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EFFECTIVE COMPUTATION OF RESTORING
FORCE VECTOR IN FINITE ELEMENT METHOD

Martin Balazovjech and Ladislav Halada

We introduce a new way of computation of time dependent partial differential equations
using hybrid method FEM in space and FDM in time domain and explicit computational
scheme. The key idea is quick transformation of standard basis functions into new simple
basis functions. This new way is used for better computational efficiency. We explain this
way of computation on an example of elastodynamic equation using quadrilateral elements.
However, the method can be used for more types of elements and equations.

Keywords: FEM, stiffness matrix, restoring force vector, computational efficiency of algo-
rithm, e-invariants
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1. INTRODUCTION

Modelling of seismic waves propagation and earthquake ground motion has advanced
to a state when we want to calculate realistic 3D models. As a rule, elastic wave
is considered as satisfactory approximation of these waves for computational mod-
eling. Elastic wave propagation is governed by the elastodynamic equation. Due to
complicated geometry of the boundary domain and heterogeneity of the area, mod-
eling of seismic wave propagation can be realistic enough only if the computational
domain is very large (computer memory more than 100 GB). One of the dominant
method applicable to solving of the elastodynamic equation into such domain is the
Finite Element Method (FEM).

The paper is organized as follows: Section 2 establishes the problem formulation.
Section 3 presents the two formulation of local restoring force vector computation
and the number of arithmetical operation required for both type of computation.
Section 4 point out on the usefulness of e-invariants which save only the essential
information needed for the computation.

2. FEM APPLIED TO THE EQUATION OF MOTION

Let us consider the wave propagation in two-dimensional perfectly elastic medium.
Then the wave propagation in both x and y coordinates satisfy the equation of
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motion and Hooke’s law [3, 5]

ρux,tt = τxx,x +τxy,y +fx
ρuy,tt = τyx,x +τyy,y +fy ,



τxx
τyy
τxy


 =



λ+ 2µ λ 0
λ λ+ 2µ 0
0 0 µ






ux,x
uy,y

ux,y +uy,x


 , (1)

where ρ is mass density, ui and fi are components of displacement and body force
per unit volume, respectively, τij are components of the stress tensor in i, j = x, y
direction. λ and µ are Lamé elastic coefficients. The computational domain is
Ω̄ = Ω∪Γ, where Ω represent the interior and Γ a the border of the domain. Usually,
solution of such differential equations is subjected also to specified boundary and
initial conditions. The weak formulation of equations (1) is based on the known
standard three-step procedure with final equations

∫

Ω

(wkρux,tt +wk,x τxx + wk,y τxy − wkfx) dΩ−
∮

Γ

(wkτxn) dΓ = 0,
∫

Ω

(wkρuy,tt +wk,x τyx + wk,y τyy − wkfy) dΩ−
∮

Γ

(wkτyn) dΓ = 0,
(2)

where wk ∈ {w1, w2, w3, . . . , w∞} are basis functions defined in the computational
domain. In sequel, we will use Galerkin weighted residual method and isoparametric
form of numerical solution computed by decomposition of domain into quadrilateral
elements. In this case the transformation between the actual element given by the
coordinates x = (x1, x2, x3, x4)T , y = (y1, y2, y3, y4)T and the master element has
the form

x = bTx , y = bTy , b =




b1
b2
b3
b4


 =

1
4




(1− η) (1− ξ)
(1− η) (1 + ξ)
(1 + η) (1− ξ)
(1 + η) (1 + ξ)


 , (3)

where the components of vector b are Lagrange family interpolation functions de-
fined on the square 〈−1, 1〉 × 〈−1, 1〉. Approximation of the dependent variables ux
and uy on the master element Ωe is again expressed as

ux = bTux , uy = bTuy (4)

where ux = (ux1, ux2, ux3, ux4)T and uy = (uy1, uy2, uy3, uy4)T are values of de-
pendent variable at the nodes of element Ωe. Applying relation (4) to the integral
equations (2) we obtain the matrix form of equation (2) for the element Ωe

