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STRUCTURES RELATED TO 

PASCAL'S TRIANGLE MODULO 2 

AND THEIR ELEMENTARY THEORIES 

IVAN K O R E C 1 

(Communicated by Stanislav Jakubec) 

A B S T R A C T . The e lementary theory of the structure (N; H2), where N is the 

set of nonnegative integers and B2(x,y) = ( x + y J MOD 2, is decidable. On 

the other hand, addition and multiplication on N are definable in the s t ructure 
(N; H2, Sq) , where Sq is the set of squares of integers, and hence the elementary 
theory of (N; H2, Sq) is undecidable. Fur ther definability results are presented. 

1. I n t r o d u c t i o n a n d no ta t ion 

Let N denote the set of nonnegative integers, Sq the set of their squares, < 
the usual ordering of N, and | the divisibility relation on N. The digits 0 ,1 , 2 , . . . 
will be used in their usual sense and + , x , s, p will denote the usual addition, 
multiplication, successor and predecessor, respectively (i.e. p(x + 1) = x for 
every x £ N and p(0) = 0). Let DIV, MOD denote the quotient and the 
remainder for integer division, and let gcd denote the greatest common divisor. 

Further, let ( x ) denote the binomial coefficient, and let B2 be the binary 

function on N defined by 

B- •Xx,У)=(XІУ) MOD 2. (1.1) 

The function B2 will be called Pascal's triangle modulo 2. It can be displayed 
in the plane in the way usually used for the classical Pascal triangle B(x,y) = 

A M S S u b j e c t C l a s s i f i c a t i o n (1991): Pr imary 11B65. Secondary 68Q80. 
K e y w o r d s : Pasca l ' s triangle, Decidabi l i ty E lementary definability. 
1 This work was supported by Grant 363 of Slovak Academy of Sciences. 
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( X x ^ i ' ^ o m e s P e c i a l symbols will be introduced later. For example, the for­

mula x H. y will mean that the binary digits of x are less than or equal to the 

corresponding digits of y. 

For the notions of the (first order) formulae, t ruth e t c we refer to [Sh] or 
to some other textbook on mathematical logic However, we do not distinguish 
between the function or predicate and the corresponding symbol for it. The 
equality sign is considered as a logical symbol. If < on N is defined in a con­
sidered structure, we shall also freely use < , > , > ; moreover, since 0 ,1 , 2 , . . . 
and s, p are also first order definable we may use them, too . The letters L>, 
LO, x , y, z (possibly with subscripts) will be used as individual variables in 
formulae, the symbols - i , A, V , -=-.> , <=> as logical connectives (they are writ­
ten in the order given by their priorities) and 3 , V as quantifiers. The symbol 
3! will denote "there is exactly one". The signs / \ , \f will abbreviate conjunc­
tion and disjunction of several formulae, respectively; to specify these formulae, 
metavariables i , j , £;,... will also be used. We shall work rather with the truth 
(and satisfiability) than with the provability. 

A relation R C An is first order (or: elementarily) definable in the structure 
A — (A] S i , . . . , Sk) if there is a first order formula a(xi,..., xn) with no non-
logical symbols except S i , . . . , Sfc and no free variables except x\,..., xn such 
that the formula 

Jt(xi,...,xn) <=> c r ( x i , . . . , x n ) 

is true in the structure A' = (A; S i , . . . , S&, R). For functions we introduce a 
similar definition. (We do not consider parametrical definability unless explicitly 
mentioned.) We shall say that the structure A is d-weaker than the structure B 
if both structures have the same base sets and all functions and relations of A 
are first order definable in B. Two structures will be called d-equivalent if each 
of them is d-weaker than the other. We shall also use the terms strictly d-weaker 
and (strictly) d-stronger in the obvious sense. 

All structures considered in the present paper will have the same domain N, 
they will have finitely many basic relations and operations, which will be recur­
sive. (We shall not build the (meta-)theory of this class. If yes, maybe "arith­
metical" would be more suitable than "recursive".) The structure (N;+, x) is 
the d-strongest structure among them. Its first order theory (the true first order 
arithmetic) is the most complicated; it is not recursively axiomatizable (Godel 
Incompleteness Theorem), and even not arithmetical. 

Definability of some predicates or functions on the set N from other pred­
icates or functions on N has been widely investigated, see e.g. [R.i], [Ro], [Se] 
and [Wo]. For example, x is first order definable in (N;+ ,Sq) . To show that, 
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we can define the operation of squaring, and then multiplication as follows: 

y = sqr(x) 4=> Sq(y) A Sq(y + x + x + 1) 

A Vz (z > x A Sq(z) =-> y + x + x + l<z)\ (1.2) 

z — x x y <-=-> sqr(x + y) — sqr(x) + z + z + sqr(y). 

Hence the structure (N;+,Sq) is d-equivalent to (N;+, x ) . A deeper result is 
that (N;s, | ) , where | is the divisibility relation, is d-equivalent to (N;+, x ) . 
On the other hand, < is not definable in (N; s ) , and analogously the relation < 
does not suffice to define + , and + does not suffice to define x . (This concerns 
the definability by first order formulae; for second order definability, s suffices 
to define < , + , x .) 

In the present paper we shall investigate the structure (N;F?2) and some 
richer structures obtained by adding further basic relations or operations into 
them. We will be interested whether (the usual) addition + and multiplication 
x are first order definable in them. It will also be proved that the elementary 
theory of (N; B2) is decidable, and hence + , x are not definable in it. 

Many other problems concerning Pascal triangles modulo 2, or more gener­
ally modulo n (which can be defined in the obvious way) have been investigated 
e.g. in [Si] and [Bo] (where a wide bibliography was contained). Some algorithmic 
questions are considered in [Kl] and [K2]. The main result of [K3] states that 
the structure (N;F?n) is d-equivalent to (N;+, x) provided n > 0 is divisible 
by two distinct primes. 

2. The s tructures (N;_?2) and (N; C) 

The results of this section are contained in [K3], where they are proved in a 
more general form, for arbitrary prime instead of 2. We shall repeat them here 
because the notation will be useful in the following sections, and because the 
formalism is sometimes much simpler than in the general case. 

All integers are considered in their binary representation. (This concerns their 
digits, addition carries etc.) If a number is given by its digits a r , a r _ i , . . . , ao we 
shall write m = [a r a r _i ... ao]2 • Leading zeros are allowed if necessary (e.g., to 
have equal numbers of digits in two integers). 

