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W H I C H COUNTABLE O R D E R E D SETS 
HAVE A DENSE LINEAR EXTENSION? 

A L E K S A N D E R R U T K O W S K I 

(Communicated by Tibor Katrindk ) 

ABSTRACT. We try to answer the question: when a partia l order can be ex­
tended to an order isomorphic to the ordering of rationa ls? One necessary and a 
few sufficient conditions for the existence of such an extension are presented. 

1. Introduction 

This article is located on the crossing of paths leading from the two fundamen­
tal results on ordered sets, namely: Marczewski Theorem and Cantor Theorem. 

MARCZEWSKI THEOREM. ([13]) Every partial order can be extended to a 
linear order (with the same underlying set). Moreover, it is the intersection of 
such extensions. 

CANTOR THEOREM. ([5]) Every countable linearly and densely ordered set 
containing neither the least nor the greatest element is order-isomorphic to the 
set Q of all rationals (with natural order). 

Marczewski Theorem generates many natural questions on relations between 
ordered sets and their linear extensions. Which properties are preserved? How 
many linear extensions of an order determines that order? How many compara­
bilities should we add to a given order to make it linear? How to obtain a linear 
order of a given type? 

Investigations on the second and third of the above questions have been 
focused mainly on finite ordered sets and brought the expansion of the dimension 
theory, the examinations of the jump number and of correlation problems. 

A M S S u b j e c t C l a s s i f i c a t i o n (1991): Pr imary 06A06; Secondary 04A20. 
K e y w o r d s : partia l order, linear order, linear extension, chain, density, 77-extension. 
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Typical properties to preserve are: a noncontainment of any chain of a given 
type (e.g., CJ, uY*, r?, etc), a local chain-completeness (in the sense that all 
maximal chains in closed segments are complete). 

We will examine the following problem, a special case of the last question: 

([6]) Which order can be extended to a linear order isomorphic to the order 
on Q, the set of rationals? 

The analogous questions with Z, the set of integers, N, the set of natural 
numbers, and R, the set of reals, have been considered in [12] and [11]. A count­
able ordered set has an extension which is order-isomorphic to Z (resp. N) if 
and only if each its segment (resp. principal ideal) is finite ([12]). With !R (more 
generally: with locally chain-complete linearly ordered sets) the situation is not 
so clear. Each locally chain complete set with no infinite antichains has a linear 
locally chain complete extension. Moreover, for countable sets the antichain as­
sumption can be removed ([11]). Linear extensions of countable ordered sets are 
examined in the sequence of papers [8], [9] and [10], in particular: the existence 
of the least (with respect to the embedding) such an extension, its uniqueness 
(up to the isomorphism). The problem of density (or conversely: of the disper-
sity) of ordered sets and their linear extensions is the topic of [2], [3], and [1]. A 
survey of results and methods obtained up to early eighties can be found in [4]. 

On the other side, Cantor Theorem had a substantial influence on the devel­
opment of model theory as an inspiration of such notions as categorical theory 
and saturated model. 

2. Preliminaries 

An order (what means here the same as partial order) on a set P is de­
noted by <p and its strict version by < p , although the subscript is usually 
omitted unless it will lead to a misunderstanding. For X C P , sets j p G P : 
(3a: E P) p < x} , {p e P : (3x E P) p > x} will be denoted by A A , A v , re­
spectively. If p E P , then pA , pv mean {p}A , {p}v , respectively. For p, q E P , 
q covers p in P (p <CP q) Up < q and there is no x E P with p < x < q. P 
is densely ordered if (Vx,y) [x < y => (3z) x < z < H] (or equivalently: there 
are no covering pairs in P). Count ability means here that a given set is of the 
same cardinality as the set N of all natural numbers. As usual, // denotes the 
order type of Q, the set of all rationals. Cantor Theorem establishes that there 
are only four countable dense ordered types: 77, 1 + 77, r/ -h 1 and 1 -f // -f 1. 

