n — c ^ ) i E / , which 
has no limit. The sets An, defined in (10), are compact. Hence, for all n G N, 
there exists in G I such that the set 

Sn = ( 7 n " a, : i > in} = 7 n - K : i > ij C Bfap'1) 

satisfies Sn n An = 0. Let S = [j Sn; since 0 £ Sn for all n , then 0 g S. 
nGN 

Let us show that 0 G S. Let IV, C F?(0,I>_1) be a neighbourhood of zero, there 
exists i* G I such that ai — a- G Wf for all i , j > if. We fix j > if. There 
exists 7 n G a • + Wf, that is 7 n — a • G TV .̂ Let i > sup{i^, in}, then we have 
that 7 n — a{ G 5 n and a^ — a • G W*. We obtain 

7 n " ^ = (ln ~ <Xj) - (ai - aj) eWf-Wf = Wf . 
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Consequently Wf D Sn ^ 0, and so Wf f) S ^ 0. We have proven that 0 G S. 

Since S is not closed and (QP,T) is sequential, there exists a sequence 
(hn)neN contained in 5 which converges to an element h <£ S. Notice that 
h G B(0,p~1). Considering that each Sn is closed and S = (J Sn, we get 

nGN 

a subsequence (hm)meN such that / i m G S^^) with n(rn + 1) > n(m) for 
all m . By Lemma 6, there exists / such that hm — h G Al for all m > mr 

Since S C ^ ( O , ^ - 1 ) = (J Az, there exists t such that /i G At. Thus / i m = 

(hm - h) + h e A( + At = As) where 5 = max{/,£}. As hm G 5 n ( m ) , then 

hm £ An,j. We reach a contradiction for n(m) > s. D 

THEOREM 10. Each intermediate field O C K C Q is complete with the 

subspace topology inherited from (QP,T). That is, K is closed in (~Qp,T) . 

P r o o f . We have seen in Lemma 3 that, if the extension K/Qp is finite, 
then the p-adic topology coincides with the subspace topology obtained from 
( Q p , T ) . The result follows taking into account that K is complete with the 
p-adic topology. 

Now we consider the case in which the extension K/QL is infinite. Observe 

that, in the previous results in this article, we have only used the fact that Q 
is an infinite algebraic extension of Q , and we have not used properly the fact 
that Q is algebraically closed. Therefore all the previous results are true for the 
field K with the subspace topology T \K, in particular, the fact that (K,T \K) 
is complete. • 

All the previous results can be rewritten for W n r a m
 ? the maxim.al unramified 

extension of the P-adic field. In this specific case, there is exactly one interme­
diate extension QCKc (QFnram of each degree [K :Qp] = n. Hence, the fields 
jrv"n, defined in (8), can be taken as the unique unramified extensions of O of 
degree n\. 

We recall that a topological space X is a Baire space if any countable union 
of closed subsets having no interior point cannot have an interior point; in par­
ticular, such a countable union cannot be equal to X. 

THEOREM 1 1 . The topological field (Qp,T) is not a Baire space. 

P r o o f . We have seen that there are a countable collection {I^n}n G N of 
finite field extensions of Q such that 

nЄN 
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Since each neighbourhood of zero Wf contains elements of arbitrarily large 
o I 

degree over Q , we have that Kn — 0. As each Kn is closed, we conclude that 

(Qp' //L) is n o ^ a Baire space. D 
There is a similar reasoning in [14; p. 129] and [16; p. 43] in order to prove 

that ( Q , | | ) is not a Baire space, and therefore is not complete. 

COROLLARY 12. The topological field {QP,T) is not a first countable topo­
logical space. 

P r o o f . Each first countable Hausdorff topological group is metrizable, and 
each complete metric space is a Baire space. Applying Theorems 9 and 11, we 
conclude that our topological field is not first countable. • 

We recall that a subset S of a commutative topological ring R is bounded 
if given any neighbourhood V of zero, there exists a neighbourhood U of zero 
such that SU C V. If R is a nondiscretely topologized field, this is equivalent to 
saying that given any neighbourhood V of zero, there exists a nonzero element 
x G R such that Sx C V (see [15; p. 42, Theorem 3] or [17; p. 26, Lemma 12]). 

A ring topology on R is locally bounded if there exists a bounded neighbour­
hood of zero. A topological field K is locally bounded if and only if there exists 
a neighbourhood of zero V such that {aV : a G K \ {0}} is a fundamental 
system of zero neighbourhoods. 

LEMMA 13. If (K,T) is a topological field locally bounded and separable, then 
it satisfies the first axiom of countability. 