Our main tool will be the following consequence of Lucas' theorem, see e.g. [Bo]. 
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LEMMA 2 . 1 . / / x = [flr . . . a i a 0 ] 2 , y = [br . . . M o ] 2 , then 

B2(x, y) = 0 <=> ai = bi = l for some i G { 0 , 1 , . . . , r} 

In words, P?2(x,y) = 0 if and only if a carry occurs in the computation 
of x + y. Let x Q y mean that the binary digits of x are less or equal than 
the corresponding binary digits of y. For example, 4 Z 7, 4 g 9 because 
4 = [100]2 = [0100]2, 7 = [111]2, 9 = [1001]2. Since the formulae 

x\Zy » Vz(B2(x,z) = 0 = > £2(y,*) = 0) 

x = l <̂ => 3 y V z ( S 2 ( y , z ) = x) 

are true in the structure (N; P?2, Z, 1), we have: 

LEMMA 2.2. TTie predicate Z and t/ie constant 1 are /irs£ order definable in 
the structure (N; J52). 

Now we shall give a list of predicates and functions which are definable in 
the structure (N; Z ) . Of course, Lemma 2.2 implies that each of them is also 
definable in the structure ( N ; 5 2 ) . To avoid duplicity, we introduce notation 
and explain it immediately in the lemma. Notice also that (N; Z) is a partially 
ordered set (and even a distributive lattice, in essence). We can also consider 
any x £ N as a code of the finite set of powers of 2 whose sum is x. Then C. 
can be understood as the set inclusion. These remarks are given only to explain 
the system of notation below. (In most cases we follow [K3], but we often delete 
the subscript 2.) 

LEMMA 2.3 . The following predicates and functions are first order definable 
in the structure (N; jZ): 

x C y proper set inclusion; 
x -< y covering relation in (N; jZ); 
x \ly meet operation in (N; |Z); 
x U y join operation in (N; Z ) ; 
0 the constant 0 (zero); 
Pow2(x) x is a power of 2; 
EqB2(w, v, x, y) B2(u, v) = B2(x, y); 
CFAdd(x,y, z) carry-free addition: x + y = z , and no carry occurs 

when x + y is computed. 
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P r o o f . We shall give defining formulae, without any comment. 

x \z y ^=> x C j / A x / y ; 

x -< y <=> x D y A Sz (x \Z z A z \Z y ) ; 

z = x VI y 4=> z C x A z C y A V w ^ C x A w C y ==> w C. z); 

z = x U y <=> x Q z A y Q z AVw (x \Z w A y \Z w => z\Zw)\ 

x = 0 4=> Vy (x D y) ; 

Pow2(x) 4=-> 0 - < x ; 

EqB2(u,L>,x,y) 4=> (u\lv = 0 4=-> x i l y = 0); 

CFAdd(x,y,z) <=> x U y = zAxlly = 0. 

LEMMA 2.4. T/xe function 5 2 is /irs£ order definable in (N; D, 1). 

P r o o f . We can define U as in Lemma 2.3, and then 

z = 5 2 (x ,y ) <=> x n y = 0 A z = l V x n y ^ 0 A 2 = 0. 

D 

D 

L E M M A 2 .5 . 

(i) No nonzero constant is first order definable in (N; C ) . 
(ii) No constant except 0 . 1 is first order definable in (N;132). 

(iii) The operations + . x are first order definable neither in (N;F?2) nor 
in (N; D) . 

P r o o f . Every permutation p of the set Pow2 (or of Pow 2 \ { l } ) induces 
an automorphism Tp of the structure (N; \Z) (of (N;B 2 ) , respectively). The 
automorphism Tp can be defined by 

( n \ n 

] T en • 2* ) = J ^ ai<^(2*) for all n G N and a, e {0 ,1} , 0 < i < n. 
i-0 I i=0 

(2.5.1) 
Every definable function or operation must be invariant under all of these au­
tomorphisms. In particular, every definable constant must be their fixed point; 
this condition is only fulfilled for 0 in case (i) and for 0, 1 in case (ii). To 
prove (iii), it suffices to consider any nontrivial automorphism of the considered 
structures; neither + nor x is invariant under it. • 

A similar argument will often be used below to prove that some relations or 
functions are not definable. We shall refer to it as to the automorphism argument. 
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T H E O R E M 2.6. 

(i) The structures (N, E q B 2 ) . (N;C) . (N; i~l) are d-equivalent. 

(ii) The structures (N; B2), (N;C,1) . ( N ; n , l ) are d-equivalent. 

(iii) The structures in (i) are strictly d-weaker than the structures in (ii) . 

P r o o f . For (i) and (ii) it suffices to show that C is definable in (N, EqB 2 ) ; 
all other necessary definitions are contained in Lemmas 2.2, 2.3, 2.4. We can 
define 

ZB2(x,y) <=> Xy£0AEqB2(x,y,x,x) Vy ^ 0 A EqB2(x, y,y, y ) ; 

x\Zy ^=> Vz(ZB2(x,z) => ZB2(y,z)). 

Here ZB2(x,y) replaces B2(x,y) — 0; notice that the function B2 itself cannot 
be defined. 

The statement (iii) follows from Lemma 2.5. The constant 1 is definable in 
the structures of (ii) but it is not definable in the structures of ( i ) . (Of course, 
the statement (iii) would fail if parametrical definability is considered.) • 

THEOREM 2.7. The elementary theories of the structures (N; C ) , (N; C, 1) 
and (N;B2) are decidable. 

P r o o f . It can be easily verified that (N; C) is a distributive relative com­
plemented lattice, and by [Ye; p. 281, Proposition 2.1], every such lattice has 
decidable elementary theory. The elementary theory of (N; C, 1) is also decid­
able because any its formula a(\) is true in (N; C, 1) if and only if the formula 
0 -< y => a(y) is true in (N; C) (here y is a variable which does not occur 
in a(\)). The third structure is d-weaker than (in fact, d-equivalent to) the 
structure (N; C, 1), and hence its elementary theory is decidable, too. • 

3 . The s t ruc ture (N;F?2,+) a n d its d -equ ivalen ts 

We shall investigate what relations or functions must be added to (N; B2) or 
(N;EqB2) so that + will be definable in the enriched structure. A very weak 
relation which suffices is 

Neib = {(ij) | ij £ N A (i = j + 1 V j = i + 1)} . 

The author conjectures that the structure (N;Neib) is strictly d-weaker than 
the structure (N; s ) . Nevertheless, the constants 0 ,1 , 2 , . . . are definable: 

x = 0 <=> 3\y Neib(x,y) , x = \ <=> Neib(0,.x), 

x = 2 «=> x ^ 0 A N e i b ( l , x ) , 

Therefore the structures (N; EqB 2 , Neib) and (N;P>2,Neib) are d-equivalent. 
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LEMMA 3.1. The addition + is first order definable in (N; EqB 2 , Neib). 

P r o o f . We shall start with the definition of an auxiliary function 

( 2x if x is a power of 2 , 
NextPow2(x) = < (3.1.1) 

[ 0 otherwise. 

