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A GENERALIZATION OF THE FRIENDSHIP THEOREM 

MARIAN SUDOLSKY 

Introduction. Given the integers m ^ 1 and k ^ 0, a graph with at least m points 
is said to be an (m, k)-graph if any m -tuple of its points has exactly k common 
adjacent points. 

In [3] G. H i g m a n and in [5] H. S. Wiff described (2,l)-graphs by the 
well-known friendship theorem. In [1] R. C. Bose and S. S. S h r i k h a n d e and in 
[4] J. P l e s n i k proved that any (2, k)-graph is regular for k>l. Further, 
J. P l e s n i k in [4] proved that any (m, k)-graph is the complete graph with m+k 
points for m ^ k + 2 ^ 3. 

In the present we shall show that any (m9 k)-graph is the complete graph with 
m + k points for m ^ 3 and k ^ 1. 

In the paper we shall use all notations and definitions in the sense of [2]. 
If G is a graph, then we denote by V(G) and E(G) the set of its points and lines, 

respectively. Given ueV(G), dG(u) denotes the degree of the point u. Let 
NG(u) = {v e V(G)\uveE(G)}. It is easily seen that \NG(u)\ = dcr(u). When G is 
a regular graph, then d(G) denotes the degree of G. 

Given Ua V(G)9 G(U) denotes the induced subgraph of G with the point set 
U. 

Results. Let m and k be integers with m ^ 1 and k ^ 0 . A graph G is called an 

(m9 k)-graph if and only if \V(G)\^m and 

distinct points vl9 v29 ..., vm. 

П N0(г>,) = k for any m-tuple of its 

Theorem 1. Let k>\. Then G is a (3, k)-graph if and only if G = Kk+^. 
Proof. Suppose that G is a (3, k)-graph and G£Kk+3. Therefore there are two 

distinct points u9 veV(G) with uv£E(G). We put dG(v) = p. The graph 
G, = G(NG(v)) is a regular (2, k)-graph with | V(G,) | = dG(v) = p (see Lemma 3.2 
and Theorem 4.5 of [4]). Let d(Gx) = r. According to Theorem 4.5 of [4], we have 
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where 

(2) k<r^k(k + 1). 

The graph G2 = G(NG(u)nNG(v)) is a regular (1, k)-graph of the degree d(G2) = 

k. Let | V(G2)| = q. Obviously \E(G2)\ = ^ . Let E - {xy eE(GX) \ x e V(G2) and 

y e V(G,) - V(G2)}. Since G, is a regular graph of the degree r and G2 is a regular 
graph of the degree k with | V(G2)| = q, we receive \E\ =q(r — k). Denote by G3 

the graph with V(G3) = V(GX)- V(G2) and £ ( G , ) = E(GX)-E(G2)-E. If w is 
any point of V(G^), then w> is adjacent exactly to k points of the V(G2) in G 
(because w, L> and w have in G exactly k common adjacent points) as well as in G,. 
Hence G^ is a regular graph of the degree d(G^) = r — k and |H(G3) | 

= ( p - q ) ( r - k ) 
2 

Obviously E(GX) = EuE(G2)uE(G3) and EnE(G2) -- EnE(G,) 
= E(G2)nE(G,) = 0. Therefore 

(3) |£(G,)H^-!<) + f+
(P"^(r"/c). 

On the other hand, since Gj is a regular graph of the degree d(G ) = r with 
| V ( G i ) | = p , we obtain 

(4) | E ( G , ) | = f . 

The equalities (3) and (4) imply 

qr=pk. 

Using (1) in the preceding equality we obtain 

qr = r(r-\) + k. 

Thus - is an integer, which contradicts (2). Hence uv eE(G) for any two distinct 

points w, v e V(G). 
As the proof of the second part of the assertion is trivial, the theorem is proved.* 
Theorem 5.3 of [4] states: If there exists m0->2 such that any (m0, k)-graph is 

the complete graph Krno+k, then for every m^m{, Km+k is the only (m, k)-graph. 
Thus Theorem 1 implies: 

Theorem 2. Lef ra^3 and k^l. Then G is an (m, k)-graph if and only if 
G = Km+k. 

* Added in proof: Carstens and Kruse in J. of Comb. Th., 3, 1977, give the same. 
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ОБОБЩЕНИЕ ПРИЯТЕЛЬСКОЙ ТЕОРЕМЫ 

Мариян Судолски 

Р е з ю м е 

Пусть т ^ 0 и к^0 - целъе числа. Граф, содержащий не менее т вершин (без петель 
и кратных ребер), мы назовем ( т , &)-фафом, если произвольная т-тица его вершин соединена 
точно с к общими вершинами. Простейшим примером ( т , /:)-фафа является полный ф а ф 
5 т 4- к вершинами. 

Существование неполных (2,1)-графов (известных как приятельские фафы) было показано 
Хигманом [3] и Вильфом [5]. Босе и Шриханд [1] и Плесник [4] доказали, что все 
(2, &)-фафы для к > 1 регулярны. Кроме этого Плесник [4] доказал несуществование неполно­
го ( т , &)-фафа для т ^ к + 2 ^ 3 . 

В нашей статье показано, что произвольный (т,к)-граф для т > 2 и к ^ 1 обязательно 
является полным. 
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