P r o o f . There exists a neighbourhood of zero V such that B = {a,V : 
a G K\ {0}} is a neighbourhood base at zero consisting of bounded neighbour­
hoods. Let {7 n } n ( E N be a dense subset in (K, T). Let us see that {^nV : n G N} 
is a base of zero neighbourhoods. Given aV G B, there exists bV G B such that 
bV + bV C aV. Since V is bounded, there exists a neighbourhood of zero W 
such that WV C bV. There exists ryn such that r)n - b G W. We conclude that 

lnV C ( 7 n - b)V + bV C WV + bV C bV + bV C aV . 

U 

COROLLARY 14. The topological field (Q p , 7^ ) is locally unbounded. 

P r o o f . Consider that ( Q , T) is separable (Lemma 4) and does not sat­
isfy the first axiom of countability (Corollary 12). • 

In [12; Table 2] M u t y l i n raised the question if there exists a complete, 
not locally bounded and not first countable field extension of the p-adic number 
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field Qp (see also [17; p. 256]). We have seen that the topological field ( Q , T ) 
satisfies those properties. 

An element a in a topological field is topologically nilpotent if the sequence 
(LYn)nGN converges to zero. 

In [9], [10] we introduced some locally unbounded topological fields having 
topologically nilpotent elements. Our field (Q p , 7^ ) has topologically nilpotent 
elements (for instance, p) and is locally unbounded. In fact, each element in 
the open disk F?(0,1) is topologically nilpotent. In [3; p. 147] it is proven the 
following result: 

Let K be a locally bounded topological field with a topologically nilpo­
tent element, then K possesses a topologically nilpotent neighbour­
hood of zero (and consequently, K satisfies the first axiom of count-
ability) . 

With this result and Corollary 12, we have another proof of Corollary 14. 

LEMMA 15. Every automorphism a G Gal (Q / Q ) is continuous. 

P r o o f . For each a G Gal (Q / O ) , and each a G Qp we have that 
deg(a) = deg(«r(cY)) and v (a) = v (a(a)). Hence for each neighbourhood 
of zero Z^, defined in (12), we have that a(Z,) = Z, . • 

We recall that every a G Gal (Q / O ) can be extended to an automorphism 
of C which is an isometry, and therefore continuous with the p-adic topology 
([11; p. 55]). The next result shows a characterization of the field topology 7^ 
with respect to the p-adic topology. 

THEOREM 16. Let {LA be the family of all finite field extensions of Qp con­
tained in Q . The topology T is the finest ring topology on Qp among those 
ring topologies whose subspace topology in each L- is the p-adic topology. 

P r o o f . Let Tx be a ring topology whose restriction to each L- is the 
p-adic topology. Let VQ be any neighbourhood of zero for Tx; it suffices to show 
that there exists a zero neighbourhood W^ for 7^ such that W^ C VQ. Each 
set An = Kn fl B(01p~1), defined in (10), is also compact with respect to the 
topology Tx, and therefore is bounded in ( Q ^ , ^ ) . There exists a family of 
neighbourhoods of zero {^ n } n > 0 f° r T\ which satisfies the following conditions: 
Vn+1 + Vn+1 C Vni Vn+1 C V~ and AnVn+1 C Vn for all n > 0. Since p« -> 0 
with respect to Tx, for each n G N there exists tn eN such that pm G Vn+1 for 
all m>tn. We choose the numbers tn such that tn < tn+1 for all n G N. We 
also have that 

Anp
u C Vn for all n . 
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We inductively get 

Yi+YiCYo> 

Vi + v2 + v2cv0, 

V1 + V2 + --- + Vt_1+Va+VaCVQ for all s G N. 

Hence, 

^ p ' 1 + A2p
t2 +••• + Asp

u C V0 for all s € f f . 

Since Anp
tn = B\tn+1,n\, we rewrite the above expression as 

^Bltn+l,n\CV0 for all a € N. 
71=1 

We consider / G JF such that / ( n ) = £n + 1 for all n G N and the corresponding 
zero neighbourhood W*. It is clear that TV, C V0. Q 

3. Comment on analytic functions 

In p-adic analysis, we usually deal with analytic functions defined either 
in K, a finite field extension of Q^ , or in Cp . Since Qp is a complete topological 
field with the topology T , we look briefly at the possibility of defining analytic 
functions on it; although it seems that there is not any gain by doing p-adic 
analysis in ( Q , T ) instead of Cp . We only study a rather specific case. 

Let C {X} be the algebra of analytic functions defined on the closed disk 

B(0,1) C Cp , that is, 

Cp{X} = \f(x) = Z Vn •• (VneNu{0})(a„GCp), lim | a j p = o} . 
k n _ Q n-+oo j 

We recall that C {X} is a complete algebra with the norm 

\\f(x)\\=msx{\an\p: n G N U {0}} = msx{\f(x)\p : \x\p < 1} 

= m a x { | / ( x ) | p : \x\p = 1} . 

