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MULTIPLICATION, DISTRIBUTIVITY 
AND FUZZY-INTEGRAL III1 

WOLFGANG SANDER AND JENS SlEDEKUM 

Based on the results of generalized additions, multiplications and differences proven in 
Part I and II of this paper a framework for a general integral is presented. Moreover it is 
shown that many results of the literature are contained as special cases in our results. 
Keywords: fuzzy measures, distributivity law, restricted domain, pseudo-addition, pseudo-

multiplication, Choquet integral, Sugeno integral 
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11. A GENERAL FUZZY-INTEGRAL 

We assume that the reader is familiar with the notations and results in Part I and 
II. In these two papers we introduced the necessary preparations for a framework 
for a generalized integral which we will call fuzzy integral. 

Let us start by agreeing that in this paper now [A, B] = [0, £?], 0 < B < 00. Thus 
the assumption "Let A be a pseudo-addition and let o be a pseudo-multiplication" 
always means: let "A : [0,I?]2 —> [0,B] be a pseudo-addition and let o : [0,.B]2 —> 
[0,B] be a pseudo-multiplication". Moreover, we agree on some notations. 

(X, A, fi) is a fuzzy measure space, where (X, A) is a measure space and /x : A —> 
[OjB] is a fuzzy measure (see Section 2). 

This is a general assumption in all following definitions and theorems. 
For a simple function / : X —> [0, B] we always assume the representation 

n 

f = YlailA" ao = 0<ai < <an <B, (88)' 
i = l 

where Ai,..., An G A are pairwise disjoint. Moreover, we define for a right unit e 

eA = e - 1A , A e A. (89) 

We want to define the integral for simple functions. To do this we first show different 
representations for simple functions (see Section 2). 

1This paper is a continuation of our papers Multiplication, Distributivity and Fuzzy-Integral I 
and II in Kybernetika No.3,4/2005. We continue the enumeration of formulas, definitions, lemmas 
and theorems. 
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L e m m a 6. Let A, II be pseudo-additions, and let o be a pseudo-multiplication 
satisfying (DL*), (RU) and (Z). If a simple function / has the form (88), then we 
get 

(a) / = U - = 1 [ a i o e ^ ] . (90) 
n 

(b) / = Un
=1[(ai - A ai_i) o eBJ , where B{ = \J Aj. (91) 

j=i 
n 

(c) / = 5ZK°*"Aa*-1) l f l*]- (92) 

P r o o f . First we note that A = II by Lemma 3 (b). Let m G {1 ,2 , . . . ,n) and 
let x G Am. 

To prove (a) we use (RU) and (Z) to get f(x) = am = amoe = Un
=1[aiOeAi(x)]. 

To prove (b) we use (RU), Theorem 11 (d) and (Z) to arrive at f(x) = am = 
amoe = U£L i[(ai - A a^-i) oe] = Un

=1[(ai - A a>i-i)oeBi(x)} (note that eBi(x) = 0 
for i>m). 

For the proof of (c) choose A = I I : = + , o : = - , the usual addition and multipli­
cation and a— A b = a — IT 6 = 0V(a — b) (which is a special case of Example 2): 

aAi? = a II6 = (a + &) A oo, a o b = (a • &) A oo = a • 6, 

a —A b = a — IT b = 0 V (a — b), a —A b = a —u b = 0 V (a — b) 

(if a = b = oo then a — b:= 0)). 

Using part(b) we get (c). D 

We now define the integral of a simple function (here no right unit is needed). 

Definition 7. Let A, II be pseudo-additions, and let o be a pseudo-multiplication 
satisfying (DL*) and (Z). Then the fuzzy-integral of a simple function / (see (88)) 
with respect to \x is defined by 

(o) J fdfi := (o) J fdfi := Un
=1[(a{ - A a,_i) o/!(£«)]• (93) 

(see (90) for the sets B{). UU C X,U G A, then we define 

(o) / / d / i := IIJUKa, - A a ^ i ) o/i(Bi n U)}. (94) 
JC7 

Note that the fuzzy-integral is defined exactly like the t-conorm integral. 
Because of the last statement in Theorem 11, the fuzzy integral for simple func­

tions is well-defined: 

— If ai = ai+1 for some i G {1 ,2 , . . . , n — 1} then the (i + l ) th summand can be 
omitted (using Lemma 5 (e) and (Z)): (ai+i — &a>i)oii(Bi+i) = 0ofj,(Bi+i) = 0. 
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— If am = 0 for somera G {1 ,2 , . . . , n} then a* = 0 for alii G {1 ,2 , . . . , r a} . Again 
by Lemma 5 (e) and (Z) we arrive at {ai — AO>i-i)o^{Bi) = 0,i G {1 ,2 , . . . , ra}. 

— If Ai = 0 for some i G {1 ,2 , . . . , n} then we consider two cases: 

If i = n then (an —A Q>n-\) o V>{Bn) = (an - A Q>n-i) o V>{An) = 0. 

If i < n then we get (because of fi{Bi+i) = ii{Bi) and Theorem 11 (a)) 

[{di+i - A ai) o M-Bi+i)] U [fai - A ai - i ) o fj(Bi)] = {ai+i - A a^-i) o fi(I?i+i)-

The following result shows that the fuzzy integral satisfies some expected prop­
erties. 