For an order-type a, an ordered set P has an a-extension if its 
has a linear extension of type a. 
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Let us recall that, for a given ordered set T and a family {Pt : t G T} 
of ordered sets, the lexicographic sum CteTPt is a union |J Pt ordered by 

ter 
a relation (with no loss of generality, sets Pt can be assumed to be pairwise 
disjoint): 

x<y <==> (3teT)(x,yePtkx<Pty) 

or (3£, seT)(xePtkyeP8bt <T s). 

For T being a two element chain 0 < 1 and P0 = P, P1 = Q, the lexicographic 
sum CteTPt will be denoted by P ® Q. 

Consider a Cartesian product P x Q of ordered sets. We recall its two order-
ings. The first is componentwise: 

(*i,2/i) < 0*2*2/2) ^ ^ xi -Px2 & V2 < Q 2 / 2 -

The second one is called lexicographical and it is defined by a formula: 

( z P 2/1) r< (x2,y2) <==> Xl<Px2 or (xx = x2 & y2 <Q y2). 

Its name is justified as PxQ ordered by ^ can be identified with CxeP({x}xQ) . 
It is easy to see that ^ extends < on P x Q , and it is a linear order whenever 
both < p and <Q are linear. 

There are two trivial examples of ordered sets having an //-extension: Q itself 
and a countable antichain. Using lexicographic sums and direct products we can 
produce from these two examples a great variety of sets with an 77-extension. 

T H E O R E M l . 

1. For every nonempty finite or countable ordered set T and a family 
{Pf : t G T\ of ordered sets with rj-extensions, the lexicographical sum CieTPt 

has an rj-extension. 

2. The direct product PxQ (with the componentwise order) of an arbitrary 
ordered set Q with an rj-extension and an arbitrary finite or countable ordered 
set P has an r\-extension. 

P r o o f . Let T' = T , P{ = Pf, let <T, be an arbitrary linear extension of 
< 7 . and <pf be an 77-extension of <p . Consider CteT,P{. Obviously, it is a 
linear extension of CteTPt satisfying the assumptions of Cantor Theorem, hence 
it is order-isomorphic to Q. Point 2 is a consequence of point 1 and of the fact 
that the lexicographic order of P x Q is an extension of its componentwise order. 

• 
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A chain C in an ordered set P is saturated in P if, for every p G P — C . if 

C U {p} is a chain, then p is either a lower or an upper bound of C. We call 

it nontrivial if C contains at least two elements. A subset X of P is convex if. 

for each x, y G A and z G P , x < z < y implies z G l . 

Obviously , a sa tu ra ted chain in a subset of P can be not s a tu ra t ed in P. 

L E M M A 1. 

1. Every chain can be extended to a saturated chain. 
2. If X is convex in an ordered set P, and C is a saturated chain in X . 

then C is saturated in P as well. 

P r o o f . To prove point 1, let A be a convex hull of C , i.e.. A" = {p G P : 

(zb,H G C) x < p < y} . Obviously, C C A and Cl , its extension to a maximal 

chain in A , is sa tu ra ted in P. Point 2 is evident. D 

Observe t h a t a dense chain in an ordered set P need not have a sa tu ra t ed 

dense extension. An example is AU B in P() = A($j {a, b} Q B , where A (respec­

tively B) is the set of all negative (positive) rat ionals wi th the na tura l order 

and {a, b} is an antichain. 

3. The necessary condition 

First , let us recall the simplest version of D u s h n i k M i l l e r theorem ([0]). 
We prove it for the completeness of our reasoning. 

LEMMA 2 . ([6]) Let P be an ordered set with no infinite chains and no infinite 

antichains. Then P is finite. 

P r o o f . Obviously, for each element p G P there exists a minimal element 

q with q < p. Let P() = P — | J J:V , where A ( ) is t he set of all minimal 
xex0 

elements of P. Assume P to be infinite. A ( ) , being an ant ichain. is finite, hence 
x0 is infinite for some x{) G A ( ) . Let I\ = x0 — {# ( ) } , Xv be a set of ail 
minimal elements in P1, and x^ be such an element of A x that xy

{ is infinite. 
Let P2 = x^ — {xx}, e t c We obta in a strictly increasing sequence x(] < x{ < . . . 
of elements of P , in contradict ion with the finiteness of chains in P . • 

T H E O R E M 2. Let P be an ordered set with an rj-extension. Then P contains 

an infinite antichain or a nontrivial dense saturated chain. 