[
M 0
0 M

][
ux,tt
uy,tt

]
+

[
K11 K12

KT
12 K22

][
ux
uy

]
=

1
ρ

[
M 0
0 M

][
fx
fy

]
+

[
bcx
bcy

]
. (5)

Vectors f and bc express external forces and boundary conditions, respectively. The
matrices of equations (5) are the local mass matrix composed of

M = ρ

∫ 1

−1

∫ 1

−1

(
bbT det J

)
dη dξ (6)
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and the local stiffness matrix composed of

K11 =
∫ 1

−1

∫ 1

−1

(
b,x (λ+ 2µ) b,Tx +b,y µb,Ty

)
Det J dη dξ,

K12 =
∫ 1

−1

∫ 1

−1

(
b,x λb,Ty +b,y µb,Tx

)
Det J dηdξ, (7)

K22 =
∫ 1

−1

∫ 1

−1

(
b,y (λ+ 2µ) b,Ty +b,x µb,Tx

)
det J dηdξ,

where numerical integration has been calculated by Gauss quadrature. Naturally,
equation (5) holds only for a quadrilateral element of the domain. To solve the
problem on the whole domain, we have to make so called assembling of all elements
in the domain. This way we obtain the system of equations

Mutt = Ku+ f, (8)

where M and K are global mass and stiffness matrices, respectively. f is the source
component. Now, such system of equations can be solved using approximation of the
second time derivative by the central difference formula. As the result we obtain an
explicit recurrent relation for the unknown variable um+1 in the time t = (m+ 1) ∆t.

um+1 = ∆t2M−1 (Kum + f)− um−1 + 2um. (9)

In practical applications the order of M and K can be quite large (104 − 106) [4].
Especially, in such cases attention has to be paid to formulation of such a compu-
tational algorithm that economize storage and number of required computational
operations. However, there are also situations, when the global mass and stiffness
matrices are too large to be stored in computer memory and numerical solution of
the original problem can not be found by finite element method. Therefore, efforts to
overcome this problem can be found in the literature. For example, the global mass
matrix can be approximated by a diagonal matrix (lumped mass matrix) and beside
using the global stiffness matrix some authors suggest to use a global restoring force
vector rm = Kum. It means that the stiffness matrix is not computed in order to
reduce the storage memory, but rather the restoring force vector rm is computed
in every time level without saving stiffness matrix in memory. In other words we
do not assemble the global stiffness matrix using local matrices but we assemble
global restoring forces using local restoring forces. This procedure is described in [1]
Moreover, direct computation of restoring forces has a further advantage in the case
of nonlinear material response [2]. As the result, this computational process reduces
the storage, but is very time consuming. In the following section we suggest how
to formulate the computation of restoring force vector to be the most effective from
the computational point of view.
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3. COMPUTATION OF THE LOCAL RESTORING FORCE VECTOR
USING NEW BASIS FUNCTIONS

The local restoring force vector for a quadrilateral element is given by
[
rx
ry

]
=

[
K11ux + K12uy
KT

12ux + K22uy

]
. (10)

Substituting (7) for Kij , i, j = 1, 2 we obtain

rx =
∫ 1

−1

∫ 1

−1

(
b,x (λ+ 2µ) b,Tx ux + b,y µ

(
b,Ty ux + b,Tx uy

)
(11)

+ b,x λb,Ty uy
)

det J dηdξ,

ry =
∫ 1

−1

∫ 1

−1

(
b,y (λ+ 2µ) b,Ty uy + b,x µ

(
b,Ty ux + b,Tx uy

)

+ b,y λb,Tx ux
)

det J dηdξ. (12)

Now, we will proceed as suggested in [1]. First of all, let us express the first deriva-
tives of the functions ux and uy from (4). It holds

ux,x = b,Tx ux, ux,y = b,Ty ux,

uy,x = b,Tx uy, uy,y = b,Ty uy.
(13)

Using these values we can compute the stress in quadrature points

τxx = (λ+ 2µ)ux,x +λuy,y ,

τxy = µ (ux,y +uy,x ) ,

τyy = (λ+ 2µ)uy,y +λux,x

(14)

and finally the restoring force in nodes

rx =
∫ 1

−1

∫ 1

−1
(τxxb,x +τxyb,y ) det J dηdξ,

ry =
∫ 1

−1

∫ 1

−1
(τxyb,x +τyyb,y ) det J dηdξ.