Lemma 7. Let A, II be pseudo-additions, and let o be a pseudo-multiplication 
satisfying (DL*) and (Z). Then the fuzzy-integral of a simple function / with respect 
to \i satisfies 

(a) U G A =* (o) / fdfi = (o) / /lryd/l. (95) 
JC7 Jx 

(b) U G A A (n(U) = 0) = > (o) / / d/i = 0. (96) 
. Ju 

(c) f<9=>{o) Jf dfi<{o) J gdfi. (97) 

(d) (LU) A{M eA)=>{o) f elMd/x = /x(M). (98) 

P roo f , (a) Let / have the representation (88), so that the representation (90) is 
valid, too. Using lr/ • / = £ ? = 1 â  • l ^n t / we get 

/

n 

/lc/d/x = II?=1[(ai-Aai_i)o/i(U(AinC/))] 

j=i 

= u?=i[K - A ai-i) O ^ B * n c/)] = (o) / /d/i. 
JC7 

Using that /i is isotone and (Z), we get (b). 

To prove (c) we prove first the following statement: 

(1) A M e ^ / | M = a G [ 0 , B ] A 6 G [ a , ^ 

W.l.o.g. let / =£ 0 (otherwise (1) is trivial)). 
Thus we have for / a representation of the form (88) with an := 0 < ai < 

a2 < -" < an < B := an+i and where Ai G A are pairwise disjoint and Bi := 
{T^iA^Bn+i:=^,\<i<n. 

Since / | M is constant there is k G {1 ,2 , . . . , n} satisfying a = ak and M c A f e . 
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Since the case b = a is trivial we may assume that b > a*. Then there exists 
exactly one I G {k, k + 1 , . . . , n} with a\ < b < a/+i. Thus we have f + (b — Q)\M = 

Z)i=l ailAi + dklAk\M + Et=fc+1 ailAi + blM + Ei=Z+l ailAi-

By Definition 7 and (Ak \ M) U Ui=fc+i ^ i U M U UlU+i ^i = #fc we get 

(o) J[f + (b- a)lM] d/i = (U?=i[(«i - A Oi-i) o/i(^)]) U 

II(I lU+i [(a, - A m_i) o *i(B, UM)])U [(6 - A a,) o / i ( £ m U M)] LI 

U[(a!+i - A t)-o/i(B,+i)] U (I^i+aKoi - A <*-i) <>/*(£<)]) 

(if fc = I or / > n — 1 then the corresponding "empty sums" are defined to be 0. If 
I = n note that n(Bi+\) = /x(0) = 0). 

Using the last equality, the monotonicity of/i and o and Theorem 11 (a) we arrive 
at 

(o) / [ / + Q>- a)lM] dM > (HJU[(a* - A Oi_i) oM(Bi)]) U 

U O l U n K a i - A ai_!) o/x(5i)]) U 

U [ ( 6 - A oi) o/x(B,+1)] U [ ( O , + I - A 6) o/i(B,+1)] U (IIJL,+3[(a«-A <n_i) <>/*(£<)]) 

> (II^iKoi - A 0,-1) o ji(BOl) U (Ui-fc+iKfli - A a*.!) o/i(B0]) II 
U[(oi+i - A a«) <>n(Bi+i)] U (U?=,+2[(oi - A Oi_i) o/i(Bi)]) 

In a next step we show that we have for all ai, bi £ [0,B] satisfying a* < bi and 
for all Ai G A, 1 < i < n, n G N: 

« n p m n 

A (o) / [E a^<] ^ ^ (°) / [E6*1^ + E a*1*]d^ 
{1,2,...,n} ^ i = l ^ i = l i = m + l 

Denoting the last statement by A(m) we prove by induction on m G N. 
To prove A(l) we use (1) with / := YX=i adA^M := A\, a := ai, 6 := 6i to get 

m £ 

/

n t n r n 

E ^ 1 ^ ^ ^ (°) / [Ea i l^+(6 i"a i)1^] d'x=(°) / [ M ^ + E 0 * 1 ^ ]
 d^ 

i = l ' i = l J i=2 
For the step A(m) =$• j4(ra + 1) we use again (1) with / = YllLi bdAi + 

EILm+i ailAi,M := Am+ua := a m + i and 6 := bm+i and arrive at 
r n r m _n _ 

(o) / [E0*1^]d^ ^ (°) / [E6*1^ + E aiu]<^ 
•̂  i = l ^ t= l i = m + l 

' i = l t = m + l 

- m+1 n 

= ( o ) / | E 6 i l ^ + E ÛJdM. 
^ i = l t=m+2 
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Finally let / , g be arbitrary simple functions with / <. g. Then there is (using 
that the collection of the intersections of two measurable partitions of X is again a 
measurable partition of X) a representation 

n n 

f = X^ilAi , 9 = ^ 6 i U i ? 
i = l t= l 

where the Ai E A, 1 < i < n are pairwise disjoint. Because of / < g we have 
Q>i<bi, 1 <i <n. Using A(n) we get (o) J fd/i < (o) J gd/i. 

Proof of (d): 

(o) / e ljv/d/i = e o /x(M) = fi(M). 

This finishes the proof of Lemma 7. • 

Now we define the fuzzy integral for arbitrary measurable functions in the usual 
way (see Section 3). 

Definition 8. Let A, II be pseudo-additions, and let o be a pseudo-multiplication 
satisfying (DL*) and (Z). Then the fuzzy-integral of a measurable function / with 
respect to /x on U C X, U G A is defined by 

/ / d/x = (o) / /d/x :-= sup \(o) s d/x : s < / , s simple > . (99) 

It is clear that (because of Lemma 7 (c)) the integral for measurable functions 
extends the integral for simple functions. Using Definition 8 we get again (95) - (97), 
but now for measurable functions (only (DL*) and (Z) are needed). Note that for the 
definition of the fuzzy integral only a fuzzy measure is needed. Additional properties 
of a fuzzy measure are necessary if additional properties of the integral are proven. 