V r o o f . Let -< be an //-extension of <p (we will pos tpone the subscript P ). 
Assume t h a t no nontrivial s a tu ra t ed chain in P is dense (witli respect io < ). 
Wc define the decreasing sequences of convex subsets of P : 

P = P() 2 I\ D P2D ... , 

148 



WHICH COUNTABLE ORDERED SETS HAVE A DENSE LINEAR EXTENSION? 

and a sequence 

0' 1' 2>' * * ' 

of nontrivial saturated chains such that, for all i, C^ is saturated in Pi (hence 
in all P. for j < i) and disjoint with P i + 1 . 

Moreover, we define two such sequences at, bz of elements of P that 

a0 -< ax -< a2 -< • • • ^ • • • -< b2 -< bx <b0, 

and ai is covered in Pi by b{. 
If P is an antichain, then the proof is unnecessary. Otherwise, there exists a 

nontrivial saturated chain C0 in PQ = P. As it is a nondense chain, there exist 
O(), b() £ C() such that O0 <<c b0 . By the saturation of C0 , this covering relation 
holds in Pt, as well. Obviously, a0 -< b0. 

Let n > 0, and assume, for i < n, that P{, Ci, a{, bi have been defined and 
they satisfy the above inequalities and inclusions. Define 

Pn = {xEP: an_1<x<bn„l}. 

Obviously, Pn is an infinite convex subset of Pn_1 with no dense nontrivial 
saturated chains and Pn D Cn_1 — 0. Again, we can assume Pn to be not an 
antichain. Let Cn be an arbitrary nontrivial saturated chain in Pv , and an, bn 

be a covering pair (in Pn ) of its elements given by the saturation and nondensity 
o f C „ . 

Let X = AiU 43, where A = {a- : i = 0 , 1 , 2 , . . . } and B = {bt : i = 
0,1, 2 , . . . }. Now, by Lemma 2, we can assume X to contain an infinite chain 
C, otherwise the proof is finished. At least one of sets C D A, C Pi 2?, say the 
first of them, is infinite. Consider D = {b : a E C H A} and a pair b ,b of 
its elements, where iQ < ix. Observe that ai is comparable with a- as they are 
elements of the chain C. Hence a- < a because of a- -< a- . Therefore b 

to ^l «o *i -i 

is not less than bt (otherwise ai^ai would not be a covering pair). Moreover, 
/>• is not over b- , because of b • -< b . Hence b is noncomparable to b , and 

/1 ^o ' i\ to ^l ^ ^o ' 

J) is an infinite antichain. • 
Although both the conditions of Theorem 2 can be satisfied, for example: for 

the rational plane, it seems reasonable to consider them separately in order to 
look for a sufficient condition. We will make it in the next two sections. 

Now, observe that none of the above conditions is sufficient. Consider ordered 
set P0 = A 0 {O, b} 0 B from the previous section. Obviously, in any linear 
extension of the ordering of F , {O, b} is a covering pair, therefore none of those 
extensions is a dense order. A similar situation occurs when we consider P1 = 
A 0 {O, 6} 0 B, where both A and B are countable antichains and {O, 6} is an 
antichain. 

These examples show that we need to strengthen our necessary conditions to 
make them sufficient. 
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4. What happens when P contains a chain of type 77? 

Actually , we assume P to embed Q , the set of all ra t ionals , i.e. P contains 
a chain C of the type 77. T h e question is what should we do with elements of 
P — C. Loosely speaking, we can t rea t t hem as candida tes for i rrat ional numbers 
and to insert t hem into gaps de termined by Dedekind cuts of C . Example P() in 
Section 2 shows t h a t the problem arises when there is more t h a n one candidate1 

to be inserted into the same gap. 

For a given subset X of an ordered set P and p, q £ P define p ~ v q ( [p. q} 

is X-au tonomous ) if and only if for each x G l , 

x < p <=^ x < q and p < x 4=> q < x . 