It can be defined by the formula 

y = NextPow2(x) <==> -> Pow2(x) Ny = 0 V x = 1 Ny = 2 

V Pow2(x) A x ^ l A Pow2(y) Ny ^ x (3.1.2) 

A 3z (Neib(x, z) A Neib(x U z, y)) . 

The above definition is based on the form of binary expansions of the integers 
2% — 1, i G N: all their digits are equal to 1 (but the leading zeros if any). 

As an idea for the definition of z — x + y the usual algorithm of binary 
addition can be used. The definition looks like 

z = x + y <=> 3v (1 g v A Vw (Pow2(iO) =-> Sum(ii> C x, w jZ y, 

w C. v, w C z, NextPow(w) n.v))), 

(3.1.3) 
where i; is "the vector of carries" and Sum(gi, g2, 93, 94, 95) iS a suitable propo-
sitional formula. Its meaning can be expressed as qi+q2 + q3 — <14 + 2<15 provided 
that true? false are identified with the numbers 1, 0. • 

As an immediate consequence we obtain: 

THEOREM 3.2. The structures (N ;5 2 ,Ne ib ) , ( N ; B 2 , s ) . ( N ; B 2 , < ) . 
(N;J5 2 ,+) ? (N;EqB 2 ,Neib) . (N;EqB 2 , s ) , (N ;EqB 2 ,< ) 7 (N;EqB 2 ,+ ) are 
d-equivalent. 

Besides Lemma 3.1 we need only usual definitions of < from + , the successor 
from < , and a definition of Neib from s, e.g. 

Neib(x, y) 4=> y = s(x) Vx = s(y). 

From now on we shall usually choose the structure ( N ; J B 2 , + ) from the list in 
Theorem 3.2. 
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THEOREM 3.3. The following structures are d-equivalent to (N;F?2 ,+): 

(N; EqB 2 , mult2), where mult2(x) = 2x for every x G N ; 
(N; EqB 2 , SPow2) , where SPow2 = {(2*, 2i+1) \ i e N} ; 

(N; EqB 2 , PMul t 3 ) , where PMult3 = {3 • 2* | i e N} ; 
(N;EqB2 ,NeibPow2) . 

where NeibPow2 = {(2%2^') | ij E N A (i = j + 1 V j = i + 1)} ; 

(N;EqB 2 ,LePow 2) , where LePow2 = {(2 i ,2 i +^) | z, j <E N} ; 

(N; EqB 2 , PrPow 2 ) . where PrPow2 = {2* - 1 | i £ N} ; 

(N; EqB 2 , NextPow2). where NextPow2 is defined in (3.1.1). 

and a/so t/ie structures obtained from the above if EqB2 is replaced by B2 . 

P r o o f . Notice that the constant 1 is definable in each of the mentioned 
structures; for example 

x = l 4=> Pow2(x) A PrPow 2 (x) ; 

x = 1 <=> Pow2(x) A 3\y (PMult3(y) Ax\Zy)) ; 

x = 1 <=> Pow2(x) A -»3y (x = NextPow2(y)) . 

Therefore it is not substantial which of EqB 2 , B2 occurs in the structures. 
Now the proof will be organized cyclically; the structures are considered in the 
order given in the theorem, and each of them is shown to be d-weaker than the 
previous one. The necessary defining formulae can be: 

y = mult2(x) <=> y = x + x ; 

SPow2(x, y) <=> Pow2(x) A y = mult2(x); 

PMult3(x) <=> 3y, z (SPow2(y, z) A x = y U z) ; 

NeibPow2(x,y) «=-> Pow2(x) A Pow2(y) A PMult3(x U y); 

LePow2(x, y) <=> Pow2(x) A Pow2(y) 

A3z (l\Z z A x \Z z A (y = x \/ y % z) 

A\/u,u (NeibPow2 (u,v) Au \Z z Au ^ x => v C z)) ; 

PrPow2(x) <==> Vu, v (LePow2(u, v) A v Q x =-> u C. x) ; 

y = NextPow2(x) 4=> Pow2(x) A Pow2(y) A 3!^ (PrPow2(z) Ax\ZzAy%-z). 

The cycle can be closed by the formula (3.1.3); therefore all structures in the 
cycle are d-equivalent. • 
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THEOREM 3.4. Let ao < a\ < • • • < ak be nonnegative integers, 

k 

n = ] P 2ai , cj = gcd(0, a x - a 0 , . . . , ak - a 0 ) , 
i=o 

and P M u l t n = {n • 2̂  | i E N} . Then the structure (N; E q B 2 , P M u l t n ) is 
d-equivalent to (N; _32, + ) if and only if ao < 1 and g — \ . 

P r o o f . If n does not fulfil the conditions from the theorem, we can use the 
automorphism argument, see Lemma 2.5. If g > 1 and a is any non-identical 
permutation of the set {0 ,1 , . . . , g - 1} , then we can set <p(2-"+') = 2gi+a{j). 
If ao > 1, then Lp can interchange 1 and 2, and be identical on other powers 
of 2. If g = 0, then n is a power of 2, and if can arbitrarily permute the 
greater powers of 2. In all these cases if induces a nontrivial automorphism of 
the structure (N; E q B 2 , P M u l t n ) , and hence + cannot be defined in it. (The 
trivial case n = 0, which is not covered by the theorem, also belongs here.) 

Now assume that n fulfils the conditions in the theorem. It is clear that the 
structure (N; E q B 2 , P M u l t n ) is d-weaker than (N; B2, + ) . To prove the converse 
we shall apply Theorem 3.3; hence it suffices to define SP0W2. 

We shall show that the relations 

S t e P i = {(2 a o + J ' ,2 f l i + J ' ) I j G N } , 

i = 1 , . . . , k , are definable in (N; E q B 2 , PMult2). Informally, Step^z, y) means 
that y can be reached from x by the forward step of length ai — a 0 among 
powers of 2 (not smaller than 2 a °) . Since cj = 1 we can combine these steps 
with similar backward steps to obtain the step of length 1. More formally, there 
are integers i i , . . . , z r, j i , . . . , j s G {1, . . . ,k} such that 

r s 

J2(ah - ao) = 1 + ^fah - ao) • 
_ = 1 _ = 1 

Let us define 

SPow(x 0 ,y 0 ) <=> 3xl,...,xr,y1,...yal f\ S t e p i t ( x t _ i , x t ) 
^ ř = l 

f\Stepjt(yt-i,yt) A xr = ys J 
f— 1 / 

л 
t-ì 
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If a0 = 0, then we obviously have SPow = SPow2 . Otherwise (i.e. if a0 = 1) 
we have SPow = { ( 2 m , 2 i + 2 ) | i £ N} , and we can define SPow2 as follows: 

x = 1 <=> Pow2(x) A -*3z SPow(x, z), 

x = 2 4=4> 3z SPow(.T, z) A -i3z SPow(z, x ) , 

SPow2(x, y) 4=> x = l A y = 2 V SPow(x, y) . 