Our first nontrivial result is the Theorem on monotone convergence if /x is con­
tinuous from below. 

Theorem 12. Let A, II be pseudo-additions, and let o be a pseudo-multiplication 
satisfying (DL*) and (Z). Let /x : A —• [0yB] be a fuzzy measure which is continuous 
from below, and let (/n) be a sequence of measurable functions fn:X—> [0, B] 
satisfying fn < / n + i , n € N and / := l im/ n . Then we have 

lim (o) ífndfi = (o) ffdfi. 
n-*oo J J 

P r o o f . The inequality limn_*oo (o) / fn d/i < (o) / / d/x follows from the property 
(97) for measurable functions. 
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(1) To prove the reverse inequality we assume: 

L := ^(o) f fndfi < (o) I fdfi. 

By Definition 8 there is a simple function s satisfying 

5 < / , (o)fsdfi>L. (100) 

By Definition 7 we have 5 ^ 0 and thus 5 has a representation 

n 

s = ^ a i l ^ , a0 := 0 < a\ < a2 < ••• < am < B, 
i = i 

m 

Ai G A pairwise disjoint, Bi := M Aj, 1 < i < m. (101) 
j=i 

(2) We now define a sequence of simple functions (sn) by 

.. m 

A A <w := [(a* - n ) v ?]A n' A s " := Ha^1^ (102) 
nGNiG{l,2,...,m} nGN i = l 

and get: f\n£nan$ := 0 < an,i < an,2 < • • • < an>m < B, an) i | a* and thus 
sn t 8. 

Let us now prove 

(*) A A [ I(*)> 0 =**»(*) </(*)]: 
neNxex 

Case 1. If ViG{i,2,...,m} x e A*> t h e n ( u s i n g (102), (101), (100)) we get sn(x) = 

Kai - n") V i- A U < °>i = S(X) ^ f(X)' 
Case 2. If Ai€{i,2,...,m} x £ Ai t h e n (using (102)) sn(x) = 0 < f(x). 

(3) We show limn_>oo(o) / snd/i > L : 

The function Um
=1 : [0,F?]m —> [0,F?] is continuous and isotonic in each place, 

and thus II™^ is continuous on [0,i?]m (see [10]). Using this fact and the 
properties of (an j i), Definition 7, (102), the monotonicity properties of —A 
and the fact that 

( sup X(m)) ® c = sup (A(m) © c), where ® G {o, — ̂ } 
^meM ' meM 

(here M is a set, A : M —> [0,5] is an arbitrary function; see also (87)), we 
arrive at 

lim (o) / 5nd/x 
n->oo J 
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. = lim (ЩL^Ka^i - д aПti-i) oЏ(BІ)}) 
n—>oo 

> lim ( H £ . [(an<i - д a ť_!) o ^(ß.)]) 
n—>oo 

= Щ І ! ( lim [(aПti - д a._0 o /І(І?,)]) 
\ n—>oo / 

= Щ І ! ( sup[(aПł i - д ai_i) o Џ(BІ)]) 
v nЄN ' 

= ЩlJ [ s u p ( a n , i - д ai_i)l o/x(ßi)j 
V L n Є N J У 

= Щ^Q^supa^) -д ai_i] O/І(BІ)) 
^nЄN 

= Щ l 1 ( [ a i - д a i _ 1 ] o M ( £ ? i ) ) 

" ( 0 ) / 
sdџ > L. 

(4) Because of (3) there is AT G N with (o) fsNd/i> L. 

Let us define /\n£NUn := {x G X : fn(x) > sN(x)}. Then Un G A,n G N 
because we get for all x G X: 

fn(x) > sN(x) <=$> (fn(x) V sN(x)) > sN(x) 

^ hn(x):=(fn(x)VsN(x))-sN(x)>0. 

Thus hn is measurable, Un = / ^ ( O , B] e A and Un C t/n+i, n G N. 

Moreover, we prove Aie{i,2,...,m} L U N ^ n J7n) =
 Bi : 

The inclusion C is obvious. To prove the inclusion D, let x G Bi. Because of 
Bi = U™=i Aj there is j G {i, i + 1 , . . . , m} such that x G A,-. Thus we have 0 < 
Q>j = s(x) < f(x) and using (*) sN(x) < f(x) = limn_>oo fn(x) which implies: 
VneN fn(x) > sN(x). Therefore x is in Un and we get x G \Jn£N(BinUn). Using 
that fi is continuous from below results in: Aie{i,2,...,m} suPneN M-E* n ^ ) = 

p(Bi). 

Finally the above considerations in ( l ) - (4) and the fact that 

c o ŕ sup A(m)) = sup (coA(m)), 
^ m^M ' mЄM 

(where M is a set and A : M -> [0, B] is an arbitrary function) leads to the 
contradiction 

L = lim (o) / /nd/x > lim (o) / lUnfndfi 
n—•oo J n—•oo J 

> lim (o) / lunsNdu> lim (o) / s/yd/x 
n—co j n—co 7 ^ 

= lim (11™=![(a,v,i - A aN,i_i) o/i(£?i n Un)]) 
n—*oo 

= H^! ( lim \(aN,i - A Oiv.i-i) o M(Bi O v„)]) 
\n—•co ' 
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= II£1 x ( sup [(aNii - A ajv>-i) o fi(B{ n Un)}) 
V n€N 7 

= U ^ ! ((aNii - A a ^ i - i ) o [sup v(B{ n c7n)l) 
V -n€N J / 

= U^1((a /v,i - A a/v,i-i) Ofi(Bi)) = (o) / sjvd/x > L. 