B y X(p), we denote the set {q £ P : p ^ x q}. Obviously , always p £ X(p). 

For example, in PQ , (A U B)(a) = {O, b} . 

L E M M A 3 . Let P be a countable ordered set. If P contains a maximal chain C 

of the type ri such that, for each p £ C . C(p) = {p} , then P has an i]-extension. 

P r o o f . Let P — C = {p 0 ,P 1 ? • • . } . Define an increasing sequence of exten­
sions of < p by "inserting" elements p: in t u r n "within" chain C . Let < ( ) = </>-
C{) = C . Assume tha t < n and Cn have been defined, and Cn is a maximal chain 
in P (with respect to < n ) , its tvpe is 77 and Cn(p) = {p} for each p £ Pn . Let 
A = {x G Cn : x < „ p j , B = {y e Cn : pn <n y} and D = C„ - (A U / i ) . 
Observe t h a t i / C r j , B ^ C , D ^ 0, otherwise, C is not a maximal chain. 
Moreover, D is not a singleton, otherwise if, say, D = {p}, then {p,. ,Pf would 
be C n - a u t o n o m o u s . Therefore D is a segment in C . Consider an arb i t rary ir­
rat ional number in D and subs t i tu te it by p . To be more precise, let (A7, B') 

be a Dedekind cut of Cn such t h a t A C A', B C B' and ,47 n i?7 = 0 (i.e.. this 
cut corresponds to an irrat ional in D ) . Define now C n + 1 = -4' a< {p^} -] Br. and 
< n + i to be a t ransi t ive closure of the sum of the linear order on C,l + 1 and < / ; 

on P - C n + 1 (i.e., x < n + 1 H for x e A', pn <n y and dual ly) . Hence C / ; + 1 

is maximal in P . B y Cantor Theorem, its type is 7/. It remains to prove t ha t . 
for each p £ C n + 1 , C n + 1 ( p ) = {p}. Assume t h a t p ~ c g for some q / />. 
If P — Pn, t hen g would be comparable wi th all e lements of C n , despi te the 
maximal i ty of C n . If p / pn,, t hen p £ C n . Hence p ^ c O despi te the induc­
tive assumpt ion . Obviously , P — (J C2 and it is linearly ordercxl in type !/ by a 

i 

relation < = (J < z . D 
?' 

The sufficient condit ion in the above Theorem is too s t rong . Assume a mod­
ified example P0 wi th an infinite ant ichain instead of {O ,b}. Ex tend ing the 
disorder of this ant ichain to an 77-order, we obta in a linearly ordered set of the 
type 77 + 7] + 77 = 77. The following Theorem includes this case. 
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THEOREM 3. Let P be a countable ordered set. If P contains a maximal 
chain C of the type 77 such that for each p G C. C(p) is either {p} or it has 
an 77-extension, then P has an 77-extension. 

P r o o f . Let D — \p £ C : C(p) has an 77-extension}, and, tor p _ D, let 
-< be a fixed linear extension of <c(p) • Substitute in C each p G D by C(p) 
(ordered by -< ) . The obtained chain C — (C — D) U IJ C(p) is maximal in 

P , and, by Cantor Theorem, is still of the type 77. Now, let <' be an order of P 
determined by this new situation, i.e., it is the transitive closure of the sum of 
that linear order on C and <P_C,. It is easy to see that <' is an extension of 
<7>, and for each p £ C, C(p) contains p only. Then we use the last Lemma. 

• 

5. What happens if P contains an infinite antichain? 

For an ordered set P containing neither the least nor the greatest element, 
let P means Pu{ j p 0 ,p 1 } with comparabilities pQ < x, x < p1 added, for x <G P , 
to the order of P. 

Denote by (*) the following property of an ordered set P: 

(*) Let X and Y be finite antichains in P such that 

(VxЄX)ЏyєY)y£Px. 

