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ABSTRACT. We try to answer the question: when a partial order can be ex-
tended to an order isomorphic to the ordering of rationals? One necessary and a
few suificient conditions for the existence of such an extension are presented.

1. Introduction

This article is located on the crossing of paths leading from the two fundamen-
tal results on ordered sets, namely: Marczewski Theorem and Cantor Theorem.

MARCZEWSKI THEOREM. ([13]) Every partial order can be extended to a
linear order (with the same underlying set). Moreover, it is the intersection of
such extensions.

CANTOR THEOREM. ([5]) Every countable linearly and densely ordered set
containing neither the least nor the greatest element is order-isomorphic to the
set Q of all rationals (with natural order).

Marczewski Theorem generates many natural questions on relations between
ordered sets and their linear extensions. Which properties are preserved? How
many linear extensions of an order determines that order? How many compara-
bilities should we add to a given order to make it linear? How to obtain a linear
order of a given type?

Investigations on the second and third of the above questions have been
focused mainly on finite ordered sets and brought the expansion of the dimension
theory, the examinations of the jump number and of correlation problems.

ANMS Subject Classification (1991): Primary 06A06; Secondary 04A20.
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Typical properties to preserve are: a noncontainment of any chain of a given
type (e.g., w, w*, n, etc), a local chain-completeness (in the sense that all
maximal chains in closed segments are complete).

We will examine the following problem, a special case of the last question:

([6]) Which order can be extended to a linear order isomorphic to the order
on Q, the set of rationals?

The analogous questions with 7Z, the set of integers, N, the set of natural
numbers; and R, the set of reals. have been considered in [12] and [11]. A count-
able ordered set has an extension which is order-isomorphic to Z (resp. N) if
and only if each its segment (resp. principal ideal) is finite ([12]). With & (more
generally: with locally chain-complete linearly ordered sets) the situation is not
so clear. Each locally chain complete set with no infinite antichains has a linear
locally chain complete extension. Moreover, for countable sets the antichain as-
sumption can be removed ([11]). Linear extensions of countable ordered sets are
examined in the sequence of papers [8], [9] and [10], in particular: the existence
of the least (with respect to the embedding) such an extension. its uniqueness
(up to the isomorphism). The problem of density (or conversely: of the disper-
sity) of ordered sets and their linear extensions is the topic of [2], [3]. and [1]. A
survey of results and methods obtained up to early eighties can be found in [1].

On the other side, Cantor Theorem had a substantial influence on the devel-
oprnent of model theory as an inspiration of such notions as categorical theory
and saturated model.

2. Preliminaries

An order (what means here the same as partial order) on a set P is de-
noted by <, and its strict version by <, although the subscript is usually
omitted unless it will lead to a misunderstanding. For X C P, sets {;p S
(3 € P)p < a}, {peP: (3o € P)p=>a} will be denoted by X" XY re-
spectively. If p € P, then p", p¥ mean {p}", {p}”, respectively. For p.q € P.
q covers p in P (p <, q) if p < ¢ and there isno x € P with p <. <gq¢. I’
is densely ordered if (Vx,y) [.’17 <y = (I2)r<z< y] (or equivalently: there
are no covering pairs in P). Countability means here that a given set is of the
same cardinality as the set N of all natural numbers. As usual. 5 denotes the
order type of @, the set of all rationals. Cantor Theorem establishes that there
are only four countable dense ordered types: n, 1 +n, n+1 and L +1n+ L.

For an order-type «, an ordered set P has an «-ertension if its order <

o
has a linear extension of type c.
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Let us recall that, for a given ordered set T" and a family {P, : t € T}

of ordered sets, the lexicographic sum L;cpP, is a union UTlt ordered by
te
a relation (with no loss of generality, sets P, can be assumed to be pairwise

disjoint):

z <y < (BteT)(z,ye P, & z<p y)
or 3t,seT)(xeP&kyeP &t<;s).

For T being a two element chain 0 < 1 and B, = P, P = @, the lexicographic
sum L, P, will be denoted by P& Q.

Consider a Cartesian product P x @ of ordered sets. We recall its two order-
ings. The first is componentwise:

(21,9)) S (@g,05) &= Ty Sp T &y, <y,

The second one is called lezicographical and it is defined by a formula:
(@1, y)) 2 (Tg,yy) &= o <pay or (2, =1, &y, < ) Ys) -

Its name is justified as Px@Q ordered by < can be identified with £, ({z}xQ).
[t is easy to see that < extends < on P x @, and it is a linear order whenever
both <, and < are linear.