This finishes the proof of Theorem 12. • 

We remark that in [15] the t-conorm-integral was defined by (23) and (24), but 
(24) is only well-defined if /x is continuous from below. In this case their definition 
coincides with our definition (because of Theorem 12). 

For further nice properties of the fuzzy integral so-called decomposable fuzzy mea­
sures are needed. So we present in the following additional integral representations. 
As a new result we show that we can replace the usual strong distributivity by the 
weak distributivity, if we require that the fuzzy measure is not only decomposable 
but also subtractive. 

Definition 9. Let l b e a pseudo-addition, and let —± be a J_-pseudo-difference. 
The fuzzy measure // is called ^-decomposable iff 

U H V = 0, [/, V G A => fi(U U V) = fi(U) ± fi(V). (103) 

The fuzzy measure \i is called JL-subtractive iff 

UcV, U,VeA=> n(U) = fi(V) -± fi(V \ U). (104) 

There are two connections between these two notions: 

(a) fi _L-subtractive =l> fi X-decomposable. (Let U,V G A with U fl V = 0. 
Because of Lemma 5 (h) we have /X(L7 U V) = (/i(U U V) -± /i(V)) JL fi(V).) 

(b) ^ ^-decomposable = » [U C V, U,V e A =» fi(U) > fi(V) -± fi(V \ U)}. 
(Let C/, V G A with U C V. Then Lemma 5 (k) implies ji(V) -± n(V \U) = 
\fi(U U (V \ U))} -± fi(V \ U) = MU) ± »(V \ U)} -± »{V \ U) < VL{U).) 

In (b) we have equality only in special cases: for example for fi(V) £ D± with 
li(V) > ii(V \ U), (see Lemma 5 (q)). 

Example 5. Independently of the pseudo-addition J_ there are fuzzy measures 
which are J_-decomposable, but not _L-subtractive: 

Let ± be arbitrary, choose X := {0, l},/i(0) := 0,/x{0} := a G (0, B], fi{l} := B, 
/i{0,1} := B. Then /x is a fuzzy measure which is J_-decomposable (/x{0} JL /i{l} = 
a _L B = //{0,1}) but not ±.-subtractive (/x{0, \}-±\i{\} = B-±B = 0 < a = /i{0}, 
see Lemma 5(e)). 

As announced, we present in the following two results integral representations for 
simple and measurable functions, respectively. Here only a fuzzy measure space is 
required (but the fuzzy measure need not to be continuous from below). 
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Theorem 13. Let (_K, A, fi) be a fuzzy measure space, let A, J_ and II be pseudo-
additions, and let o be a pseudo-multiplication satisfying (DL*), (DR*) and (Z). 

Then we have for simple functions / (see (88) and (91)): 

(o) J fdfJL = IIJUK o (p(Bi) ~± n(Bi+i))l where J5n+i := 0. (105) 

If (fi is _L-subtractive) or (if (DR) is satisfied and \L is JL-decomposable) then: 

(o)jfd^ = UU{aiofJi(Ai)}. (106) 

Proof. In a first step we show by induction on i: 

(1) / \ j \ UU[a«(»(Bk)-±rtBk+i))}=aon(Bi): 
iE{l,2,...,n}a€[0,B] 

If i = n then we use Lemma 5 (a): 

ao (n(Bn) -± fi(Bn+i)) = ao (fi(Bn) -±0) = ao fi(Bn). 

For the step i —•• i — 1 we use an analogous result of Theorem 11 (b) to get 

UZ=i_1[ao(ti(Bk)-±»(Bk+i))] = [ao(fi(B^i)-±^(Bi))]U[aoii(Bi)] = aOfi(Bi.i). 

We now apply (1) and Theorem 11 (d) and arrive at 
(2) (o) / /d/ i = U?=i[(ai - A at-i) o v(Bi)] 

= U?=1 II£=i [(ai - A ai-i) o (fi(Bk) -± fi(Bk+i))] 

= U^=i U t i [(ai - A 0,-0 o (»(Bk) -± p(Bk+i))] 

= U%=1[ako(n(Bk)-±iJi(Bk+i))]. 

We first consider the case that /x is _L-subtractive. Because of Bi = Ai U Bi+i we 
get fi(Bi) —± fi(Bi+i) = fJi(Ai), 1 < i < n so that (2) goes over into (106). 

Let us now assume (DR) and that \i is J_-decomposable. Then the associativity 
of II and Theorem 11 (d) imply 

/

П 

/dм = H ? = 1 [ ( a i - д a i _ 1 ) o / . ( ( J A J ) ] 

= U?=1[(ai - A a,.,) o (±7 = i M(A,))] = H?=1 H?=i [(a. - A a..,) o n(Aj)} 

= H?= 1 U{=1 [(a, - A a^) on(Aj)) = U?=1[aj oM(A,)]. 

Thus Theorem 13 is proven. • 

In the next results we denote by MV the set of all measurable partitions of X. 
Thus M G MV means that M is a measurable partition of X, that is, At is a finite, 
pairwise disjoint family of measurable sets whose union is X. 

