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A GENERALIZATION OF THE FRIENDSHIP THEOREM
MARIAN SUDOLSKY

Introduction. Given the integers m =1 and k =0, a graph with at least m points
is said to be an (m, k)-graph if any m-tuple of its points has exactly Xk common
adjacent points. 5

In [3] G. Higman and in [5] H.S. Wilf described (2,1)-graphs by the
well-known friendship theorem. In [1] R. C. Bose and S. S. Shrikhande and in
[4] J.Plesnik proved that any (2, k)-graph is regular for k>1. Further,
J. Plesnik in [4] proved that any (m, k)-graph is the complete graph with m + k&
points for m=k +2=3.

In the present we shall show that any (m, k)-graph is the complete graph with
m + k points for m=3 and k=1.

In the paper we shall use all notations and definitions in the sense of [2].

If G is a graph, then we denote by V(G) and E(G) the set of its points and lines,
respectively. Given u € V(G), ds(u) denotes the degree of the point u. Let
Ng(u)={v € V(G)|uv € E(G)}. It is easily seen that |Ng(u)| = ds(u). When G is
a regular graph, then d(G) denotes the degree of G.

Given U c V(G), G(U) denotes the induced subgraph of G with the point set
U.

Results. Let m and k be integers with m =1 and k =0. A graph G is called an
(m, k)-graph if and only if | V(G)|=m and ﬁ Ng(v)
i=1

= k for any m-tuple of its
distinct points v,, v, ..., Un.

Theorem 1. Let k>1. Then G is a (3, k)-graph if and only if G =K,.,.

Proof. Suppose that G is a (3, k)-graph and G # K, ,. Therefore there are two
distinct points u, ve V(G) with uv ¢ E(G). We put ds(v)=p. The graph
G,=G(Ng(v))is aregular (2, k)-graph with | V(G,)| =ds(v) =p (see Lemma 3.2
and Theorem 4.5 of [4]). Let d(G,) = r. According to Theorem 4.5 of [4], we have

() p=1+2=1,
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where

(2) k<rsk(k+1).

The graph G, = G (Ng(u)nNg(v)) is a regular (1, k)-graph of the degree d(G,) =
k.Let |V(G,)| =q. Obviously |[E(G,)| =q_2/§ .Let E —{xy e E(G,) | x € V(G,) and

y e V(G,)— V(G,)}. Since G, is a regular graph of the degree r and G, is a regular
graph of the degree k with |V(G.)| =q, we receive |E|=q(r — k). Denote by G,
the graph with V(G,) = V(G,)— V(G,) and E(G,) = E(G\)—E(G,)—E.If wis
any point of V(G,), then w is adjacent exactly to k points of the V(G,) in G
(because u, v and w have in G exactly k common adjacent points) as well as in G,.
Hence G, is a regular graph of the degree d(G;)=r—k and |E(G,)|

_ (p=a9)r=k)
5 .
Obviously E(G,)=EUE(G,)VE(G;) and EnE(G,) = EnE(G,)
= E(G,)nE(G+)=0. Therefore
3) EG)l=q(r—k)+ 24 22020,

On the other hand, since G, is a regular graph of the degree d(G )=r with
| V(G,)|=p, we obtain

r
(4) IE(G)I=5.

The equalities (3) and (4) imply
qr =pk.
Using (1) in the preceding equality we obtain
qgr=r(r—1)+k.

Thus I;( is an integer, which contradicts (2). Hence uv € E(G) for any two distinct

points u, v € V(G).
As the proof of the second part of the assertion is trivial, the theorem is proved.*
Theorem 5.3 of [4] states: If there exists m,=2 such that any (m,, k)-graph is
the complete graph K, .., then for every m =m,, K., is the only (m, k)-graph.
Thus Theorem 1 implies:

Theorem 2. Let m=3 and k=1. Then G is an (m, k)-graph if and only if
G = K,,. +k -
* Added in proof: Carstens and Kruse in J. of Comb. Th., 3, 1977, give the same.
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OBOBUEHHWE TMPUATEJILCKON TEOPEMBI
Mapusiu Cyponcku
Pe3some

Mycte m=0 u k=0 — uenve uucna. I'pad, copepxawmnin He mMenee m BepluuH (Ge3 netens
W KpaTHbIX pebep), Mbl Ha3oBeM (m, k )-rpacoM, eciM MPOU3BOJIbHAS M -THLA €O BEPLUMH COEMHEHA
TOYHO ¢ k o6umMu BepwuHamu. IlpocteiiuuM npumepoM (m, k)-rpaca siBasieTcs nojHbIA rpag
s m+ k BepLIMHAMH.

CyuwiecTBOBaHHe HenousHbIxX (2,1)-rpadoB (M3BECTHBIX KaK MpUATENbCKHE rpadbi) GbLIO MOKAa3aHO
Xurmanom [3] u Buabdom [5]. Boce u Wpuxaun [1] u IMnecuuk [4] gokazanu, 4TOo BCe
(2, k)-rpadbl past k > 1 perynsipust. Kpome atoro IMaecuuk [4] foka3an HecywecTBOBaHHE HEMONHO-
ro (m, k)-rpadpa gns m=k +2=3.

B Hauwieit cTaTbe NOKA3aHO, YTO MPOM3BOJIbHBINA (m, k)-rpad mns m>2 u k=1 obs3aTeNbHO
SABNAETCA MOJIHBIM.
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