There are two trivial examples of ordered sets having an n-extension: Q itself
and a countable antichain. Using lexicographic sums and direct products we can
produce from these two examples a great variety of sets with an n-extension.

THEOREM 1.

1. For every monempty finite or countable ordered set T and a family
{P,: t €T} of ordered sets with n-extensions, the lexicographical sum L, .. P,
has an n-extension.

The direct product P x @ (with the componentwise order) of an arbitrary
ordered set QQ with an n-extension and an arbitrary finite or countable ordered
set P has an n-extension.

Proof. Let T"=T, P/ = P,, let <;, be an arbitrary linear extension of
<. and <1,, be an n- (“(f(‘IlSl()Il ()i <> . Consider ‘Cfer’ . Obviously, it is a
lincar extension of Lcp P, satisfying the assumptions of Cantor Theorem, hence
it is order-isomorphic to Q. Point 2 is a consequence of point 1 and of the fact
that the lexicographic order of P x @ is an extension of its componentwise order.

OdJ
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A chain C in an ordered set P is saturated in P if, for every p € P — (. if
C U {p} is a chain, then p is either a lower or an upper bound of C'. We call
it nontrivial if C contains at least two elements. A subset X of P is conver if.
for each z,y € X and z € P, r < z <y implies z € X .

Obviously, a saturated chain in a subset of P can be not saturated in P’.

LEMMA 1.

1. Every chain can be exterided to a saturated chain.
2. If X is convex in an ordered set P, and C is a saturated chain in X .
then C' is saturated in P as well.

Proof. To prove point 1, let X be a convex hull of (', i.e.. X = {p e P
(Fr,ye C)x <p< 1/} Obviously, C C X and C|,
chain in X, is saturated in ?. Point 2 is evident. Ol

its extension to a maximal

Observe that a dense chain in an ordered set P need not have a saturated
dense extension. An example is AUB in Py = A®{a, b} B, where A (respec-
tively B) is the set of all negative (positive) rationals with the natural order
and {a,b} is an antichain.

3. The necessary condition

First, let us recall the simiplest version of Dushnik Miller theorem ([6]).
We prove it for the completeness of our reasoning.

LEMMA 2. ([6]) Let P be an ordered set with no infinite chains and no infinite
antichains. Then P is finite.

Proof. Obviously, for each element p € P there exists a minimal element

g ‘ > p o Y R o ot of SR,

q with ¢ < p. Let Py = P = J 2, where X is the sct of all minimal
reXo

clements of P. Assume P to be infinite. X, being an antichain. is finite. hence

xy is infinite for some z, € X,. Let P, = 2y — {x,}. X, be a set of all
minimal elements in P, and x; be such an clement of X, that r) is infinite.
Let P, =z —{x,}, etc. We obtain a strictly increasing sequence &, < . < ...
of elements of P, in contradiction with the finiteness of chains in 7. ]

THEOREM 2. Let P be an ordered set with an n-cxtension. Then P ocontains
an infinite antichain or a nontrivial dense saturated chain.

Proof. Let = bean y-extension of <, (we will postpone the subscript 7).
Assume that no nontrivial saturated chain in P is dense (with respect 10 -
We define the decreasing sequences of convex subscets of 12

P=pP 20D

A
0 = 11122"'~
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and a sequence

CysCy,Coy ...

of nontrivial saturated chains such that, for all 7, C,
in all P; for j <1) and disjoint with P, ;.
Moreover, we define two such sequences a,, b, of elements of P that

is saturated in P; (hence

ay <a; <ay,<---<---<b, <b <y,

and a, is covered in P, by b,.

If P is an antichain, then the proof is unnecessary. Otherwise, there exists a
nontrivial saturated chain Cj in Fy = P. As it is a nondense chain, there exist
a,, b, € C such that ay < b,. By the saturation of C, this covering relation
holds in P as well. Obviously, a, < b,

Let n > 0, and assume, for ¢ <n, that P,, C,, a;, b, have been defined and
they satisfy the above inequalities and inclusions. Define

P ={z€eP:a, ,<x=<b, _,}.