^V Then there exists p _ P such that p £ KA and p 0 F x 

Note that if P is linearly ordered, then (•) means just its density. Any 
ordered set with the property (•) has neither the greatest nor the least element. 
Indeed, apply (*) to X — {x}, Y — 0, where x is the greatest element of P , 
and to X — 0, Y = {y}, where y is the least element of P . 

The proof of the following theorem applies a "back-and-forth" technique dis­
covered by Georg Cantor for the proof of his Theorem. 

THEOREM 4. If a countable ordered set P satisfies ( •) . then it has an 
fj-extension. Moreover, <p is the intersection of all its rj-extensions. 

P r o o f . Consider sets P and Q. With no loss of generality, Q can be 
assumed as the set of all rationals from the closed segment [0, 1] of the real line. 
As the matter of fact, we will construct a (1 + 77 + l)-extension of P which, 
obviously, determines the 77-extension of P . 
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Let us enumera te elements of P and Q : 

where p0 (px) is t he least (resp. the greatest ) element of P , 

where q0 = 0 and q1 = 1. 

We const ruct a strictly increasing, one-to-one mapp ing / of P onto Q by set­

t ing f(pik) = qjk , where pio, ph , pi2,.. . and qjo, G^ , qJ2,. . . are special permu­

ta t ions of P and Q , respectively. We define pi and </• by induct ion, separately 

on even and odd steps. Let P m == {pi : k < m} and Qm = {qjk : k < ni} . 

Step 0. pi() =p0, 

Step 1. qio =q0. 

Let ra > 1. / has been defined on P m and it is str ict ly increasing. 

Step m = 2ra. Let i2n = mm{i : p- ^ P 2 n } , X 2 n = {x G P 2 / l : T < p/2n } 

and y 2 n =- {x G P2n : x > Pl2J. Obviously, pio G X2n and pf{ G Y2n . Define 

hn = mm(V : / ( X ) < fy < f(y) f ° r e a C h X G X2n > 2/ ^ y 2 n } ~ <?:>,. / 

Step m = 2n + 1. Let 

•12n+i = m i n { j : q- £ Q2f) + ]} -

Define X2n+1 ( ^ 9 n + i ) a s the set of all maximal (minimal) elements of the set 

{x £ R2n+i : f(x) < 9 j 2 n + 1 } (respectively, {H G P 2 n + 1 : /(«/) > <]J2n^})- It is 

easy to see t h a t y ^ x for each a? G X2n+1 , H G y2?; + 1 • Therefore they satisfy 

the premise of (*). Thus the set {/ : p,- G P — (X2n + ] U Y2()+l)} is nonempty. 

Let i2ll , j be its first element. 

It is easy to see t ha t the mapping f(pL ) = q- is defined on the whole set 

P , and all elements of Q are reached as its values. It is also t rue tha t , for each 
k. Pi (^ Pk. and q. ^ Qk, hence / is a one-to-one function. It remains to show 
tha t / is strictly increasing. Let pf < p- and k < I (i.e., pf G I): if / < k. 

the proof is similar). Assume / to be even. Then pf G A ; . hence qfi < r/; . 
Now, assume / to be odd and. despite our hypothesis , q. > q . Then, by the 
definition of Yj. /)• > y for some Y; . Therefore pf G V) . in contradict ion to 
the definition of this element. 

Now, we prove that < / } is the intersection of its //-extensions. Obviously, it 
is enough to show that for each noncomparable pair <i.b of elements of P there 
exists an //-extension < such that a < b. Denote by < an order which is th<i 

l ra:isit ivc1 closure of the relation <r u { ( O , b ) } . It is easy to see that 

x < y « > x < r y V (.r <r a k b < ; , //) . 
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In par t icular , a <b. We prove t h a t (P , < ) has t he proper ty (*) . wha t by the 
jus t proved par t of our theorem gives us a desired ^ . 

Let X and Y be <-an t icha ins ( then they are < P - a n t i c h a i n s , as well) and 

(\/xeX)(VyeY) y^x. 

It is easy to see t h a t the same holds for < p . Apply ing (*) to < p we obta in 
such an element p of P t h a t , for each x G K, H G F , p ^p x and y ^P P- If 
// satisfies t he conclusion of ( • ) for < , t hen we are done. So suppose p < x for 
some x G X ( the dual case, p > y for some y G Y, is t he same) . We will find 
another element u coming t rue th is conclusion. It holds p <p a and b <p x. 