We show two results: An integral representation for measurable functions, and 
the decomposability of the integral over the union of two disjoint measurable sets. 
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Theorem 14. Let (X, A, n) be a fuzzy measure space, let A, ± and II be pseudo-
additions, and let o be a pseudo-multiplication satisfying (DL*), (DR*) and (Z). 

If (/i is _L-subtractive) or (if (DR) is satisfied and fi is JL-decomposable) then: 

(a) (o)ffdn = supMeMV ( U M E M [(infxGM/(^))oju(M)]), (107) 

(b) UnV = ^UJVeA^(o)fuuvfd^=((o)fufdtx)u(<(o)fvfd 

Proof, (a) ">": Let M e MV and choose the simple function 
s := Y^MeM \}^xeM f(x)) • 1M < / . Then Definition 8 and (106) imply 

(o) Jfdfi>(o)Js dp = UMeM [( taf, f(x)) o ti(M)] 

and thus we get 

(o) [fdfi > sup (uMeM [( mf f(x)) oji(Af)l). 
J MeMV v i\xeM / J/ 

"<": Let s be simple with s < f. Then there is a representation s = Yl7=ia^Ai 
where M := {A1,A2,-..,An,X \ (JJLi -4*} € /Vf. Moreover s < f implies a* < 
infxeAi f(x), and (106) yields 

This leads to 

(o) Jsd/x = H ^ t a i O / x ^ ) ] < nMGA< [(x%f(x)) °»(M)]-

o 

(o) / / d/x < sup ( UMzM \( inf f(x)) o n(M)]). 
J M&MV v LViGM / J/ 

(b) We first prove (b) for a simple function / = ]Ci=ia*lAi where a* G [0,B] 
and Ai E A, 1 < i < n are pairwise disjoint. Now U (1 V = 0 implies lrJuv • / = 
Sr=i MAtnc/ + Zir=i ^i-Ainv so that we get from Theorem 13 (b) 

(o) / fdn = (o) lc /w/d/i 
Juuv Jx 

= (II?=1 [a, o fi(Ai DU)])U (II*U[ai o fi(Ai n V)}) 

= ((O) / lufdn)u((0) f lyfdfl) 
J X J X 

= ( ( o ) | / d / i ) H ( ( o ) ^ / d / x ) . 

Now we prove (b) for an arbitrary measurable function / by showing first the fol­
lowing equality (where £ denotes the set of simple functions): 

(*) sup \((o) f sd»)u((o) f sdM 
s<f,se£LV Ju ' v Jv / j 

= [ sup ((o) / sd/i)l u [ sup ((o) / sd/i)l . 
ls<f,se£ v Ju / j ls<f,se£ v Jv / j 
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The inequality "<" follows from the monononicity of U in each place. To prove the 
reverse inequality we assume in contrary 

S:= sup \((o) f sd^)u((o) [ fdfi)] 
s<f,see -^ JrJ ' v Jv n 

< \ sup ((o) / 5d/i)l II [ sup ((o) I Sdfl)]. 1 s<f,ses ^ Ju n L s<f,see v Jv n 

Then the monotonicity and continuity of U in each place implies 

V V S < ((o) / ^ d ^ ) U ((o) / Svd») • 

We define s := (su V sv) € £. Then we have su, sv < s < / , and we get (using (97) 
for measurable functions) the contradiction 

S < ((o) J Su d/i) U ((o) y av d/x) < ((o) y gd|i) U ((o) y sdjx) 

< sup |Y(o) / 5d/i) U f(o) / 5d/i)l = 5. 
s<f,ses L\ Ju ' ^ Jv '* 

Now (b) follows from (*) and (b) for simple functions: 

(o) / fd/i= sup (o) / sdfi 
JUUV s<f,s€£ JUUV 

= sup [((o) / *dAt)H((o) / ad/*)] 
s<f,seeLV Ju ' v jv / j 

= [ sup ((o) / sdfi)] U f sup ((o) / sdfi)] 
Ls</,sGf K Ju / j Ls</,se£ x Jv / j 

= [(o) //d^]u[(o)//d/x] 

This proves Theorem 14. • 

Example 6. We show that the condition (DR*) A (n is_L-decomposable) is not 
sufficient for the decomposability of the integral: 

We overtake A, ±, U and o from Example 2 with B < oo. Then (DL*) is satisfied, 
and thus (DR*), too (because of the commutativity of o). Now we choose X and 
/x from Example 5, and let us put / = \\x € £,U := {0}, V := {1}. Then we get 
(using the remarks before Lemma 7) 

= •(i»«{0})n(i<>(i{i}) = (w/ /<U.)B((<. ) / /<Ui) . 
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We remark that statement (a) of Theorem 14 gives a connection with the so-called 
integral based on t-norms and t-conorms (see [11]). 

The additivity of the classical integral can be generalized for fuzzy integrals,working 
with real-valued comonotone functions f,g, defined on X: 

f, g are called comonotone on X iff (f(y) — f(z))(g(y) — g(z)) >0,y,zeX. 

We remark that the following equivalence holds: 

f,g are comonotone on X <=> /\yjZeX[f(y) < f(z) => g(y) < g(z)]. 

We first prove the following result, which is interesting in itself, and which will 
essentially be used In the proof of Theorem 16. 

Theorem 15. Let A be a function which is monotone increasing and continuous 
in each place (no further assumptions). Let X be a set, and let M be a nonempty 
subset of X. 