Obviously, P is an infinite convex subset of P _, with no dense nontrivial
saturated chains and P, NC, | = (. Again, we can assume P, to be not an
antichain. Let C,, be an arbitrary nontrivial saturated chain in P , and a,, b,
be a covering pair (in P, ) of its elements given by the saturation and nondensity
of C .

Let X = AUB, where A = {a, : 1 =0,1,2,...} and B ={b, : i =
0,1,2,...}. Now, by Lemma 2, we can assume X to contain an infinite chain
(", otherwise the proof is finished. At least one of sets C N A, C N B, say the
first of thern, is infinite. Consider D = {b, : a; € CN A} and a pair b, ,b, of
its elements, where 4, < i, . Observe that a, ls comparable with a, as they are
clements of the chain C. Hence a; < a; because of a; < a; . Therefore b,
is not less than b; (otherwise a, ,a; would not be a covering pair). Moreover,
b, is not over b, , because of b, < b, . Hence b, is noncomparable tc b, , and
D is an infinite antichain. O

Although both the conditions of Theorem 2 can be satisfied, for example: for
the rational plane, it seems reasonable to consider them separately in order to
look for a sufficient condition. We will make it in the next two sections.

Now, observe that none of the above conditions is suflicient. Consider ordered
set Py = A @ {a,b} & B from the previous section. Obviously, in any linear
extension of the ordering of P, {a,b} is a covering pair, therefore none of those
extensions is a dense order. A similar situation occurs when we consider P, =
A {a,b} @ B, where both A and B are countable antichains and {a,b} is an
antichain.

These examples show that we need to strengthen our necessary conditions to
make them sufficient.
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4. What happens when P contains a chain of type n?

Actually, we assume P to embed @, the set of all rationals, i.e, PP contains
a chain C' of the type n. The question is what should we do with elements of
— C'. Loosely speaking, we can treat them as candidates for irrational numbers
and to insert them into gaps determined by Dedekind cuts of '. Example P, in
Section 2 shows that the problem arises when there is more than one candidate
to be inserted into the same gap.
For a given subset X of an ordered set P and p,q € P define p ~ ¢ ({p.q}
is X-autonomous) if and only if for each z € X,

T<p = <4 and p<r = g<.a.

By X(p), we denote the set {q € P: p~y q}. Obviously, always p € N(p).
For example, in Py, (AU B)(a) = {a,b}.

LEMMA 3. Let P be a countable ordered set. If P contains a marimal chain '
of the type 1 such that, for each p € C', C(p) = {p}, then P has an n-extension.

Proof. Let P—C = {p,,p,,..-}. Define an increasing scquence of exten-
sions of <p by “inserting” elements p, in turn “within” chain (. Let < ,=<,,
C, = C. Assume that < and C, have been defined, and ', is a maximal chain
in P (with respect to < ), its type is n and C, (p) = {p} for cach p € P . Let
A={reC, : < p}, B={yeC, :p, <,yt and D =C, —(AUDB).
Observe that A # C, . B# C_ | D # (), otherwise, ('” is not a maximal chain.
Moreover, D is not a singleton, otherwise if, say, D = {p}, then {p,.p} would
be C, -autonomous. Therefore D is a segment in C, . Consider an arbitrary ir-
rational number in D and substitute it by p, . To be more precise, let (A 5)
be a Dedekind cut of C, such that A C A, BC B" and A’N B =0 (i.c.. this
cut corresponds to an irrational in D). Define now Cpopr = A ddp,} B and
<,41 to be a transitive closure of the sum of the linear order on €7, | and <
on P — C’n+1 (e, <,y for x e A, p, <,y and dually). H(Il(‘( C,
is maximal in P. By Cantor Theorem, its type is 7. It remains to prove that.
for each p € C, |, Cn+1( = {p}. Assume that p ~ a4 for some ¢ # p.
If p = p,, then ¢ would be comparable with all elements of (', . despite the
maximahty of C,. If p# p,, then p € C, . Hence p ~c, q despite the induc-
tive assumption. Obviously, P = JC, and it is lincarly ordered in type 1 by a

2

relation <= <,. -
i

The sufficient condition in the above Theorem is too strong. Assume a mod-
ified example P, with an infinite antichain instead of {a,b}. Extending the
disorder of this antichain to an n-order, we obtain a linearly ordered set of the
type n+n+mn =n. The following Theorem includes this case.
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THEOREM 3. Let P be a countable ordered set. If P contains ¢ mazimal
chain C' of the type n such that for each p € C, C(p) is either {p} or it has
an n-cxtension, then P has an n-extension.