It remains to show that the predicates Step^, i = 1 , . . . , k are definable. Let 
us define 

Step(x, y) <=> Pow2(x) A Pow2(y) A 3z (PMult n (z ) A x C z A y C z ) ; 

this relation contains steps of lengths |a— a,j\, i, j G { 0 , . . . , k} in both directions 
(including also the steps of length 0) . 

r 

UnPath r(zo, zi, • • •, zr) <-==> A Step(z^_i, z^) 
i = i 

A\/w0,wi,... ,wr I w0 = z0 A wr = zr A yAy Step(LO;_i, lt7i) = > / \ w_ = zi ) • 
^ i=i i=o ' 

(We have here a schema of definitions, one definition for every TEN.) Informally, 
UnPath r(zo, zi- • • • ? ^r) means that there is a unique path consisting of exactly 
r steps between zo &nd zr; 

If r = r(rc) is sufficiently large (e.g. r = (a*. — a 0 ) 2 + 1) and UnPath r(zo5 zi, 
. . . , zr) holds, then 

Z"l ^2 zr ( r>ai,-an _.. o a 0 - a f c \ . 

Z Q ~ l Z r _ ! 
(=2 a f c ~ a ° or 2° 

informally, all steps have maximal possible length (and the same direction). So 
one step of maximal length can be defined as follows: 

MaxStep(x,y) 4=> 3zo, • • •, zr (UnPath r(zo> zi, • • • ? zr) 

A ((x = z0 A y = zi) V (y = z0 A x = zi))) . 

Notice that MaxStep contains all forward steps of length a^ — a0 and some (but 
not necessarily all) backward steps of this length. The backward steps can be 
eliminated as follows: 

Stepk(x,y) <=> MaxStep(x,y) A 3z (x C z A y g z 

A VIA, L> (MaxStep(?i, U J A U C Z A D / I / ==>• t> C z)) . 
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Now denote m = n — 2ak . We can define PMul t m by 

PMul t m (x) <=> 3y, z (Step^y, z)AyQxAz%xA PMultn(:r U z)) . 

Now we can define the predicate Stepfc_1 by the above method, and so on, up 
to the predicate Step! . D 

R e m a r k 3.5 . The structures (N; B2, PMult n ) can be considered similarly 
except the case a0 = 2, g = 2; it covers e.g. n = 20 or n = 68. For this case the 
automorphism argument does not work. Nevertheless, the author conjectures 
that + is not first order definable in (N; J32, PMult n) for these n . 

THEOREM 3.6. Let us define 

multn(x) = x + x + • • • + x (n-times) 

for every n £ N. Then (N; EqB 2 , multn) is d-equivalent to ( N ; S 2 , + ) if and 
only if n > 2 and n / 22~1"2 for any i £ N. 

P r o o f . If n = 0 or n = 1 or n = 2l for some i > 2, then the struc­
ture (N; EqB 2 , multn) has a nontrivial automorphism and therefore + is not 
definable in it. 

The opposite implication for n = 2 is contained in Theorem 3.5. If n > 2 
and n is not a power of 2, then (the binary expansion of) a power of n starts 
with 1 1 . . . . The predicate PMult m , where m = n U 1, can be defined by 

PMult m (x) <=> 3y (Pow2(y) A x = multn(y) U y) . 

Now we can use Theorem 3.5 with a0 = 1 and g = 1. • 

THEOREM 3.7. Let us define addn(x) == x + n for every n G N. Then 

(i) the structure (N; EqB 2 , addn) is d-equivalent to (N;J?2 ,+) if and only 

if 4 | n ; 
(ii) the structure (N;B2,addn) is d-equivalent to (N; i? 2 ,+) if and only if 

8 f n. 

P r o o f . We shall start with (i) . If 4 | n , then the structure (N; EqB2 , addn) 
has a nontrivial automorphism (induced by y?(l) — 2, ^(2) = 1 and (p(2l) = T 
for i > 2). Therefore + is not definable in it. Now let 4 \ n . Let us define 

LeP2(x,y) <=> Pow2(x)APow2(y)A3iI, v(x = addn(u)Ay = addn(v)Au C v) . 
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Then LeP2 is the ordering of all powers of 2 which are not less than n. However, 
to apply Theorem 3.3, we need e.g. the ordering LePow2 of all powers of 2 . We 
can define it as follows. If 2% < n and i / 0, then there is m > 0 such that 
2l + mn is a power of 2 . (Here the assumption 4 \ n is used; for n odd we need 
not assume i ^ 0.) Since the constant k = 2% +mn is definable using LeP 2 , the 
constant 2l is also definable: 

x = 2l <=> addn(addn(... (addn(x)...)) = k (addn repeated m times). 

If n is even (and 4 { n ) , then 1 can be defined as the power of 2 which is less 
than n and distinct from all powers of 2 defined by the method above. Now we 
can easily define LePow2 by using LeP2 and "listing the remaining cases"; for 
example, if n = 3 we can use the formula 

Lel?ow2(x,y) <=> 

LeP2(x, y)V x = l f\y = lV (x = lV x = 2) /\(y = 2V LeP2(y, y)) . 

The proof of (ii) is similar, only 2 and 4 ought to be used instead of 1 and 
2; notice that 1 is definable as J32(0,0) . • 

R e m a r k 3 .8 . The structure ( N ; 5 2 , + ) is elementarily interpretable in 
the structure (N; EqB 2 , PMul t n ) whenever g > 0 (i.e., n / 0 A - iPow 2 (n)) . 
(We shall not strictly define elementary interpretability here. Roughly speaking, 
it means that all components (including the base set) of an isomorphic copy 
of the interpreted structure are definable in the other structure.) Analogously 
(N; B 2 , + ) is elementarily interpretable in (N; EqB 2 , multn) for every n > 2 and 
in (N; B2,addn) for every n > 0. 

Now let us consider, the function 

B'2(x,y)=(X+
x_~1) MOD 2, 

where we put ( \ J = 0 for every z € N u { —1}. In essence, B_ is obtained 

from B2 only by a shift to the right; however, this small change substantially 
changes the theories. The function EqB2 is displayed in Figure 1. 
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10 

oh , . x 

i 1 \ . 1 . 1 / 
/ - l i l i / 

/viV.v.v.viV 
V l V l V . V . V l V l V 

i6 n /. AvAvAvi1 \ 
/. 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 rN 
' l 1* . ' . ' . ' . ' / / . ' / / . ' . * . ' . ' . 1 1 / 

, . 1 . 1 1 . 1 / 
20 h / . l i l i 1 1 1 1 / 

/ . 1 . . . 1 1 . . . 1 \ 
y / . 1 1 . . 1 1 1 1 . . 1 1\ x 

_J I I I I I L 
-30 -20 -10 0 10 20 30 

Figure 1. 