(15)

The derivative of the basis functions can be computed by help of the relation
[
bi,x
bi,y

]
=

1
det J

[
y,η −y,ξ
−x,η x,ξ

][
bi,ξ
bi,η

]
, (16)

where Jacobian J of the spatial transformation is

J =
[
x,ξ x,η
y,ξ y,η

]
=

1
4

[
x1 x2 x3 x4

y1 y2 y3 y4

]



−ηm −ξm
ηm −ξp
−ηp ξm
ηp ξp


 (17)
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=
1
4

[
(x2 − x1) ηm+ (x4 − x3) ηp (x3 − x1) ξm+ (x4 − x2) ξp
(y2 − y1) ηm+ (y4 − y3) ηp (y3 − y1) ξm+ (y4 − y2) ξp

]
, (18)

whereby
ηm = 1− η, ηp = 1 + η,

ξm = 1− ξ, ξp = 1 + ξ
(19)

and the derminant of Jacobian of the spatial transformation (4) is equal to

det J = x,ξ y,η −x,η y,ξ . (20)

A new process of the local restoring force vector computation is based on the ex-
pression of values x, y, ux, uy be help of a new basis functions and consequently on
using computational e-invariants composed from quadrilateral element parameters.
Let b(inv) be a new vector of basis functions on the unit square and T be a transform
matrix

b(inv) =




1
ξ
η
ηξ


 and T =




+1 +1 +1 +1
−1 +1 −1 +1
−1 −1 +1 +1
+1 −1 −1 +1


 (21)

with the property
b(inv) = Tb and 1

4TTT = I, (22)

where I is unit matrix. These properties are very important because, as we will see,
they facilitate to express the value of the function in nodal points using the new
basis functions. The standard isoparametric formulation of the function values in
the grid points of the element Ωe is

c =




x
y
ux
uy


 =




x1 x2 x3 x4

y1 y2 y3 y4

ux1 ux2 ux3 ux4

uy1 uy2 uy3 uy4







b1
b2
b3
b4


 = Vb. (23)

The vector c can be expressed in the new basis functions as follows:

c = Vb = VIb = V
(

1
4TTT

)
b =

(
V 1

4TT
)

(Tb) = V(inv)b(inv) (24)

and it means

c =




x
y
ux
uy


 =




x(0) x(1) x(2) x(12)

y(0) y(1) y(2) y(12)

u
(0)
x u

(1)
x u

(2)
x u

(12)
x

u
(0)
y u

(1)
y u

(2)
y u

(12)
y







1
ξ
η
ηξ


 , (25)

where components x(k), y(k), u
(k)
x , u

(k)
y , k = 0, 1, 2, 12 of matrix V(inv) are some

e-invariants with suitable properties from the computational point of view.
Let us express the restoring force vector using the new basis functions, too. We

will proceed step by step according to relations (13) – (15). It holds

ux,x = b,Tx ux = b,Tx
(

1
4TTT

)
ux =

(
b,Tx TT

) (
1
4Tux

)
= b,(inv)T

x u(inv)
x . (26)
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In analogy with the way of the formulation (26) we obtain

ux,y = b,(inv)T
y u(inv)

x ,

uy,x = b,(inv)T
x u(inv)

y ,

uy,y = b,(inv)T
y u(inv)

y .