Proof. Let D = {p € C: C(p) has an n—ext;ension}, and, for p € D, let
=, bea fixed linear extension of <c(p)- Substitute in C' each p € D by C(p)
(ordered by =< ). The obtained chain C' = (C — D)U |J C(p) is maximal in

peED
I’ and, by Cantor Theorem, is still of the type n. Now, let <’ be an order of P
determined by this new situation, i.e., it is the transitive closure of the sum of
that linear order on C’ and <,, ., . It is easy to see that <’ is an extension of
<,». and for each p € C', C'(p) contains p only. Then we use the last Lemma.
O

5. What happens if P contains an infinite antichain?

For an ordered set P containing neither the least nor the greatest element,
let P means PU{p,,p,} with comparabilities p, < z, = < p, added, for z € P,
to the order of P.

Denote by (x) the following property of an ordered set P:
(x) Let X and Y be finite antichains in P such that

Vee X)VyeY)ydpa.

Then there ezists p € P such that p ¢ X and pg YV .

Note that if P is linearly ordered, then (x) means just its density. Any
ordered set with the property (x) has neither the greatest nor the least element.
Indeed, apply (x) to X = {z}, Y = (), where z is the greatest element of P,
and to X =0, Y = {y}, where y is the least element of P.

The proof of the following theorem applies a “back-and-forth” technique dis-
covered by Georg Cantor for the proof of his Theorem.

THEOREM 4. If a countable ordered set P satisfies (%), then it has an
n-crtension. Moreover, <, is the intersection of all its n-extensions.

Proof. Consider sets P and Q. With no loss of generality, Q can be
assumed as the set of all rationals from the closed segment [0, 1] of the real line.
As the matter of fact, we will construct a (1 4+ n + 1)-extension of P which,
obviously, determines the n-extension of P.
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Let us enumerate elements of P and (@:

P == {pospppza---}a

where p, (p;) is the least (resp. the greatest) element of P,

(@ = {q()aq]7(I27 s } 5
where g, =0 and ¢, = 1.

We construct a strictly increasing, one-to-one mapping f of P onto Q by set-
ting ‘f(p'ik)A: a4, ,Awhere Diys Py o Piys - and ¢, ¢, ,q;,,. .. are special permu-
tations of P and Q, respectively. We define p, and 4, by induction, separatelv
on even and odd steps. Let P = {p, : k< m} and Q, = {qﬂ_ k< m}.

Step 0. Pi, = P>

Step L. g, = q,-

Let m > 1. f has been defined on P, and it is strictly increasing.

Step m =2n. Let i,, = min{i: p, ¢ P, }, X,, ={r e ), v <p_ }

2n

and Y, ={zeP,, : > pi?n}. Obviously, p; € X, and p, €Y, . Define

Jo, = 111in<{j D flx) <q; < fly) foreach v e X, . ye Y, - Q._,”> .

Step m =2n+ 1. Let

j2n+l = IIliIl{jZ q]‘ ¢ Q‘g,,,,‘_]} .

Define X, o, (Y, 4,
{z € Py fl@) <gq,, 1} (respectively, {y €P, 1t fly) >y, } ) It s
casy to see that y jé x for cach x € X, ;. y €Y, . Therefore they satisfy

the premise of (x). Thus the set {i: p, € P — (X UY,) |

) as the set of all maximal (minimal) elements of the set

)} 1s nonempty.
Let iy, ., be its first element.

{t is easy to sce that the mapping f(])L-A_) =q;, Is defined on the whole set
P, and all elements of @ are reached as its values. It is also true that. for cach
k. p; ¢ P, and 4;, ¢ Q). hence fis a one-to-one fllll(‘t.l()ll. It remains .m show
that [ is strictly increasing. Let p, < p;, and b <1 (ic.op o il bk
the proof is similar). Asswine [ to be even. Then p, € X, henee ¢, < g,
Now, assume [ to be odd and. despite our hypothesis. di >, Then. by the
definition of Y, . p,

!k
the definition of this element.