THEOREM 3.9. The structures (N;EqB'2) and (N\B2)
 are d-equivalent to 

( N ; 5 2 , + ) . 

P r o o f . Let us start with the structure (N; EqB^). The constants 0, 1 can 
be defined as follows 

y = 0 <=> Mx1z(x^yNz^y => EqB2(x,y, z, y)) ; 

x = 1 4=> x 7̂  0 A Vy, z E q B ^ x , y, x, z). 

Now we can define the function B2 similarly as B2 is defined in Theorem 2.6. 
Therefore the structure (N; i?^) is d-weaker than (NjEqB^). Since the converse 
is obvious both structures are d-equivalent. Hence it suffices to consider (N; B2) 
in what follows. By the formula 

2/i Q V2 « Vx (B'2(x, Vl) = 0 => B'2(x, y2) = 0) , 

the relation C. is definable. Hence by Lemma 2.4 the function B2 is definable, 
too. The successor function can be defined by 

z = s(x) <=> Vy(B2(x,y) = B'2(z,y)). 

Hence by Theorem 3.3 the structure ( N ; 5 2 , + ) is d-weaker than (N;B2). The 
converse statement is clear from the formula 

z = B2(x,y) <==> x = QNz = QWx > ONz = B2(p(x),y) . 
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• 

The author claims that the elementary theory of (N; P?2, +) is decidable and 
hence x is not definable in ( N ; J E ? 2 , + ) . Therefore the structures above are not 
d-equivalent to those considered in the following section. Of course, this state­
ment is not used in any theorem below. 

4. The s t ruc tures d-equ ivalent t o (N;+, x) 

The structure (N; + , x) is the d-strongest one among the structures with the 
base set N and finitely many recursive (or even arithmetical) basic relations and 
operations. We shall investigate how the structure (N; B2) must be enriched (by 
some special recursive relations or operations) so that the obtained structure 
is d-equivalent to (N; + , x ) , i.e. as strong as possible in the considered class of 
structures. 

We shall start with an auxiliary lemma about squares with small number of 
nonzero digits (in binary system). 

LEMMA 4 . 1 . For every i,j,k £ N we have: 

a) If 22i + 22^'+1 is a square, then 2j + 1 = 2i + 3; 
b) if i < j < k and 2% + 2J + 2k is a square, then i is even and at least 

one of j , k is even; 
c) if 9 • 22i + 22j is a square, then 2j = 2i + 4; 
d) if 17 • 22i + 22^'+3 and 17 • 22i + 22^'+4 are squares, then j = i + 1; 
e) if 5 • 22z + 2J is a square and j ^ 2i + 2, then j = 2i — 4; 
f) the number 65 • 22% + 2 2 j + 1 is not a square; 
g) if 17 • 22i + 22j+1 and 17 • 2 2 i + 2 + 22^'+1 are squares, then j = i + 2; 
h) if 22x + 2-7+1 + 1 is a square and j + 1 < 2i, then j = i. 

P r o o f . 

a) In this case obviously j > i, and then 22j~2t+1 = z2 - 1 = (z - l)(z + 1) 
for some positive integer z. Then z — 1, z + 1 are powers of 2, which gives 
z = 3 and 2j - 2i + 1 = 3. 

b) The exponent of 2 in the factorization of the considered square is equal 
to i, and hence i must be even. If both j , k are odd, then we have 

2i + 2j + 2k = 1 + 2 + 2 = 2 (mod 3) , 

which is a contradiction because 2 is a quadratic non-residue modulo 3. 

c) Denote k = \i — j | ; obviously k ^ 0. If i > j , then 9 • 22k + 1 would 
be a square, which is impossible. Therefore i < j . Then 9 + 22A: = w2, i.e. 
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22k = (w — 3)(w + 3) for some integer w > 3 , and hence w — 3 , w + 3 are 
powers of 2. Therefore Lu — 3 = 2, ?U + 3 = 8, fc = 2, and 2j = 2i + 4. 

d) The first mentioned number can be a square only if 2J + 3 > 2i, i.e. 
j > i — 1. However, j = i — 1 is also excluded (because 19 is not a square); 
therefore j > i. If we denote k = j — i we obtain 

17 + 22k+3 = y2, 17 + 22fc+4 = z2 

for some positive integers y, z. The second equation implies 

17 = ( z - 2 / c + 2 ) ( z + 2 / c + 2 ) , 

both factors are positive and hence they are equal to 1 and 17. Therefore z = 9, 
2fc+2 — 8, and hence k = 1, which gives j = i + 1. 

e) Let 5 • 22i + V = x 2 . If j is odd, then we have x2 = 2 or 3 (mod 5), 
which is a contradiction; therefore j is even. If j > 2i + 2, we have 

(x • 2~*)2 = 5 + 2j'2i = 5 (mod 8) , 

which is also impossible. The case j = 2i + 2 is excluded by the assumption, and 
in the case j = 2i can we obtain 6 • 22t = x2, which is impossible. It remains 

the case j < 2i. Then 5 • 22k + 1 = y2 for some y E N and k = i - ^- G N; we 

have to prove k = 2. Since 5 • 22/c = (y - 1) • (y + 1) and only one of the factors 
y - 1, y + 1 is divisible by 4, we have 2 2 / c _ 1 | y — 1 or 2 2 / c _ 1 | y + 1. Therefore 

y > 22k~1 - 1 and 

5 . 22k + 1 = y2 > (22k~l - l ) 2 = 24k~2 - 22k + 1, 

6 • 22k > 24k~2, 24 > 22k, and hence k < 2. For Jfe = 0,1 the expression 
5 • 22A' + 1 is not a square. It remains k = 2, i.e. j = 2i — 4. 

f) We have 65-222 + 2 2 j + 1 = 2 or 3 (mod 5), which is a contradiction because 
both 2,3 are quadratic non-residues modulo 5. 

g) By 4.1.b we know that 2i < 2j + 1, and hence we can divide both squares 
by 2 2 i . Then 

2 2k+l + 1 ? = x2 ^ 22*+i + gg ̂  y2 ? (y „ x ) . (y + x ) = y2 _ x2 = 5 1 

for some integers 0 < x < y and k = j - i > 0. Since 0 < y - . r < y + x the 
last equation gives 

either y - x = l , y + ^ = 5 1 ? i.e. x = 25, 22 f c + 1 = 625 - 17 = 608 
or y-x = 3, y + x = l7, i.e. .x = 7, 22A '+1 = 4 9 - 17 = 32. 
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The first case does not hold for any k G N . In the second case we have k = 2, 
and hence j = i + 2 . 

