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(Communicated by L'ubica Hold) 

ABSTRACT. In this paper, we use the notion of (V, A)-summability to generalize 
the concept of statistical convergence. We call this new method a X-statistical 
convergence and denote by Sx the set of sequences which are A-statistically 
convergent. We find its relation to statistical convergence, (C, 1)-summability 
and strong (V, A)-summabili ty 

1. Introduction 

Let A = (An) be a non-decreasing sequence of positive numbers tending to oo 
such that 

A n + 1 <A„ + 1, A1 = l . 

The generalized de la Valee-Pousin mean is defined by 

*n(*) := x~ ^2X^ 
71 kein 

where In = [n - Xn + 1, n]. 
A sequence x = (xk) is said to be (V, X) -summable to a number L (see [8]) 

if 
^n(X) ~* L aS r i " y o ° ' 

If An = n, then (V, A)-summability reduces to (C, 1)-summability. 
We write 

[C , l ] :={x = (x„): 3LGR, lim 1 _ \xk - L\ = o} 
L n-+oo k_^ J 

and 
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[y,A]:={x = ( x J : 3FER, lim f £ |Xfc - F| = o} 

for the sets of sequences x = (xk) which are strongly Cesaro summable and 
strongly (V, X)-summable to L, i.e. xk -> L [C, 1] and xk -> L [V, A] respec­
tively. 

The idea of statistical convergence was introduced by F a s t [3] and studied 
by various authors (see [1], [5] and [9]). 

A sequence x = (xk) is said to be statistically convergent to the number L 
if for every e > 0 

lim —\{k < n : \x, - L\ > e}\ = 0 , 
n->oo U ' L — ' ^ ' — J I ' 

where the vertical bars indicate the number of elements in the enclosed set. In 
this case, we write S-\imx = L or xk —>• L (S) and 5 denotes the set of all 
statistically convergent sequences. 

In this paper, we introduce and study the concept of A-statistical convergence 
and determine how it is related to [V, A] and S. 

DEFINITION. A sequence x = (xn) is said to be X-statistically convergent or 
Sx-convergent to L if for every e > 0 

J^Lx^keI": I**-£| >-•}.= o. 
In this case we write Sx- limx = L or xk -> L (S'A), and 

5A := {x : 3 L G R , SA-lima; = L} . 

R e m a r k . 

(i) If An = n, then Sx is the same as S. 
(ii) A-statistical convergence is a special case of A-statistical convergence 

(see [2], [7]) if the matrix A = (ank) is taken as 

a = / £ [ikeIn> 
nk l o if k i in. 

2. 

In this section, we find the relationship of Sx with [V, A] and (C, 1) methods. 
Let A denote the set of all non-decreasing sequences A — (An of pos i t iv 

numbers tending to oo such that A n + 1 < An and X1 1. The following theortn 
is the analogue of [6; Theorem 1]. 

112 



A-STATISTICAL CONVERGENCE 

T H E O R E M 2 . 1 . Let \ e A, then 

(i) xk->L[V,\] = • xk^L(Sx) 
and the inclusion [V, A] ̂  Sx is proper, 

(ii) if x G l^ and xk —> L (Sx), then xk -> L [V, A] and hence xk —> F(C, 1) 
provided x = (xk) is not eventually constant, 

(iii) 5 A n^ 0 O = [Y,A]n*?0o, 

where i^ denotes the set of bounded sequences. 

P r o o f . 
(i) Let e > 0 and xk -> L [V, L]. We have 

X> f e-£|> £lx*-Ll>.el{*e /» : K- i |> £ } | . 
/cGIn keln 

\xk-L\>e 

Therefore xk -> L [17, A] =-[> a;fc -> F (5A) . 
The following example shows that 5A ^ [V, A]. 
Define x = (xk) by 

k for n - [^/\n~] + 1 < fc<n, 

otherwise. 
x* = {o 

Then x <£ i^ and for every £ (0 < e < 1) 

^\{keln: \xk-0\>e}\ = ^ ^ - - ^ 0 as n - > oo , 
A n A n 

i.e. xk —> 0 (5 A ) . On the other hand, 

— Y^ 1 ^ — 0| -> oo ( n -> oo ) , 
n kein 

i.e. xk-/>0[V,\]. 
(ii) Suppose that xk —> F (5A) and x G ^ , say l.^ - F| < M for all k. 

Given £ > 0, we have 

j-j2\xk-L\ = — ^ i^-L i -f— J2\xk-L\ 
n kein

 n kein
 n kein 

\xk—L\>e \xk — L\<e 

<^\{keln: \xk-L\>e}\+e, 
n 

which implies that xk -> L [V, A]. 
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Further, we have 

li:^-L)=l-nf:(xk-L)+
i-Y.^-L) 

k=l k=l keln 

-- T E K - zl + y- £ I** - Ll 
n fe=i n fee/n 

2 v ^ , 

< r £ i * * - j | -
n kein 

Hence xk -» L (C, 1), since xk -> L [V, A]. 
(iii) This immediately follows from (i) and (ii). D 

It is easily seen that Sx ^ S for all A, since Xn/n is bounded by 1. In this 
section, we prove the following relation. 

THEOREM 3 .1 . S C Sx if and only if 

liminf-^ > 0 . (3.1.1) 
n—•oo n 

P r o o f . For given e > 0 we have 

{k < n : \xk-L\>e}D{keIn: \xk -L\>e}. 

Therefore 

±\{k<n: \Xk-L\>e)\>l\{keIn: \xk-L\>e}\ 

> ^ - i | { f c e / „ : | x f c - L | > e } | . 

Taking the limit as n —> oc and using (3.LI), we get 

xk-*L(S) => xk->L (Sx). 

Conversely, suppose that liminf ^ = 0. As in [4; p. 510], we can choose a 
n-»co n 

subsequence (n(j))°° such that n
n/ry < \ . Define a sequence x = (x-) by 

1 if ieln(j), j = l , 2 , . . . , 
xA — , 

0 otherwise. 
Then x G [C, 1], and hence, by [1; Theorem 2.1], x G S. But on the other hand, 
x £ [V, A] and Theorem 2.1 (ii) implies that x <£ Sx. Hence (3.LI) is necessary. 

D 
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