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ABSTRACT. In this paper, the concepts of a partial left group and of a com-
pletely simple semigroup with respect to the set B of a semigroup S are defined.
The aim of this paper is to study the following structures:

i) the partial left group with respect to the set of the semigroup S,
ii) the minimal left ideals with respect to the set B of the semigroups S
in the completely semigroup with respect to its subset,
iii) the completely simple semigroups with respect to its subset.

In [13], the concept of a minimal left (right, two-sided) ideal with respect to
a subset B (0 # B C S) of a semigroup S was introduced.

In this paper, the following concepts are defined:

i) a partial left group (see Definition 1),
1)

a completely simple semigroup with respect to a subset B of the semi-
group S (see Definitions 2, 3).
Under certain conditions on the subset B of a semigroup S. the following
structures are investigated:
a) the structure of minimal left ideals with respect to B (see Definition 01,

Theorems 1, 2),
b) the structure of partial left groups (see Theorem 4),
¢) the structure of completely simple semigroups with respect to their

subsets (see Theorem 7).

AMS Subject Classification (1991): Primary 20M99.
Key words: Semigroup, Partial group, Completely simple semigroup.
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The results of this paper are generalizations of results of [3], [9].

We note that some of our results can also be obtained using some well-known
theorems on ideals of semigroups (however not the main results. see for example
Theorems 1,2 and 7). We shall proceed in such a way that these known results
will be obtained as corollaries of our assertions.

In forthcoming papers, we shall study properties of minimal left (right. two-
sided) ideals and of quasiideals with respect to a subset B of a semigroup 5.
under weaker conditions (in some sense) for B as compared to the conditions
considered for B in this paper.

First, we introduce notations and definitions of concepts (assertions on thesc
concepts), which will be used through the paper. Notations and definitions of
concepts (resp. assertions on these concepts), which will be used but not intro-
duced in this paper, will be employed in the current sense (see e.g. [1]. [6]).

Let S be a semigroup, and let  # B C S.
L (I, #) be the Green .&-equivalence (.5 -equivalence. #-equivalence)
on S (see [1]);
L(B) (Lp) will denote the set J{L(b) | be B} (U{Ly| be B}).
The sets R(B), J(B) (Rg, Jp) are defined similarly.
NL(B) (N(B), NR(B)) be the set of all # € S such that. for each b e B.
Ly &Ly (Jy & Lo, Ry & R,).
D¢(B) (D,(B)) be the set of all elements b € B such that bB = 3
(Bb = B), and let
E(B) denote the set of all idenpotents ¢ of S such that ¢ € B.
Note that:
a) X C Y will mean that X is a proper subset of the set ¥ (to distinguish
it from X C Y which means either X CY or X =1Y).
b) If AC S, then A will denote the set S\ A.

DEFINITION 01. (see [13]) Let S be a semigroup, and let 0 # B C 5. A left
ideal L of the semigroup S is called a minimal left ideal with respect to B it
LNB # (., and there is no left ideal N’ of the semigroup S such that NN B = 0.
and N'C N.

A minimal right (two-sided) ideal with respect to B will be defined similarly.

In the following, the definitions of new concepts (will be mostly omitted) and
the theorems about them will be given only for left ideals of S. Theorems on left
ideals of S will also be used (without mentioning) in case of analogous theorems
(concepts) concerning right ideals of S.

464



ON MINIMAL IDEALS IN SEMIGROUPS WITH RESPECT TO THEIR SUBSETS, I

Remark. If we put B=S (B =5)\{0}) in Definition 01, then for each
nonempty subset L of the semigroup S (the semigroup S with 0) the following
holds:

L is a minimal left (0-minimal left) ideal in S if and only if L is a minimal

left ideal with respect to the subset B of the semigroup S (of the semigroup S
with 0).

Let S be a semigroup with kernel K (i.e. K is the intersection of all two-
sided ideals in S, and K # 0). Put B =S\ K. In [13], it is shown how to get
theorems on simple left ideals of S with kernel K (a left ideal L of S is called
a simple ideal of S with the kernel K if K C L, and there is no left ideal L’
in S.such that K ¢ L’ C L (see [10])) using theorems on minimal left ideals
with respect to the subset B of the semigroup 5.