Obviously , a ^p z for each z G X. Now, let x± e X. We prove t h a t x1 ^P a. 

So assume x{ <p a. xx ^ x , otherwise b <p a. Hence xx < x (because of 
.r, < 7 , a , b < p x ) , despi te t h a t N is an <-ant icha in . Therefore, X U {a} is an 
< p - a n t i c h a i n . Observe, t h a t for any y G Y, H ^ p a , otherwise y < x. Hence, 
A 'U{a} and Y satisfy the premise of (*) (for <P). Therefore, by its conclusion, 
there is u such t h a t 

(Vx G N U {a})(\Jy G Y) u£px k y£pu. 

Lasily, u ^ x for each x G N . Moreover, for any H G Y, H ^ H, otherwise 

/; </> « <P x • 

C O R O L L A R Y 1. Let P be a countable ordered set with the property: 

there is an infinite antichain A C P such that, for each p G P, -4 , £be 

,srl O/ a// elements of A which are comparable with p, is finite. 

Then P has an ?/-extension. 

P r o o f . Let A.} denotes t he set ment ioned above, and X, Y be the finite 
sets from the assumpt ion of Theorem 2. Obviously , set C — [\ (A — A ) is 

pexuv 
nempty , and C CP-(XAUYV). • 110 

("onsider the set Z x Z wi th a componentwise order. It is easy to see t h a t 
each pair (s. y) of t h a t set is comparab le wi th only finitely many e lements of 
the ant ichain {(//, —n) : n G Z} . Hence Z x Z has an //-extension. 

A nice example of the appl icat ion of t ha t Corollary is the family of finite 
subsets of a countable set with relation C as the order. T h e desired ant ichain 
is the family of all singletons. T h e similar a rgumenta t ion shows tha t the family 

oC cofinite subsets (i.e, subsets with a finite complement) of the same set has an 
//-extension as well. Hence, it is easy to see t h a t the family of all subsets which 
are iinite or cofinite has the ( / /+/ / ) -extension which itself is of type //. 

Another example is the family of all words over a countable a lphabe t ordered 
by a relation "to be a s u b w o r d r . T h e n the desired ant ichain is the a lphabe t 
itself. 
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COROLLARY 2 . Let P be a countable ordered set with no infinite chains. If 

each element of P is comparable with only finitely many elements of P. then P 

has an rj-extension. 

P r o o f . By L e m m a 1, P contains an infinite ant ichain A. 1] 

T h e last result can be applied, among others , to every infinite subset of an 
infinite fence or of such ordered sets like those wi th d iagrams shown in Figures. 

COROLLARY 3 . Let P, Q be countable ordered sets. If P contains a chain 
with no upper bound, and Q contains a chain with no lower bound, then P x Q 
has an 7]-extension. 

P r o o f . Let C and D be those chains in P , Q , respectively. Obviously. 

they are infinite. Let C = {c0 , c l 5 . . . } and D = { d 0 , d 1 , . . . } (orders of their 

labelling need not be in any relation to < 7 , and < o ) - L^r. ;r() = c() and. for 

k > 0, xk = c • , where j k = min< i : c- > max{cQ , c1 , . . . , cA._., .rA._. } > . It is 

easy to see t h a t elements xh form a str ict ly increasing sequence which is cofinite 
with a chain C (i.e., (Vi)(3A;) c?; < J'A, )• Hence it has no upper bound, as well. 
Dually, define yk £ D, a str ictly decreasing sequence which is coinitial with 
D. Let A = {(;£(p 2/0)7 ix\i V\ \ • • • } • A is an ant ichain in P x Q. Observe th;it 
each element (P5q) £ P x Q is comparable to at most finitely many elements 
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of A. Indeed, assume the converse situation. With no loss of generality, we can 
assume that (p, q) is below infinitely many elements of A. Then q would be a 
lower bound of the whole sequence yi and hence - of a chain D. • 
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