h) If 22* + 2^'+1 + 1 = x2 , then 2^'+1 | (x - l)(x + 1) which implies V' \ x - 1 
or 2J | x + 1 . We may assume x > 0, and then we have x > 2J' — 1. Further 
x > 2i + 1 which gives 22 i + 2 i + 1 + 1 < 22% + 2-?+1 + 1, and hence j > i. 
If j > i + 1 we have 

x2 > (2j - l ) 2 > (2*+1 - 2 i _ 1 ) 2 > 2i+1 > 22i + 2j+1 + 1 = x2 , 

which is a contradiction. Therefore j = i. (Remark: the condition j + 1 < 2i 
cannot be omitted because of 49 = 24 + 25 + 1 and 529 = 24 + 29 + 1. As 
A. Schinzel informed me, [Le; Theorem 2] implies that if 2l + 2J} + 1 = x2 and 
j > i > 0, then (j , z) = (5,4) or (j, i) = (9,4) or j = 2i - 2. Hence the 
"exceptional" solutions above are the unique ones.) • 

LEMMA 4.2. Tbe relation SPow2 = {(2% 2 m ) | i e N} is/ irsi order definable 

in the structure (N; C, Sq) . 

P r o o f . Let us define 

Pow4(x) 4=> Pow2(x) A Sq(x), 

OddPow2(x) 4=^ Pow2(x) A -i Pow4(x) ; 

the meaning is obvious. Now we shall introduce (for this proof only) auxiliary 
predicates Q^...^ for several k-tuples ( i i , . . . , i&). Our aim is to obtain 

Qn..,fc = { ( 2 2 i + n , . . . , 2 2 ^ ) | J 6 N } (4.2.1) 

in every case. However, sometimes this fact will not be obvious immediately from 
the definition, and will have to be proved. (Notice that we also could write Q 0 , 
Qx instead of Pow4 , OddPow2 .) Let us define 

Q03(x, y) 4=> Pow4(x) A OddPow2(y) A Sq(.x U y) ; 

Q0 3 4(x, y, z) <=> Q03(x, y) A Pow4(2:) Az^xA Sq(x U y U z). 

For these two cases the inclusion D in (4.2.1) can be easily verified and C 
follows from Lemma 4.1 .a and 4.I.e. Now let us define 

Qo23456( X 0, X 2 , X 3 , X 4 , X 5 , X 6 ) 4 = > Q 0 3 4 ( x 0 , X 3 , X 4 ) A Q 0 3 4 ( x 2 , X 5 , X 6 ) 

A x 6 7^ x 0 A x 6 7^ X4 

A S q ( x 0 U X4 U x 5 ) A S q ( x 0 U x 4 U x 6 ) ; 
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we have to prove 

Q023456 = {(22 J , 2 2 ^ 2 , 2 2 ' + 3 , 2 ^ \ 2 2 ^ 5 , 2 2 ^ 6 ) I j € N} . (4.2.2) 

The inclusion D can be easily verified; let us prove C . Let Qo23456(xo, ^2, #3, ̂ 4, 
x 5 , x 6 ) . Since Q0 3 4(x0 , £3, x4) we have x0 = 22\ x3 = 2 2 ' + 3 , x4 = 2 2 z + 4 

for some i G N. Analogously QQM(x2,x5,x6) implies x2 = 22j\ x5 = 2 2 ^ + 3 , 
x6 = 2 2 j + 4 for some j G N. The integers xn, ^4, £5, X6 are pairwise distinct 
powers of 2, and therefore 

x0UxAUxb = x0 + x4 + x5 = 17 - 22i + 2 2 j + 3 , 

x0 U x4 U x6 = x0 + x4 + x6 = 17 - 22i + 22j+4 . 

These values are squares, and hence by Lemma 4.1.d we have j = i + 1, and 
(4.2.2) is proved. 

We shall also need the constants 1, 2, 4, which can be defined as follows: 

X=l <=> Pow4(x) A ^3xo,X3,X4,X5,X6 Q023456(xo,X,X3,X4,X5,.X6) ; 

x = 2 <=> OddPow2(x) A -d j / (Sq(y) A x C y ) ; 

x = A <=> Pow4(x) A x ^ l A -Gy, z Q0M(y, z, x). 

Finally, we can define 

SPow2(y, z) ^=> y = 1 A 2 = 2 V y = 2^z = A 

V 3X0, #4, Z5- X6 Qo23456(X0, J/, 2, *4, ^5, X6) 

V3x 0 Qo34(^o,y,2:). 

D 

LEMMA 4 .3 . The operation x is first order definable in (N; S 2 , + , SqPow2), 

where SqPow2 = {(22,22?;) | i G N} . 

P r o o f . Let us consider the following infinite table: 

2 i 23 2
5 27 29 21 1 

92 o6 210 21 4 218 222 

24 212 220 22 8 236 24 4 

28 224 240 25 6 272 28 8 

9I6 048 280 21 1 2 21 4 4 21 7 6 

(4.1.1) 
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The element in the i th row and jth column (both enumerated from 0) is 
22 l(2j+i) W e s h a l l d e f i n e t h e r e i a t ions 

RowPr = { ( 2 2 i - ^ + 1 ) , 2 2 ^ + 1 ) | i,j € N} , ColPr = { ( 2 2 l ' ^ + 1 \ 2 2 ' ) | i,j G N } , 

i.e. the projections to the initial row and initial column, respectively. We can 
easily verify 

RowPr(x,y) 

<=> Pow2(x) Ax ^ 1 AOddPow2(y) 

A Vz f x C z A Vu,L> (SqPow2(^,L>) A v C z ===!> u Q z) ===> y jZ z J . 

Here z represents a finite subset of Pow2 which contains x and is closed under 
square roots (among powers of 2) . Every such set must contain y. Now we can 
define membership to the initial column: 

PowPow2(x) <==> RowPr(x,2) . 

To define ColPr, we shall also need the following auxiliary predicate 

RNb(x,y) <=> 

<=> 3w (RowPr(x, w) A RowPr(y, w + w + w + w) 

A (w = 2 A 3?i, z2 (SqPow2(x,u) A SqPow2(L6, v) Au<yAy<v) 

V w > 2 A 3z ( SqPow2 (x, z) A x < y A y < z 

Informally, RNb(x, y) means that y is the right neighbour of x in a row of the 
table above. Now we can use the same idea as in the definition of RowPr: 

ColPr (x, y) <=> Pow2(x) A x ^ l A PowPow2(y) 

A Vz (x C z A Vu, v (RNb(u, v) A v C z => u C z) -==> y \Z z) . 