Fxamples can show that:

a) There exists s semigroup S (see e.g. Example 5) not containing any mini-
mal left ideal and containing infinitely many pairwise different subsets such that
with respect to each of them the set of minimal left ideals in S is nonempty.

b) There exists a semigroup S with kernel K not containing any simple
left ideal and containing infinitely many pairwise different subsets such that

with respect to each of them the set of minimal left ideals of S is nonempty
(see [13]).

We shall say that a semigroup S satisfies condition mpp (mpg), if the set
of all minimal left (right) ideals with respect to the subset B of S is nonempty.

THEOREM O01. (see [13]) Let a semigroup S satisfy condition my ;. Then we
have:

(a) For each subset L of S, L is a minimal left ideal with respect to

the subset B of the semigroup S if and only if there exists an element

b & B such that L = L(b) and Ly is a minimal element in NL(B)/.Z .

(b) For each b€ B, L(b) is a minimal left ideal with respect to B if and

only if LWNNL(B) = Ly,.
A semigroup S is called a partial group if D,.(S) # O and D,.(S) = Di(S)
(see [6: p. 339]).
Remark. Weshall use the following assertions (without mentioning them).
Let S be a semigroup, and let § £ B C S. Then we have:
(a) If NL(B)# 0, then NL(B) is a left ideal in S (see [12]).
(b) For each left ideal of a semigroup L there holds:

LNNLB)#0 > LNB#0.
(¢) Hee ﬁ?) then L. C ﬁ?)
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1.

LEMMA 1. Let H be a filter of a semigroup S. and Sx =S for all v € H .
Let E(H)#0, and let e € E(H). Then there hold:
(a) e is a right unit element of S ;
(b) the equation xa = b has exactly one solution in S for each a € H and
beS.

Proof.

(a) is trivial.

(b) By the assumption for each a € H and b € S the equation ra = b has
a solution in S. Then for each a € H there exists an element a € S such that
aa = e. Suppose that there exist elements a € H, b € S and elements r|..r> ¢ S
such that z1a = b, and xz2a = b. Then (aa)(ad) = a(aa)a = (ae)a = aa. Hence
¢* =aa € E(H). Then (zya)a = (zga)a, i.e. x1e* = r2e*. As a consequence
we obtain 1 = x.

LEMMA 2. Let a semigroup S satisfy the assumption of Lemma 1. Then we
have:

(a) eS is a subsemigroup of S and e is a unit element of €S:

(b) D,(eS)=eSNH isa group;

(¢) D.(eS)= Dy(eS).

Proof.

(a) is trivial.

(b) I. Let a € D,.(eS). 1f a € S\ H, then e € ¢S =eSa C S\ H. which is
a contradiction. Hence D,.(¢S) CeSNH.

II. Let a € eSN H. Then ¢S = eSa. It follows that ¢S H C D, (ey).

and there exists an element ' € eS such that a’a = e¢. Suppose that o’ € S\ H .
Then e = a’a € S\ H, which is a contradiction. It follows, we obtain (b)

(c) Let a € D,.(eS). By (b), there exists an element o’ € D,(eS) such that
aa’ = e. By (a), for all b € €S it holds b = eb = (aa’)b = a(a’b) € aeS. Hence
eS C aeS. By our assumption, aeS C eS. It follows that a € D¢(eS).

Let a € Dy(eS). If a € S\ H, then e € eS = aeS C S\ H. which is a
contradiction. Hence eS = eSa, i.e. a € D,(e95).

COROLLARY 1. Let a semigroup S satisfy the following assumptions:
(a') DT(S> #0,
(b) D, (S) contains the left unit element e of the semigroup S .

(c) For each a € D,(S) there exists an element a=' € D.(S) such that

a ta = e.
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ON MINIMAL IDEALS IN SEMIGROUPS WITH RESPECT TO THEIR SUBSETS, II
Then S is a partial group.