If / , g : X —> [A, B] are comonotone, then the following two statements hold: 

(a) inf [f(x)Ag(x)) = [ inf /(*)] A [ inf g(x)]. (109) 
xGM L X G M J t LxGM J 

(b) sup [f(x)Ag(x)) = [ sup f(x)] A [ sup g(x)]. (110) 
xGM LxGM J L X E M J 

Proof. We only prove (a) since (b) can be proven similarly. 
The inequality ">" is clear because of the monotonicity of A. 

To prove the reverse inequality we assume in contrary 

I := MM[f(x)Ag(x)) > [ M f(x)] A[ M g(x)]. 

But then there exist y G M and z G M such that I > f(y)Ag(z). We define F := 
{xeM : f(x) < f(y)}, G := {x G M : g(x) < g(z)} and get FnG ^ 0 (If otherwise 
FnG = 0 then we have z £ F Ay £ G (since by definition z G G A y G F). This 
implies f(z) > f(y) and g(y) > g(z) which contradicts that f,g are comonotone). 
B u t F n G ^ e implies VxeM(f(x) < f(y)) A (g(x) < g(z)) so that we get the 
contradiction: 

I > f(y)Ag(z) > f(x)Ag(x) > inf [f(x)Ag(x)) = I. 
xGM 

Thus Theorem 15 is proven. • 

Theorem 16. Let (X, A, fi) be a fuzzy measure space, let A, ± and II be pseudo-
additions, and let o be a pseudo-multiplication satisfying (DL), (DR) and (Z). 

If /x is ±-decomposable and if / , g : X —• [0, B] are measurable and comonotone, 
then the fuzzy integral is comonotonic additive: 

(o) J(fAg) d/x = ((o) J f dM) U ((o) Jgdfx). (I l l) 
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Proof. (1) In a first step we'prove 

sup ( U M G M | ( inf f(x)) o/z(M)l U IIM<EA4 |Y mi Q(X)) O/I(M)]) 
MeMV ^ L x x G M / J l\xeM / J/ 

= &p(Unr [(^/ ( x ))°" ( F )]u 4a. (Uo" Ka^O^0)])-
The inequality ">" is clear because of the monotonicity of II. 

To prove the reverse inequality we assume in contrary 

5 := sup ( U M e л . [ í inf f(x)\ o џ(M)] U U M e Л . [( inf д(x)) oџ(M)]) 
MЄMV ^ LVxЄM / J L\xЄM / J/ 

sup ( u F e Л ( i n f / ( : r ) W E ) l Ц sup (uG €g[(inf (x))o,i(O)l). 
•GMV ^ LVxЄF / J CGMV >• LЧxЄG / J/ FtMV ^ L \ X E ^ / J geJWP 

But then the monotonicity and continuity assumptions of II imply 

V \l S < (uF(ir [(»£/(*)) oKFJ]) U (UG65 [(jnf 0(-O) MO)])-
TeMV QGMV 

Now we choose the measurable partition M := {F D G : F G F, G G 5} G 
/VfP and use (DR), the monotonicity and associativity of II together with the _L-
decomposability of [i to get the contradiction 

S < ( U ^ [(mf, /(x)) o/x( | J (EnG)) ] ) 
GeQ 

u(u G e e [(mf, </(*)) oM( (J (FnG))]) 

= (n^uC € 5 [ ( inf , / (x))oMfnG)]) 

u(uG e gUF e^[(J | f 5(x)) o/x(EnG)]) 

< (uFe^UGeg[(jnfG/(x))oM(FnG)]) 

U( UGe0 UFe^ [( Jnf G 5(x)) o M(F n G)]) 

= ( U M € A . [ ( ^ / ( a O ) OM(M)]) U (UM € A < [(}nfMg(x)) Ofx(M)]) 

< sup ( UMZM [( mM /(*)) o /i(M)] U UMeA< [( jrrf 5(x)) o »(M)]) = 5. 

By using the above result together with Theorem 14 and 15 we arrive at the 
desired result: 

(o ) / ( /A 5 )d /x= sup (UMeM[(inf[/(x)A5(x)])o/x(M)l) 
J MtMV^ l\xeM / J / 

= *Sk (-"«*• [([j&/M-[jS_-rf')]WJ°]) 
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sup (uM<=M \( inf f(xj) o /i(M)l U ( U M C A I |Y mi,9(x)) o/.(Af)l) 

= ( ( » ) / / d » i ) u ( ( < > ) / 9 d p ) . 

Example 7. Let us show that the fuzzy integral is not longer comonotonic additive 
if we replace (DL), (DR) by (DL*), (DR*). Even if we assume, that the fuzzy mea­
sure is subtractive (instead of decomposibility), the fuzzy integral is not comonotonic 
additive: 

We choose B = 1, A :=JL:= +, o = " (see Example 2). Moreover let X := [0,1], 
and let A be the Borel sets of [0,1], and let \i be the Borel measure on [0,1]. 
Then o satisfies (DL*), (DR*) (see Example 2). By Example 4 and using that /x is 
finite, /i is subtractive: If {/, V £ A satisfying U C V then 
p(V) —i /J>(V \U) = n(V) — ii{V \U) = n(U). But then /x is —^-decomposable (see 
the remark (b) after Definition 9). 