>y for some Y. Therefore p, € Y, contradiction 1o

Now., we prove that <, is the intersection of its j-extensions. Obvioushy, i
is cnough to show that for cach noncomparable pair a.b of clerments ol 12 there
exists an y-extension < such that a < b, Denote v <2 an erder which is the

rracssitive closure of the relation <, U{ (a.b) } It is casy to sce that

<y =< yVie <, a b, y).
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In particular, a < b. We prove that (P, <) has the property (x), what by the
just proved part of our theorem gives us a desired <.
Let X and Y be <-antichains (then they are <,-antichains, as well) and

VzeX)(VyeY)y L.

It is easy to see that the same holds for <,. Applying (%) to < we obtain
such an element p of P that, for each z € X, y €Y, p £, 2 and y £p p. If
p satisfies the conclusion of (%) for <, then we are done. So suppose p < x for
some x € X (the dual case, p > y for some y € Y, is the same). We will find
another element w coming true this conclusion. It holds p <p a and b<pr.
Obviously, a £, z for each z € X. Now, let z, € X. We prove that =, £p a.
So assume x; <p a. x; # x, otherwise b <, a. Hence 2, < z (because of
ry <, a,b<, x), despite that X is an <-antichain. Therefore, X U {a} is an
< p-antichain. Observe, that for any y € Y, y ﬁp a, otherwise y < . Hence,
NU{a} and Y satisfy the premise of (x) (for <p). Therefore, by its conclusion,
there is u such that

(Vee XU{a})(VyeY) uédpz & y£pu.

Easily, w ¢ « for each z € X. Moreover, for any y € Y, y £ u, otherwise
y<pa<puw dJ

COROLLARY 1. Let P be a countable ordered set with the property:

there is an infinite antichain A C P such that, for each pc P, A, the
set of all elements of A which are comparable with p, is finite.

Then Phas an n-extension.

Proof. Let A denotes the set mentioned above, and X, Y be the finite

sets from the assumption of Theorem 2. Obviously, set C'= [} (A — A4 ) is
peEXUY

nonempty, and C C P — (X "UYVY). a

Consider the set Z x Z with a componentwise order. It is easy to see that
cach pair (.r.y) of that set is comparable with only finitely many elements of
the antichain {(‘n,. —n): ne Z} Hence 7Z x 7 has an 7-extension.

A nice example of the application of that Corollary is the family of finite
subsets of a countable set with relation C as the order. The desired antichain
is the family of all singletons. The similar argumentation shows that the family
of colinite subsets (i.e. subsets with a finite complement) of the same set has an
n-extension as well. Hence. it is casy to see that the family of all subscts which
are finite or cofinite has the (n4-n)-extension which itself is of type ).

Another example is the family of all words over a countable alphabet ordered
by a relation “to be a subword”™. Then the desired antichain is the alphabet
itself.
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COROLLARY 2. Let P be a countable ordered set with no infinite chains. If
each element of P is comparable with only finitely many elements of P. then P
has an n-extension.

Proof. By Lemma 1, P contains an infinite antichain A. T

The last result can be applied, among others, to every infinite subset of an
infinite fence or of such ordered sets like those with diagrams shown in Figures.

COROLLARY 3. Let P, Q be countable ordered sets. If P contains a chain
with no upper bound, and Q) contains a chain with no lower bound, then P x Q
has an n-extension.

Proof. Let C and D be those chains in P, @, respectively. Obviously.
they are infinite. Let " = {c¢,,¢;,...} and D = {d,,d,,...} (orders of their
labelling need not be in any relation to <,, and éQ)' Let »

o = ¢, and. for

k>0, Ly, = where Je = 111111{'1 e > n<1211)x{(,'“,('], - ,(',‘,71.,)'#_1}}, It is

ecasy to see that elements x; form a strictly increasing sequence which is cofinite
with a chain C (i.e., (Vi)(3k) ¢, <z, ). Hence it has no upper bound. as well.
Dually, define v, € D, a strictly decreasing sequence which is coinitial with
D.Let A= {(x¢:¥): (@, 9,), - .}. A is an antichain in P x Q. Observe that
cach clement (p,q) € P x Q is comparable to at most finitely many clements
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of A. Indeed, assume the converse situation. With no loss of generality, we can
assume that (p,q) is below infinitely many elements of A. Then ¢ would be a

lower bound of the whole sequence y, and hence — of a chain D. O
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