Proof. Clearly, D,(S) is a group.

We will show that D,.(S) is a filter of S. Let a,b € S, and suppose that
ab e D.(S). If b ¢ D.(S), then Sab C Sb C S\ D,(S), which is a contradic-
tion. Hence b € D,(S). Then there exists an element b~ € D,(S) such that
bb=' =e. Then (ab)b™! € D,.(S). Hence S = S(abb™!) = Sae = Sa. It follows
that D,(S) is a filter of S. By Lemma 2, we have that S is a partial group.

THEOREM 1. Let the semigroup S satisfy condition mpp. Let L(c), c € B,
be a minimal left ideal with respect to B. Let L. be a filter of the semigroup
L(¢). and let E(L.) # 0. Put G, = eL(c) for each e € E(L.). Then we have:

(a) G, 1s a subsemigroup of the semigroup L(c), and e is a unit element
of G.;

(b) D.(Ge)=GeN L, is a group;

(¢) G is a partial group.

The proof follows from Lemma 2.

COROLLARY 2. Let a semigroup S satisfy the assumptions of Theorem 1.
Then Lo CU{Ge | e€ E(L:)}.

Proof. Let a be an element of L.. By the assumption and Lemma 2,
there holds L(c¢)a = L(c). Hence there exists an element e € L(c) such that
ca = a. Suppose ¢ ¢ L.. Then e € L(c)\ L.. By the assumption, we obtain
that ca € L(¢) \ L.. This is in contradiction with « € L.. From the above, we
have that e?a = ea. By Lemma 1, it follows that e¢? = e and e € E(L.). It
means that a € eL(c), and e € E(L,).

Remark. An example can show that there exists a semigroup S and its
nonempty subset B such that:

a) There exists an element ¢ € B such that R(c) is a minimal right ideal
with respect to B, and R, is a filter of semigroup R(c);

b) E(R.) # 0 and there does not hold R(c) = [J{R(c)e | e € E(R.)},
i.e. R(c) is a set-union of partial groups.

Example 1. Let Sy = {a,b,¢,d,¢, f,g,h}, and let a binary operation on
S| be given by the following table:
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a b ¢ d e g h
a a b c d c ¢ d
b a b cd c d ¢ d

a b cd c d ¢ d
d a b cdc d cd
€ a b cd e f g h
f a b c d e f g h
g a b cd g h e f
h a b c d g h e f

Then S is a semigroup. Put B = {e, f. g, h, }. Then the following hold:

a) R(h) is a minimal right ideal with respect to B, and Rj is a filter
in R(h);

b) E(Rh> # 0;

c) U{R(h)f| feE(Ry}# R(h),ie R(h) isnot aset-union of partial
groups;

d) L(h) is a minimal left ideal with respect to B, and L, is a filier
in L(h);

e) E(Ly) #0;

fy U{fL(h)| [ € E(Ly)} = L(h), i.e. L(h) is a set-nnion of pairwise

disjoint partial groups, none of which is a group.

Example 2. Let S = {a,b,c,d}, and let a binary operation on 5 be
given by the following table:

a b ¢ d

a a b a «a

Then S is a semigroup. Put B = {¢,d}. Then one has:

a) R(d) is a minimal right ideal with respect to B, and Ry is a filter of
the semigroup R(d):
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b) E(R4) = {c,d} #0;

c) R(d) = U{R(d)f | f € E(Rq)}, ie. R(d) is a set-union of partial
groups, and there holds: ¢,d € E(Ry), R(d)c # R(d)d, and R(d)cnN
R(d)d # 0, i.e. the groups are not pairwise disjoint.

LEMMA 3. Let S be a semigroup, and let E(S) # 0. Let e, f € E(S). If
Se =8 =S5f, then the semigroups €S and fS are isomorphic.

Proof. Put ¢:eS — fS, where p(z) = fr. For z,y € eS we have
clry) = flay) = (fz)(fy) = elx)ply). If y € £S5, then o(ey) = f(ey) =
fy=y. I o(x) = p(y) for x,y € eS, then fz = fy, and so r = ex = efir =
fy=cy=y.