We shall define the function memb which enables us to code every sequence S 
of nonnegative integers which contains only finitely many nonzero members by 
an integer z (the function memb itself is used by decoding; its role resembles 
the role of GodePs function T) . So every finite sequence of integers can be coded 
by its length and suitable z. The code of S will be constructed as follows. If the 
j t h digit of the zth member of S is 1, then the j t h element of the ith row of 
the table above (i.e. 22%*(2j,'+1)) will be marked. So the zth member of 5 will be 
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coded in the zth row of the table. The integer z will be the sum of all marked 
elements. Formally we define: 

x = memb(z, y) 4--=-> 

4=4> -i PowPow2(y) A x = 0 V PowPow2(y) A VL*, v (SqPow2(u, v) 

= ^ (u\Zx <̂ => 3w (ColPr(w,y) ARowPr(LO,L> + v)) )) . 

Now we can define the set Sq as follows: 

Sq(x)<=>3z, y \memb(z, y) = x A memb(z, 2) = 0 A memb(z, 4) = 1 

Vu,v,w (POWPOW 2(IA) A SqPow 2 (u,f) A SqPow2(t;, w) 

(memb(z,v) = 0 => memb(z,w) = 0) 

A (memb(z,iv) / 0 => memb(z,u) + memb(z,w) 

= memb(z, v) + memb(z, v) + 2)))) . 

In this definition z is the code of an initial segment of the sequence of squares 
(followed by infinitely many zeros). Now we can define x from Sq, + by the 
formulae given in the introduction. • 

R e m a r k 4.4 . The structures (N; E q B 2 , SqPow2) and (N; B2, SqPow2) 
have nontrivial automorphisms which are given by permutations of the set of 
columns of table (4.4.1) in essence (for the later structure the initial column 
must remain fixed). More formally, let a be arbitrary permutation of the set of 
odd positive integers, and let p> be the permutation of Pow 2 defined by 

^(2 2 ' ' -(« + 1 )) - 22i"*<2''+1> for all ij e N. 

Then Tp defined by (2.5.1) is an automorphism of the structure 
(N; EqB 2 , SqPow 2 ); if a(l) = 1, then Tp is an automorphism of (N; F?2, SqPow 2 ), 
too. Since the structures in Lemma 4.3 have no nontrivial automorphisms it is im­
possible to replace (N; E q B 2 , + , SqPow2) by (N; E q B 2 , SqPow2) in the lemma. 
(The operation + is substantially used in the definition of RNb.) 

LEMMA 4.5. Let Sq3 = {x £ Sq | card{i G N | 2* E x] = 3 } . Then for 
every set X, Sq3 C X C Sq, the operations +, x are first order definable in 

(N;EqB 2 ,X) . 

P r o o f . The set Sq3 is definable in (N; EqB 2 , X) by the formula 

Sq3(x) <=> X(x) A 3y, z,w (y ^ z Ay ^ w A z ^ w 

A Pow2(x) A Pow2(y) A Pow2(^) Ax = yUzUw). 
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Therefore it suffices to consider the structure (N;EqB2 ,Sq3) in what follows. 
Further, in the proof of Theorem 4.3 (including Lemma 4.2) the set Sq can be 
replaced by the set 

Sq^ = j x e Sq | cardj i £ N | 2i C x) < 3} ; 

only such squares occur in the considerations. However, we cannot immediately 
replace Sq by Sq3 because squares with one or two nonzero digits were also 
substantially used in the proof. We shall show how to avoid them. 

We shall construct (i.e., define) a graph whose vertices will be powers of 2. 
At first we define 

Edge(x, y) <=> Pow2(x) A Pow2(y) A 3z (Pow2(2:) A Sq3(.r U y U z)) . 

By Lemma 4.1.b the odd powers of 2 are never adjacent. Therefore if an odd 
power of 2 is adjacent with three (distinct) vertices, these vertices are (distinct) 
even powers of 2, and at least two of them are adjacent. On the other hand, if 
£ is a power of 4, then it is adjacent with all sufficiently large odd powers of 2 
(beginning from 8x), and no two of them are adjacent. Therefore we can define: 

Pow4(x) 4=> 3y, z,w (y ^ z Ay / w A z / w 

A Edge(x, y) A Edge(x, z) A Edge(x, w) 

A -1 Edge(y, 2) A -1 Edge(y, w) A -• Edge(z, w)) 

OddPow2(x) 4=> Pow2(x) A--Pow 4 (x) . 

Let us remember the mnemonics (4.2.1) and define 

Q 0 4 6 (x ,y ,z ) <=> Pow4(x) APow4(y) APow4(z) ASq3(xUyUz) 

AVu(Pow2(u) ASq3(uUy\Jz) ==> u = x) (4.5.1) 

A -*3v (OddPow2(v) A Sq3(x UvUz)). 

We have to prove Q0 4 6 = {(22\ 2 2 i + 4 , 22i+6) \ i £ N} . We shall start with 
the inclusion D; let i E N and (x,y,z) = (22 i , 2 2 ^ 4 , 2 2 i + 6 ) • We have to verify 
six members of the conjunction in the definition of Q 0 4 6 ; only the last two are 
nontrivial. For the fifth one, let u = 2n . Then u U y U z = u + y + z = 2n + 5 • 22?;+4 

is a square and n^2i + 2 (because u ^ z). Therefore n = 2i by Lemma 4.1.e, 
i . e . u = x , and the fifth member is proved. The sixth one immediately follows 
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from Lemma 4.1.f. Now we shall prove the inclusion C. If Qo46(#>^>z)> then 
obviously x = 2 2 i , y = 22j , z = 22k for some i, j , fc e N. Since S q 3 ( ^ V, z), t h e 
integers i,jf, A: are pairwise distinct. Let d = \j — k\ and m = max(J, k); then 
{2j, 2A:} = {2m, 2m - 2d} . If d > 2, we have 

2m - 2d < 2m - d + 1 < 2m < 2m + 2d - 2 and 

(rsm — d _j_ r )m\2 r)2m _|_ r)2m — d+1 _i_ o2m —2d « 2 m - d + 1 . . _. JJ ^ 

/ o m —d | cym-\-d—1\2 c\2m — 2d , o2ra . r)2m-f-2d—2 r>2m-|-2d—2 | I ŷ U z 

We have obtained two distinct squares (which belong to Sq3) , and this con­
tradicts the part Vu( . . . ) of (4.5.1). Therefore \j - fc| = 1, and y U z = 
y + z = 5 • 2 2 m _ 2 . Hence, by Lemma 4.1.e, we have 2i = 2m — 6 and {2j, 2k} = 
{2i + 4, 2i + 6} . However, 2k = 2i + 4 is impossible because for t> = 2 2 2 + 3 we 
would obtain a square xUvUz = 25-222 , which contradicts the part ->3v (...) of 
(4.5.1). Therefore 2k = 2i + 6 and 2j = 2% + 4, and the inclusion C is proved. 