(27)

Using these values we can compute the stress in quadrature points int the same way
as in (14) and for b,x we can derive from (22)

b,x = T−1b,(inv)
x = 1

4TTb,(inv)
x . (28)

If these values are substituted to (14) and then to (15), we obtain

rx = 1
4TT

∫ 1

−1

∫ 1

−1

(
τxxb,

(inv)
x +τxyb,

(inv)
y

)
det J dηdξ,

ry = 1
4TT

∫ 1

−1

∫ 1

−1

(
τxyb,

(inv)
x +τyyb,

(inv)
y

)
det J dηdξ.

(29)

For the derivative of vector elements b(inv) with respect to x and y we have

b,(inv)
x =




0
ξ,x
η,x

(ηξ) ,x


 , b,(inv)

y =




0
ξ,y
η,y

(ηξ) ,y


 , (30)

where [
ξ,x η,x
ξ,y η,y

]
=

1
det J

[
y,η −y,ξ
−x,η x,ξ

]
(31)

and for the Jacobian we now have

J =
[
x,ξ x,η
y,ξ y,η

]
=

[
x(0) x(1) x(2) x(12)

y(0) y(1) y(2) y(12)

]



0 0
1 0
0 1
η ξ


 =

[
x(1) + ηx(12) x(2) + ξx(12)

y(1) + ηy(12) y(2) + ξy(12)

]
.

(32)
Thus, we have two possibilities how to compute the local restoring force vector.

They are represented by the relations (15) and (29). Note that application of relation
(29) is very simple for the case of a unit square element. As an example, let us
consider a mesh of unit squares into a part of the computational domain. Let this
mesh be generated be the translation of unit square. Then the spatial transformation
between the master element and arbitrary square element becomes

x = 1
4 (x1 + x2 + x3 + x4) + ξ = x(0) + ξ,

y = 1
4 (y1 + y2 + y3 + y4) + η = y(0) + η.

(33)

It can be seen easily that for the Jacobian and its determinant

J =
[
x,ξ x,η
y,ξ y,η

]
=

[
1 0
0 1

]
, det J = 1 (34)
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hold, and the derivative of the vector b(inv) with respect to x and y has a very simple
result

b,(inv)
x =




0
ξ,x
η,x

(ηξ),x


 =




0
1
0
η


 b,(inv)

y =




0
ξ,y
η,y

(ηξ),y


 =




0
0
1
ξ


 . (35)

Thus, using the following formulations (36) and (37) we can compute derivatives of
displacements and stress components for the square element

ux,x = u
(1)
x + ηu

(12)
x , ux,y = u

(2)
x + ξu

(12)
x ,

uy,x = u
(1)
y + ηu

(12)
y , uy,y = u

(2)
y + ξu

(12)
y ,

(36)

τxx = (λ+ 2µ)
(
u

(1)
x + ηu

(12)
x

)
+ λ

(
u

(2)
y + ξu

(12)
y

)
,

τxy = µ
(
u

(2)
x + ξu

(12)
x + u

(1)
y + ηu

(12)
y

)
,

τyy = (λ+ 2µ)
(
u

(2)
y + ξu

(12)
y

)
+ λ

(
u

(1)
x + ηu

(12)
x

)
.

(37)

The local restoring force vector is obtained by exact evaluation of integrals (29).
The result is very simple

rx = TT




0
(λ+ 2µ)u(1)

x + λu
(2)
y

µ
(
u

(2)
x + u

(1)
y

)

1
3 (λ+ 3µ)u(12)

x


 , ry = TT




0
µ

(
u

(2)
x + u

(1)
y

)

(λ+ 2µ)u(2)
y + λu

(1)
x

1
3 (λ+ 3µ)u(12)

y


 . (38)

Algorithm efficiency is often measured by the number of arithmetical operations
required by the algorithm. In the following table the number of required operations is
given for computation of the local restoring force vector for a quadrilateral element.