THEOREM 2. Let a semigroup S satisfy the assumptions of Theorem 1. Then
for cach e, f € E(L.) the partiel groups eL(c) and fL(c) are isomorphic.

The proof follows from Lemma 3.

COROLLARY 3. (see [8], [9], [11]). Let L be a minimal left ideal of the semi-
group S. and let E(L) # (0. Then we have:

(a) eL is a subgroup of the semigroup L for each e € E(L);

(b) L=U{eL| c€ E(L)};

(¢) the groups eL and fL are isomorphic for each e, f € E(L).

Proof. Put B=S. Then NL( ) = S. Let ¢ € L; by the assumption and
by Theorem 01, we have L = L(c) = L. Clearly, L. is a filter of the semigroup
L(c¢). By the assumption, we obtain that the semigroup S satisfies condition
mypp.and E(L.) # 0. By Theorem 1 and Theorem 2, we have then Corollary 3

LEMMA 4. Let a semigroup S satisfy condition mpp. Let N—Z(‘Bj be a filter
in S. Let L(c), ¢ € B, be a minimal left ideal with respect to B. Then L, is a
filter of the semigroup L(c).

Proof. Let a and b be elements of L(c¢). Then by the assumption and by
Theorem 01, we have ab € L. if and only if a,b € L.. Lemma 4 is proved.

THEOREM 3. Let a semigroup S satisfy condition mpg. Let NL{B) bc a
filter of S. Let L(¢), ¢ € B, be a minimal left ideal with respect to B such that
F(L ) 75 (. Then R = eS is a minimal right ideal with respect to the subset

NL(B) of the semigroup S for each e € E(L.).

Proof. By the assumption and by Lemma 4, we have RN L. # ), and
RN NL(B) # 0. Suppose that there exists a right ideal R’ of the semigroup S
such that R ¢ R and R*¥ " NL(B) # 0. Let b € R' N NL(B). According to
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the assumption and Theorem 01, we get [R'L(c)] NL.#0. From R'L(c) C R
we have R' N L. # 0. Let a be an element of R' N L.. Hence a € R' C ¢5.
Therefore there exists an element u € S such that a = eu. Hence ca = e(eu) =
e?u = eu = a. Since a € L. and L. is a filter of the semigroup L(c). by the
assumption and Corollary 1, there is an element € € E(L.) such that a € éL(¢).
Therefore éa = a. By Lemma 1, we have that ¢ = é. Therefore a € eL(c) N L,..
By Theorem 1, we obtain that a € D, (eL(c))‘ Using Theorem 1 we have that
to the element a there is an element @ € D, (eL(c)) such that aa = ¢. Hence
R =eS = (aa)S C aS C R'. This is in contradiction with R"  R. Theoren: 3
is proved.

COROLLARY 4. (see [10]) Let L be a minimal left ideal of a simple semigroup
without zero. Let E(L) # . Then R = eS 1is a minimal right ideal of S jor
each e € E(L).

Proof. Put B=S.Then NL(B) = S. Hence by Theorem 3. we obtain
Corollary 4.

An example will show the existence of a semigroup S; and its nonempty
subset B such that there is ¢ € B such that L(c) is a minimal left ideal with
respect to B, E(L.) # (, and there exists e € E(L.) such that R = ¢S is not

a minimal right ideal with respect to the subset JV_TL(B) of the semigroup S;.

Example 3. Let S; = {0,a,3,u,v,e}, and let a binary operation on |
be given by the following multiplication table:

]

8 uw v e

« a 0 0 v e
16} 0 8 u 0 0
U u 0 0 8 u
v 0 v e 0 0

e | e 0 0 v e

Then S; is a semigroup. Put B = {a, ,v}. Then we have:
a) the set of all minimal left ideals with respect to the set B is the set
{L(a), L(B)};
b) E(Ly) # 0, a € E(L), and «S;| is not a minimal right ideal with
respect to B.
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DEFINITION 1. A semigroup S will be called a partial left group if:
(i) Dy(S) is a filter in S;
(i1) for each a,b e D.(S), R(a) # R(b) it follows that R(a) N R(b) =0.