See, for instance, [4; Chap. 6], [14; Chap. 6] or [16; p. 121]. We have seen in 
Lemma 6 that a sequence (an)n ( E N converging to zero in (Q p , 7^ ) has the degrees 
of its terms bounded. That is, there exists K, a finite field extension of O , such 
that an G K for all n G N. Consequently, in order to guarantee the convergence 
in ( Q , T ) , we are lead to define the following subring of Cp {X}. 
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DEFINITION 17. Let Ep be the subring of Cp{X} consisting of those func-
oo 

tions f(x) = ^2 anxn f° r which there exists K*, a finite field extension of Q 
n=0 

depending on / , such that an G Kf for all n G N. 

For each finite field extension K/Q , we consider the ring of analytic func­
tions K{X} which converge in K D I?(0,1). The ring of functions E is the 
direct limit of the rings K{X}. In fact, the most commonly used analytic func­
tions in p-adic analysis satisfy the requirements in Definition 17. Furthermore, 
these functions usually satisfy that an G Qp for all n. 

oo 

Notice that any f(x)= Yl a
n
xn ^ ^ satisfies that an -> 0 with respect to 

n=0 

the topology T . Let IT be a finite field extension of Qp such that an G K for 

all n. Then, for each a G QpHI?(0,1) , we have that f(a) G K[a], and therefore 

f(a) G Q . We consider every / G E as a function 

/ :Qpn7J(0,l)->Qp . 

We need the following result of general topology whose proof is elementary. 

LEMMA 18. Let X be a topological space, and let ( ^ n ) n G ^ be a sequence of 
closed subsets of X such that 

X= U X « ' Xn^Xn+i for all « £ N . 
nGN 

Let f: X -> X be a map such that f(Xn) C Xn for all n. If each map 
f\x ' Xn -> Xn is continuous with respect to the subspace topology in Xn, 
then f is continuous. 

P r o o f . Use the fact that / is continuous if and only if / ( A ) C f(A) for 
every subset A. • 

COROLLARY 19. If both sets, Qp n B ( 0 , l ) and Qp, are endowed with the 
topology T . then every f G E is continuous. 

oo 

P r o o f . Let f(x) = Yl a
n

xn e ^ V There exists a G Q such that 
n=:0 

an G Qp[a] for all n. We consider the sequence of fields (IvTn[a])n N , where 

each Kn is the field defined in (8). Each I^n[cY] is complete and closed in Q , 

and f(Kn[a\) C ICn[a]. Hence / is continuous. • 

The previous result is obviously valid if Q D H(0,1) and Q are provided 
with the p-adic topology, in fact, in this situation, every / G E has continuous 
derivatives of all orders in I?(0,1) C Q . 
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Since ( Q , T ) does not satisfy the first axiom of countability, in order to 
avoid nets, we restrict ourselves to deal with sequential differentiability. Let 
X C Qp be an open set for 7^. We say that a function / : X -> Qp is sequentially 
differentiable at a G X, with derivative / ' ( a ) , if the limit 

lira / ( a + y ~ / ( a ) = / » (13) 
n->-oo hn 

holds for all sequences (hn)nen converging to zero in (Q p , 7^) . By the same to­
ken, we can define analogous concepts like continuous sequential differentiability 
and sequential C°° functions. 

LEMMA 20. If we consider the field Qp equipped with the topology 7^ . then 

every f G E is sequentially C°° in F?(0,1). 

Let f(x) = ^2 amxm ^ Ep. Each formal derivative f^ G E , and so it is 
m=0 

a continuous function. For each sequence (hn)neN, hn —>> 0, by Lemma 6, there 
is a finite field extension K/Q) such that a1am,hn G K for all n, m G N. If we 
consider K provided with the p-adic topology, then the function / is analytic 
in K fl .6(0,1). Therefore, we have the limit (13), with f being the formal 
derivative of / , and f'(a) G K C Qp. This limit also holds in ( Q p , 7 ^ ) . This 
result extends for all derivatives / ( n ) . 

S c h i k h o f [16; §42, §43] shows the different behavior of analytic functions 

in locally compact p-adic fields (i.e., finite field extensions of Qp) and in C . 

The behavior of analytic functions belonging to E with respect to the topo­

logical field ( Q , T) seems to be more similar to the analytic functions defined 

in Cp . The possible reasons are that C is the completion of Qp endowed with 

the p-adic topology, and neither (C , | | ) nor (Q p , 7^ ) arelocal lycompact . l t 

seems possible to translate other results from p-adic analysis in C to our topo­

logical field ( Q , T ) , for instance, the p-adic Weierstrass preparation theorem. 

As another example, we can define a function log: Q —> Q , sharing the same 

properties with the Iwasawa logarithm, translated from (C , | | ) to ( Q P , T ) . 

The basic facts of the Iwasawa logarithm in C can be found in [11; Chap. 4] or 

[14; Chap. 5]. 
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