Case of algorithm dividing multiplying add/substr. assigning
Standard 4 236 236 196

Proposed (Q4 element) 4 169 150 127
Proposed (square element) 0 11 32 29

In the next section we briefly describe the reason why suggested algorithm is more
effective.

4. e-INVARIANTS OF THE QUADRILATERAL GEOMETRY

e-invariants saved only essential information needed for the computation of the lo-
cal restoring force vector. Two groups of invariants were used: e-invariants of the
quadrilateral geometry and e-invariants of the set of unknown values. e-invariants
of the quadrilateral geometry uniquely determine convex quadrilateral in the plane.
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( , )x y1 1

( , )x y2 2

( , )x y3 3

( , )x y4 4

(-1,-1) (-1,1)

(1,1) (1,-1)

(0,0)
(1,0)

(0,1)

( , )> 0

( , )x y

a(0)

a
(1)

a
(2)

a
(12)

a
(1)

a
(2)

Fig 1. Bilinear transformation.

The first e-invariants x(0) and y(0) generate the point α(0) in the quadrilateral do-
main. This point correspond with (0, 0) point into the master element in bilinear
transformation shown in Figure 1. Coordinates of point α(0) are

x(0) = 1
4 (x1 + x2 + x3 + x4) , y(0) = 1

4 (y1 + y2 + y3 + y4) . (39)

α(0) determine the location of the quadrilateral element in computational domain
independently on the rotation and change of shape of the element. Location α(0) of
the element is not needed for the computation of the restoring force vector.

Another two e-invariants are vectors α(1) =
(
x(1), y(1)

)
and α(2) =

(
x(2), y(2)

)
.

These vectors correspond with the vectors a(1) = (1, 0) and a(2) = (0, 1) into the
master element. Their coordinates are as follows

x(1) = 1
4 (−x1 + x2 − x3 + x4) , y(1) = 1

4 (−y1 + y2 − y3 + y4) ,

x(2) = 1
4 (−x1 − x2 + x3 + x4) , y(2) = 1

4 (−y1 − y2 + y3 + y4) .
(40)

It is easy to verify that these coordinate fulfill

x(1) = 1
2 (x2 + x4)− x(0), y(1) = 1

2 (y2 + y4)− y(0),

x(2) = 1
2 (x3 + x4)− x(0), y(2) = 1

2 (y3 + y4)− y(0).
(41)

Positions of the vectors α(1) and α(2) are shown in Figure 1.
Both vectors are independent on the location of the quadrilateral element. Their

lengths
∣∣∣α(1)

∣∣∣ =
√
x(1)x(1) + y(1)y(1),

∣∣∣α(2)
∣∣∣ =

√
x(2)x(2) + y(2)y(2) (42)

and angel
β = Arcos

(
x(1)y(1) + x(2)y(2)

∣∣α(1)
∣∣ ∣∣α(2)

∣∣

)
(43)
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are independent on the rotation. The last invariants are x(12) and y(12). They
generate the vector α(12), which is always non-zero for a general case of convex
quadrilateral. This vector correspond with the zero vector in the master element.
The coordinates of this vector are

x(12) = 1
4 (x1 − x2 − x3 + x4) , y(12) = 1

4 (y1 − y2 − y3 + y4) (44)

or
x(12) = x(0) − 1

2 (x2 + x3) , y(12) = y(0) − 1
2 (y2 + y3) . (45)

Size of this vector is
∣∣∣α(12)

∣∣∣ =
√
x(12)x(12) + y(12)y(12). (46)

This value is independent of element location and can be used as a rate of how much
differs general convex quadrilateral element from parallelogram.

5. CONCLUSION

We presented a new way of restoring force vector computation in FEM. The proposed
method differs from the standard algorithms using such basis functions which enable
to compute this vector more effective. It means that the computation of the local
restoring force vector for quadrilateral element using the 4-points numerical quadra-
ture reduce the number of the required arithmetical operation approximately about
1
3 . This method can be easily extended to 3D case. The result of this generalization
will be the subject of our next paper.
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