Example 4. Let S be a semigroup of the Example 2. Then D,(S) =
{c.d} . and Dy(S) is afilter in S. The set of all minimal left ideals with respect to
the subset D,.(S) of Sis {L(c), L(d)}, where L(c) = {a,b,c}, L(d) = {a,b,d}.
Then L(c) # L(d), and L(c) N L(d) # 0. Note that R(c) = {a,b,c,d} is a
mminimal right ideal with respect to the subset Dy(S) of the semigroup S. Hence
not cach minimal right ideal with respect to Dy(S) is a partial right group.

Example 5. Let S = {a,b,¢,d, e f,g h} be the semigroup from Exam-
ple 1. Then it is easy to prove that S is a partial right group.

CONVENTION. In the next, if S is a partial left group, then instead of Dy(.5)
(D(S)) write F (H),i.e. F=Dy(S) (H = D,(S)).

LEMMA 5. Let S be a partial left group. Then:
(a) H is a left simple semigroup;
(b) R(a) is a minimal right ideal with respect to the subset H of the semi-
group S for each a € H ;
(¢) for each a € H there hold:
(i) Ry,=R(a)NH,
(c2) Ry is a minimal ideal of the semigroup H ,

(Cii) E(Ru) # 0.

Proof.

(a) According to the assumption, the equation xa = b has for each pair
a.b € I one solution in S. If 2 € H = S\ H, then b = za € H. It is in
contradiction with b € H . It follows that (a) holds.

(b) Let a € H. Suppose that there exists a right ideal R of the semigroup
S that R C R(a) and RNH # 0. Let b€ RN H. Then R(b) C R(a). Hence
R(a) # R(b) and R(a)N R(b) # 0, which is a contradiction. It follows that (b)

holds.

(¢) (c;) By the assumption, NR(H) = H . Hence by (b) and by Theorem 01
(more precisely, by the theorem dual to Theorem 01), we get the assertion (cy).

(¢o) Let a € H. By (b) and by Theorem 01, R, is a minimal element
in H/. It follows by (a) and by Theorem 01 (B = S) that R, is a minimal
right ideal in H for each a € H , i.e. assertion (cy) holds.

(¢4) Let a € H. Then there exists an element e € S such that en = a.
Suppose that e ¢ H . Then by the assumption ea = S\ H , which is a contradic-
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tion. Then e € R, . It means, there exists an element a € R, such that ¢ = «aa.
Then e = aa = e(aa) = e?.

Let T be a subsemigroup of a semigroup S. By RT(a) (RI"), we shall denote
the right ideal (the %-class) in T generated by the element a (containing the

element a) in T (T/X).
LEMMA 6. Let S be a partial left group. Let T = J{R(a) | a € H}. Then wt

have:
(a) R(a)= RT(a), R(a)=aS =aTl for each a € H;
(b) T=U{R"(a)| ac H};
(c) for each a € H there exists an element ¢ € E(H), such that
R(a) =eS =e€T;
(d) Tob=T for each be H;
(e) D.(T)=H;
(f) T is a partial left group.

Proof.

(a) Let a € H. Then aT N H # (. By the assumption, a7 is a right ideal of
the semigroup S. By Lemma 5, we have that R(a) = aT = RT(a). Therefore
aS C aT, and Ta C Sa. The assertion (a) follows. '

(b) Assertion (b) can be proved using assertion (a).

(¢) The proof of (c) follows from Lemima 5.

(d) Let b be an element of H. Then by (a) and (b).

Th = (U{GS | a€ H})b = U{(aS)b | ac H} — U{“S laeHY=T.

(e) By (d), we obtain that H C D,(T). Suppose that there exists an element
¢ € D,.(T) suchthat ¢ ¢ H and Te=T.Then T =Tc C S\H.ie. TNH =1,
It is in contradiction with H C T .

(f) Assertion (f) can be proved using assertions (a) and (e).