We continue with definition of some constants and the predicates Q0 2 , Q0 2 4 5 6 

(where always (4.2.1) is assumed): 

x= 2 ^=> OddPow2(x) A i 3 y ( x _IyASq3(7/)) ; 

x= 8 4=> OddPow2(x) A3\y(x QyASq3(y)) ; 

x = 1 6 <=> Pow4(x) A 3u,v Q04Q(u,x,v) A 3y (Pow4(y) ASq3(y U 8 U x ) ) ; 

x = 1 <=> Pow4(x) A 3L6 ( x U 8 C zx A Sq3(u)) ; 

x = 4 <£=-> Pow4(x) A x ^ 1 A - d u , v Q046(?i, .r, L>); 

Q0 2(x,y) 4=> x = l A y = 4 V x = 4 A y = 16 V 3z Q046(z, x,y); 

Qo245e(xo, x 2 , x 4 , x 5 , x 6 ) 4=> Q0 4 6(^o,^4,^6) A Q0 2(x0 , . r2) AOddPow2(.x5) 

A Sq3(x0 U x 4 U x 5 ) A Sq3(x2 U x5 U x 6 ) . 

The correctness of all definitions except the last one is easily seen. For the last 
predicate, the inclusion D in (4.2.1) can be immediately verified. To prove the 
inclusion C, assume that 

XQ = 22i, x2 = 22i+2 , x4 = 22i+4 , xe = 22i+6 , and x5 = 2 2 j+ l 

for some i, j G N. Further, x0 + x4 + x5 = 17 • 22? + 22j+1 and #2 + x5 + x6 = 
17 • 22l+2 + 2 2 j + 1 are squares. Therefore by Lemma 4.1.g we have j .= ^ + 2 and 
the inclusion is proved. 
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Now we can define 

SPow2(x, y) <=> x = lAy = 2 V x = 2Ay = 4 

V x = 4Ay = 8 V ;r = 8 A y = 16 

V 3z0, z2, z6 Q0245e(2:o, z2, x, y, z6) 

V 3z0, z2, z5 Qo245e(^o, z2, z4, x, y ) , 

and by Theorem 3.5, the operation + is definable. We may use + (and also < , 
< e t c ) in what follows. 

Since the set Sq of all squares is not defined, we cannot use the formulae 
from Section 1 to define x . However, we can define SqPow2 (see Lemma 4.3 for 
the definition), and then we can apply Lemma 4.3. Therefore the proof will be 
finished if we prove that the formula 

SqPow2(.T, y) <=> x = 1 Ay = 1 V x = 2 Ay = 4 

V x>2 A y>x + x A Pow2(x) A Pow4(y) A Sq3(lU(x + x)\Jy) 

is true (in the appropriate structure, e.g. (N; I92, + , Sq3, SqPow2)). The implica­
tion => can be easily verified. For the converse, assume that the right side of 
the above formula holds; we shall only consider the nontrivial case x > 2. Then 
x = 2j, y = 22i for some ij e N, j + 1 < 2i and 1 + 2^+ 1 + 22i is a square. 
Therefore by Lemma 4.1.h we have j = i and hence SqPow2(x, y). • 

R e m a r k 4.6. The set Sq3 in Lemma 4.5 can be replaced neither by the 
set Sq2 = {x e Sq | card{i G N | 2% E x) < 2} nor by the set BiSq = {x4 | 

x E N } . 

THEOREM 4.7. The following structures are d-equivalent to (N; + , x ) ; 

( N ; E q B 2 , x ) ; 
(N; EqB 2 , sqr). where sqr is the operation of squaring; 
(N;EqB 2 ,Sq) , where Sq is the set of squares; 
(N;EqB 2 ,Sq 3 ) 7 

where Sq3 is the set of squares with (exactly) three nonzero binary digits; 
(N;EqB 2 ,X) ; where X is any arithmetical set such that Sq3 C X C Sq; 
(N;EqB 2 ,+ ,SqPow 2 ) ; where SqPow2 - {(2?:,222) | i e N} ; 

and also the structures obtained from the above if EqB2 is replaced be B2 or + 
is replaced by < or s . 

P r o o f . All basic relations and operations of the structures listed in the 
theorem are arithmetical and therefore these structures are d-weaker than 
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(N;+, x ) . The third structure, the fourth and the fifth one, and the sixth 
structure are d-stronger than (N; + , x) by Lemma 4.2, 4.3 and 4.5, respectively. 
The first two structures are d-stronger than the third one. By transitivity, all 
mentioned structures are d-equivalent. • 

We shall finish with a relationship between the structures above and the 
theory of finite sets. 

THEOREM 4.8 . The following structures are d-equivalent to (N;+, x) ; 
(N; EqB2,Po'u72), where pow2(x) = 2X for every x £ N; 
(N; £) - where x £ y 4=> pow2(x) C y. 

P r o o f . The structure (N; + , x) is obviously d-stronger than the other two 
structures. The last two structures are d-equivalent because £ is definable in 
(N; EqB2,poiO2) (by the formula in the theorem) and EqB2 , pow2 are definable 
in the last structure by the formulae: 

EqB2(xi,yi-x2 ,2/2) <=> ( 3 * (z £ xx A z £ yx) <=> 3z (z £ x2 A z £ y2)) , 

y = pow2(x) <=> \/z (z £ y <=> z = x). 

It remains to show that + , x are definable in the third structure; this result 
is well known in essence. All axioms of ZFC (Zermelo-Fraenkel set theory with 
the axiom of choice) but the axiom of infinity are true in (N;£) . (Or: this 
structure is (the standard) model of the theory of finite sets.) Usual notions of 
set theory including ordinal numbers and transfinite induction can be developed. 
For example, we can define 

Ord(x) <=> \/z (0 £ z A \/y (y £ z Ay / x => yUpow2(y) £ z) => x £ z) . 

(No infinite ordinal numbers exists, and so ordinal numbers coincide with natural 
numbers and transfinite induction reduces to the usual mathematical induction. 
Remember that "natural numbers" do not coincide with the elements of N.) 
The relation < satisfies the formula 

x < y <=> 3z (z £ y A z (£ x A Ww (w £ x => w < z V w £ y)) . 

It cannot be immediately used to define < because < is contained in its right-
hand part, too. However, the right-hand part uses < only between elements of 
x , y. Therefore the expressed idea can be used as a base for the definition by 
transfinite induction. As soon as < (and hence < , too) is defined we can define 
+ by Theorem 3.2, and also SqPow2 by the formula 

SqPow2(.T, y) <=> 3z (x = pow2(z) A y = pow2(z + z)) . 

Now Lemma 4.3 can be used to define x . (Of course, the desired result can be 
obtained also in another way if the theory of finite sets is sufficiently developed.) 

• 
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