Now let / := g := | l[o.±]» SO that / , p are comonotone. Using Example 2 we get 

((»)//dM)ll((<.)/9<fc) = (|o"[o,i])u(|o,.[o,|]) 

V4 2 / U 2 / 4 ' 

fA° = (lAl)1lo,h] = Mo,h] 

and thus 

(o) J(fAg) dM = 1 o n [o, i] = \ < ((o) J f d/i) H ((o) J g d/x). 

Finally we want to present a characterization theorem for the fuzzy integral, 
which is similar to Theorem 2 in Section 3 (note that T is defined in Section 3). 

Theo rem 17. Let (X, A, /x) be a fuzzy measure space, let A, _L and II be pseudo-
additions (on [0,5]), let o be a pseudo-multiplication satisfying (DL), (DR), (Z) and 
(LU), and let I : T —> [0, B] be a functional. 

Then there is a fuzzy measure /x, which is ±-decomposable, continuous from 
below, and which satisfies ! ( / ) = (o) J f d/x for all / G T iff 

I (a I A) = aoI(e\A), a £ [0,B],Ae A> (weak Homogeneity) (112) 

A [f<9=> 1(f) < 1(9)], (Monotonicity) (113) 
f,ger 

I(fAg) = 1(f) II 1(g), f,geF, f,g comonotone, (Additivity) (114) 
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U,VeA^I(elUuV) = I(elu)UI(elv), (Decomposibility) (115) 

((/n) C T) A (fn T / ) => lim J ( / n ) = 1(f) (Continuity from below). (116) 

P r o o f . Using (DR),(LU) and the asymmetric version of Lemma 3(b) we get 
± = I L 

The implication "=£•" is nearly already proven: (113), (114), (115) and (116) follow 
from Lemma 7(c), Theorem 16, Theorem 14(b) and Theorem 12, respectively. To 
prove (a) we use (LU): 

(o) / (alyi)d/i = o o fi(A) = a o [eo/i(A)] = oo no) / el^d/xV 

To prove the reverse implication "<=" we put A M G - A ^ ^ )
 : ~ H^^-M)-

We now show that \x is a J_-decomposable fuzzy measure which is continuous from 
below: 

At first /i(0) = J(el0) = J(01x) = Oo J ( e l x ) = 0. Moreover /x is isotone and 
-[.-decomposable because of the definition of /i and (113) and (115), respectively. 
Now let (Un) C A satisfying AneN ™̂ c ^n+i- Then (116) implies (because of 
g l t / n T e l U n e N f / J 

lim /i(tf„) = lim I(eluJ = I(elUn€HUJ = J\JUn). 
n—•oo n—•oo n e " \ ^-^ / 

nGN 

Thus \i is continuous from below. Now we prove 

(*) f\I(f) = (o)Jfdn. 
fee 

W.l.o.g we assume that / ± 0 (because of 1(0) = J (01 x ) = 0 o J ( e l x ) = 0). 
Then there is a representation / = X^ILi a* ^ w * ^ «o = 0 < ai < a<i < • • • < an < 
J5, .Ai G ̂ 4 are pairwise disjoint, J?* = UJ=i -4j, 1 < i < n. 

We now show (93) by induction on n G N. 
n = 1 : J(ai I A J = a i o J ( e l A ! ) =aiO/ i (Ai) = (a\ - A a0)o/i(Ai) (here we have 

used (112) and Lemma 5 (a)). 
n —» n + 1 : Let / := Y^^i ai 1A, (with the usual assumptions on a*, Ai, 1 < i < 

n + 1) and put g := A"if[(ai —A ai) 1AJ £ -^ ai-d h := a\ lyn+i ^. G J7. 

Then we have #Ah = / . To show this we distinguish three cases. 

Case 1: If x G Ai then g(x)Ah(x) = OAai = ax = / (x) . 

Case 2: If Vm<E{2,3,...,n+i} x G Am then (by Lemma 5 (h)) g(x)Ah(x) 
= (a>m - A a i )Aai = a m = / (x) . 

Case 3: If AmG{2,3,...,n+i} x t A™ then g(x)Ah(x) = 0 = / (x) . 
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Moreover, g, h are comonotone since /i|yn+i is constant and we arrive at (using (114), 

Lemma 5 (i) and a\ —A Q>\ = 0) 

n+l 

-"( E a« U ) = '(I) = 7(sA/l) = Ha) H /(/i) 
i = l 

= ( U ^ 1 [ ( [a i -Aax] - A [ ( [ a i _ 1 - A a 1 ] ) o / z ( ' [ j A J ) ] ) 
i=i 

n+l 
u[(ax -Aa0)o/i( (J A,)] 

j=i 

= ( U ^ 1 [(a* - A a i - i ) o /^B, ) ] ) U (ai - A a 0) o j i (* i ) ] -

Finally we show f\ferHf) = ( ° ) / / d / i : Let us take a sequence (/n) C £ with 
/ n f / so that we get by Theorem 12 

/ ( / ) = lim I(fn) = lim (o) [fndfi = (o) ffdfi. 
n—>oo n—•oo j J 

Thus Theorem 17 is proven. • 

We mention that this result improves earlier characterization theorems of the 
Choquet- Sugeno- and the Choquet-like integral, for example the result in [13]. 
Because of the flexibility of fuzzy measures also characterization theorems for discrete 
fuzzy measures like in [5] are covered. 

12. EXAMPLES 

The fuzzy integral introduced in Section 8 covers many known integrals of the litera­
ture, for example, the generalized Sugeno integrals (cf. (25)), the Choquet integral, 
the Weber integral, the t-conorm integral, the integral of Sugeno and Murofushi, 
based on pseudo-additions and pseudo-multiplications in [20], the Pan integral of 
Wang and Klir in [21], the integral based on t-norms and t-conorms in [11] and the 
Shilkret integral in [18]. 