LEMMA 7. Let S be a partial left group. Put T = U{R(a‘) | a € H}. Then
there hold:
(a) T=U{eT' | e € E(H)}, and for each e, f € E(H). e # f. one has
el'N fT =0,
(b) eT is a partial group for each e € E(H);
(¢) partial groups eT, fT are isomorphic for each e. f € E(H).

Proof.
(a) By (c) of Lemma 6, we have that 7" = [J{eT ¢ € E(H)}. Let
¢.f € E(H), and let ¢ # f. Suppose ¢S = fS. Hence e.f € R;. For any
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¢ € Ry we have eR(f) = R(f). By Lemma 1, we get that e is a unit element
of R(f) for each e € E(Ry). Then e = ef = f. It is in contradiction with
¢ # f. Hence eS # fS. Now by the assumption and Lemma 6, we have that
' fT=790.

(b) Let ¢ € H. By Lemma 6, L(c) = T, L. = H, and L. is a filter in

L(¢). By Lemma 6, we have F(L.) # 0. By Theorem 1 and Theorem 2, we get
assertions (b) and (c).

Note that an example can show that the following assertion does not hold: If
S is a partial right group, then S =J{R(a)| a € H} (see Example 1).

THEOREM 4. For a semigroup S, the following assertions are equivalent:
(i) S is a partial left group, and S =\J{R(a)| a€ H}.
(i) H = D,(S) is a filter, E(H) # 0, S ={eS| e€ E(H)}, and for
cach e, f € E(H), e # [, we have eSN fS = 0.
(iii) S is isomorphic with the direct product G X E of the partial group G
and the semigroup of left zeros E (see [5]).

Proof.

(i) == (ii): From (i} follows (ii) by Lemma 6 and Lemma 7.

(i) == (iii): Let e, f be elements of F(H). Then by Lemma 1, we have
cof = ¢. It follows that F(H) is a subsemigroup of left zeros of the semi-
group H. Let g be an element of E(H). Put G = R(g) and E = FE(H).
Put o: Gx E — S, where ¢(a, f) = fa and G x E is a direct product of semi-

groups (i, E. Then by Lemma 1, for each two elements (a,¢), (b, f) € G x E
the following holds:

Ala.e) - @(b,e) = (ea)(fb) = e(ab) = @(ab,e) = ¢[(ae). (b, f)].

Suppose that there exist two elements (a,e), (b, f) € G x E such that
sla.e) = p(b, f), l.e. ea = fb. Further suppose that e # f. Then by Lemma 7,
we have R(e)N R(f) = (0, which is in contradiction with ca = fb. Hence ¢ = f.
Then ca = eb. By the assumption, we have a,b € G and g is a unit element in
(. hence a = ga = (ge)a = g(ea) = g(eb) = (ge)b=gb=g.

Let a be an element of S. Since by the assumption, S = J{R(a)| a € H},
by Lemma 7, there exists f € E such that a € R(f). Therefore ga € G and
(ga.f) € G x E. Since f is a unit element of the semigroup R(f). we have
slag. f) = f(ga) = fa=a.

(iii) == (i) : Clearly. this implication holds.
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LEMMA 8. Let the semigroup S be a left group. Then S is a partial left group
and S ={J{R(a) | a€ H}.

Proof. By the assumption, S = H = L(c¢) = L. for each ¢ € S. Hence
E(L.) # 0. By Corollary 4, R = ¢S is a minimal right ideal of the semigroup
S. Then the set-union M of all minimal right ideals in S is a two-sided iceal
in . By the assumption, M = S. From the above, we obtain that
1) H is afilter in S,
2) for each a,b€ H, R(a) # R(b) implies R(a) N R(b) = 0.
3) S=U{R(a)]| a€ H}.

Hence S is a partial left group, and S = J{R(a) | a € H}.

COROLLARY 5. For a semigroup S, the following conditions are equivalent:
(i) S is a left group.
(i) D.(S)=S and E(S) #0.
(ili) S is isomorphic with the direct product G x E of the group G and the
semigroup of left zeros E (see [5]).

Proof. By Lemma &, it is enough to show that the set G defined in the
proof of Theorem is a group.

DEFINITION 2. Let S be s semigroup, and let ) # B C S. The semigroup S
will be called simple with respect to B if:
(i) for each two-sided ideal N of S, NN B # () implies that N = S
(ii) N(B) is a filter in S;
(iii) S =U{L(b) | bEB}:U{R(b)I be B}.

DEFINITION 3. A semigroup S will be called completely simple with respect
to its subset B if:
(i) S is a simple with respect to B;
(ii) S contains at least one minimal left ideal with respect to B and at
least one minimal right ideal with respect to B.

Remark. It is clear that the following assertion holds:
Each simnple (completely simple) semigroup is also situple (completely simple)
with respect to the subset B = S.

LEMMA 9. Let S be a simple semigroup with respect to its subset B. Let S
contain at least one minimal left ideal with respect to B. Then the following
hold: '

(a) L. 1s a minimal left ideal of the semigroup N(B) for each ¢ € N(B):

474



ON MINIMAL IDEALS IN SEMIGROUPS WITH RESPECT TO THEIR SUBSETS, Ii

(b) N(B)=U{Lc| ce N(B)};

(¢) N(B) is a simple semigroup.

Proof.

(a) By the assumption and Theorem 01, there exists an element b € B such

that L, is a minimal left ideal of the semigroup N(B). Let M be the set-union

of all minimal left ideals in N(B). Put P = (S\ N(B)) UM. Then P is a
two-sided ideal in S, and PN B # 0. According to the assumption, we have
P = S. It follows that N(B) is equal to the set-union of all minimal left ideals

of the semigroup N(B).

(b) Using Theorem 01 ( B = S') we obtain assertion (b).

(¢) Assertion (c) follows from assertions (a) and (b).

THEOREM 5. Let a semigroup S satisfy conditions of Lemma 9. Then we
have:
(a) L(c) is a minimal left ideal with respect to B for each ¢ € B.
(b) S is a set-union of the set of all left minimal ideals with respect to I3
Proof.
() By the assumption, Lemma 10, and Theorem 01, we see that L(c) is
a minimal ideal with respect to the subset N(B) of the semigroup 5. Using
3 C N(3). we obtain the assertion (a).

(hb) By the assumption and by (a), we obtain (b).

LEMMA 10. Let S be a completely simple semagroup with respect to a subset
of it. Then we have:
() for cach a € H there crists an clement ¢ € F(H) such thal ¢ €
Ron Ly
(b) eL(e) = R(e)L(e) = R(e) N L(e) = eSe = R(e)e for cach ¢ € E(H).

Proof.

(a) Let a« € H. By Theorem 01, Lemuna 1, and Lemma 9, there exists an
clement a € L(a) such that ea = a and e € R, N L,. Hence there exists an
clement @ € R(a) such that aa = e. Then ¢ = aa = (ca)a = e(aa) = ?, i.e.
ce F(H).

(b) Let e € E(H). Clearly, eL(e) C R(e)L(e) € R(e) N L(e).

Let & € R(e) N L(e). Then there exist elements u,v € S such that x =
ue = cv. Then z = ue = (ue)e = (ev)e = eve € eSe = eL(e) = R(e)e, which
proves (b).
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COROLLARY 6. (see [13]) Let S be a completely simple semigroup with respect
to a subset B. Let u,v € B, and put Gy, = R(u)L(v). Then:
(a) Gy is a partial group.
(b) L(v)= Se, R(u) =eS and R(u)NL(v) = eSe, where e € E{R,.NL,).
(¢) Guw=R(u)NL(v).

Proof. By Theorem 5, Theorem 01, and Lemma 9, we have [R(u)ﬁL( 1')} n
N(B) = [R(u) n NL(B)] N [L(u) n NL(B)] =R,NL,#0.Let ae R, N L,.

Then by Lemma 10, there exists an element e € E(H) such that ¢ € R, N L.
Assertions (a), (b), (c) follow.

THEOREM 6. Let a semigroup S satisfy the assumptions of Lemma 9. Then S
is completely simple with respect to the subset B if and only «f E( N(B)) #0.

Proof.

I. Let S be completely simple with respect to the subset B. Then by Theo-
rem 01 (more precisely, by the theorem dual to Theorem 01), there exist elements
b,c € B such that L(b) is a minimal left ideal with respect to B, and R(c¢) is

a minimal right ideal with respect to B. Then by Lemma 9. E(N(B)) # 0.

II. Let the assumptions of Lemma 9 be satisfied. and let e € E(N(B)).
Then by Lemma 9, there exists an element d € B such that ¢ € L;. Now. by
Theorem 3, we see that R = ¢S is a minimal right ideal with respect to B. Tt
follows that S is a completely simple semigroup with respect to /5.

COROLLARY 7. (see [9]) Let S be a simple semigroup and contain at least o
minimal ideal. Then S is completely simple if and only if E(S) # 0.

Proof. Put B = 5. Then, according to the assuiiption. the semigroup S
is simple with respect to B and contains at least one minimal ideal with respect
to B. Clearly, N(B) = S. Then using Theorem 3 and Corollary 4 we obtain
Corollary 7.

THEOREM 7. Let S be a completely stmple semigroup with respect to its subsct
B. Then S is a set-union of mutually isormorphic partial groups.

Proof. Put G,., = R(u) N L(v) for each two elements u,v € B. Let &
be an element of S. Then by the assumption, there exist elements a.b € /3
such that u € R(a) and w € L(b). Hence u € R{a) N L{b). It follows that
SCU{Guy| u,ve B} CS. Let u, v be elements of B. By Corollary 6. &7,
is a partial group. By e, ,, we shall denote a unit element of &, .. Let a. b. ¢. d
be elements of B. Then by Corollary 6, Gap = e, L(b). Gy = Ric)e. 4. and
G.p = e.pL(b) = R(c)e.,. Using Theorem 2 we get the assertion of Theorem 7.
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COROLLARY 8. (see [9]) Let S be a completely simple semigroup. Then S is
a union of mutually disjoint isomorphic groups.

Proof. Put B = S. By the assumption, the semigroup S is completely
siiple with respect to B. Theorem 7 and Theorem 01 imply the assertion.

Remark. An example will show that

a) There exists a semigroup containing infinitely many subsemigroups, each
of them being a partial left group with respect to its subset, and none of them
being a left group.

h) There exists a semigroup containing infinitely many subsemigroups, each
of them being completely simple with respect to its subset, and none of them
being a completely simple semigroup.

Example 6. Let S; be the set of all real numbers such that 0 <z < 1.
Let the binary operation on S; be defined as follows: z -y = min{x, y} for each
r.y € 5. Then S| is a semigroup. Let S> = {¢,d, e, f,g,h} be a subsemigroup
of the semigroup S; of Example 1. Let S3 = S| x S; be the direct product of
semigroups Sp, So. Then it is easy to show that H, = L(x) x L(e) is a partial
left group with respect to the subset M, = {(;1;,(3)} for each = € Sy. Further,
it is easy to prove that none of its subsemigroups is a left group with respect to
its subset.

IC’xample 7. Let S; be the semigroup of Example 4. Let S; be the semi-
group of Example 2. Let S3 = {a1,a2,a3,a4}, and let a binary operation on Sj
be defined by the following table:

a; ay a3z G4
ay ay a a3 as
as az az Q4 Q4
as ay az a3z as
a4 a a2 a4 d4g

Then S3 is a semigroup. Let Sy = S; X 53 x S3 be the direct product of
semigroups Sp, Sz, S3. Then each subsemigroup H, = L(x) x Sy x S3 of
the semigroup S3 is a completely simple semigroup with respect to its subset
B, = {x} x {e,d} x {a1,as} for each x € S;. Further, it is easy to prove that
none of its subsemigroups is a completely simple semigroup.

Finally, let us remark that if we weaken condition (ii) in Definition 2, then we
speak about a so called o-simple (completely o-simple) semigroup with respect to
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a subset B of a semigroup S . The structure of completely o-simple semigroups
with respect to their subsets will be a subject of our forthcoming paper.
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