These results can be deduced from the following key Lemma which gives the 
representation of the fuzzy integral for Archimedean t-conorms using the Choquet 
integral 

(C) ffdn:=f /x({x € X : f(x) > t}) dt. 

L e m m a 8. Let A and U be continuous, Archimedian t-conorms on [0,i?]2 with 
generators k : [0,B] —* [0, oo] and h : [0,B] —> [0,oo], respectively. Moreover 
let /x : A —• [0, B] be a fuzzy measure which is continuous from below, and let 
T := {/ : X —> [0, B] \ f is a measurable function}. 
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(a) If 

\ / f\ aox = h(-1\k(a)g(x)) 
_.:[0,B]-*[0,oo], <K0)=0, a , x G [ 0 , B ] 

fifT » 9 continuous on ( 0 , B ] 

then 

(b) 

Д (o) í / dџ = h^ ((C) í k(f) d(g o џ)). 
ieг J J 

V Д(°) ífdџ = h^((C) ík(f)d(goџ)y 
ГП 1 _,.T.\_г. tґ- T J J 

g : [0,B]->[0,oo],g(0)=0, f £? 
_T , 3 continuous on ( 0 , B ] 

Proof , (a) Let g : [0,B] -> [0,00], #(0) = 0, and let g be isotonic and continuous 
on (0,_3] satisfying Aa,x<_[o,B] aOX = h(<-1\k(a)g(x)). 

Then g o fi is a fuzzy measure which is continuous from below: 
Obviously, g o ̂ .(0) _= (7(0) = 0 and g o \i is isotonic. 
Now consider ({7n) c A with AnGN ̂ n C t7n+i . 
I f M U I G N ^n) = 0 then limn^oo 9 o fi(Un) = go / i (U n G N Un) = 9(0) = 0. 

I f MUnGN^n) > 0 then ^MUnGN*7")] = ^( l im n _oo /i(tfn)]) = l i m n - o o _7 O 

l*(Un). 
Consider again a simple function / with / ^ 0 and / = _CiLi a* 1-4. w * t h 

a0 = 0 < ax < 02 < • • • < an < B, where A* _ _4 are pairwise disjoint, and 

£i = U ; = i ^ n l < i < " . 
Because of n(f > t) = £ ? = i ii(U;=i A>) l[_<-i,«,)(«) we get 

/

/»oo n n ^.00 

/d/i=y /i(/>.)d«=x;/i(u^jyo -.-.-..aowd* 
n 

= ^ / i ( _ B i ) ( a i - a i > i ) . 
. = 1 

Let us now prove: 

(«) A h<-»(±hh<-iHci))=hi-»(f;ci). 
Cl,C2, . . . ,CnG[0,B] - = 1 * = -

Case 1. If AiG{i,2,...,n} * < h(B) then we have AiG{i,2,...,n} hi~l)(*) = h~l(ci). 

Case 2. If V i G { i 2 n} c* -- / l ( S ) t h e n b o t h s u m s i n ^ a r e S r e a t e r o r e Q u a l 

to h(B) so that both sides of the equality in (a) result in B. 
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Now we prove the statement in (a) for a simple function / using (53) and Lemma 5 (c): 

(o)Jfdti = U?=1[(ai-Aai-1)oti(Bi)}=U^1[k-1(k(ai)-k(ai-1))oti(Bi)} 

= U?= 1[/i(-1)([fc(a i)-A;(ai-i)]^(^)])] ' 
n 

= ht-Vfehh^HMoi) - k(ai^)}g[^(Bi)})) 
І = l 

n 

= ^-"(YlilkM-Hai-tMrtBi)])) =h<-»((C) fk(f)d(gofi)). 
1 = 1 ^ 

Now let / e T and choose a sequence (/n) G £ with fn | / . Then k(fn) | k(f) 
and we arrive at (using Theorem 12, that the Choquet integral is continuous from 
below, and that h^~^ is continuous): 

(o) ffdn= lim(o) [fndfi= lim h(~V((C) f k(fn)d(go/x)) 
J n—>oo J n—*oo \ J / 

= h™ (nlim (C) J k(fn) d(g o M)) •= hS-*> [(C) J k(f) d(g o /x)). 

(b) Because of remark (IV) following Theorem 6 there is an isotonic and contin­
uous function g : (0,B] —» [0, co] with Aa,x€(o,B] a<>x = ^"^(k^gfa)). 

We extend g by g(0) = 0. Using (Z) we get Aa,xe[o,B] a<>x = h(<~1\k(a)g(x)). 
Applying now part (a) we get (b). This proves Lemma 8. • 

We give three examples. The first example shows that the t-conorm integral is a 
generalization of the Choquet integral. 

Example 8. Let B := co, A := II := +, o = • (see Example 2). 
If fi : A —> [0, co] is a fuzzy measure which is continuous from below then 

A / ^ ( o ) / / a > = (O ) / / d / i . 

Proof. A generator of + : [0,-B]2 —> [0,.B] is given by k(x) = x (see Exam­
ple 4). Because of B := co we have AXG[O,OO] ^~X\X) = k~l(x) = x and thus 
Aa,xe[o,B]aox = a'x = k(~^(k(a)k(x)). Thus Lemma 8 results in A/ r ^(o) / / d / i = 
*(-X) ((C) I k(f) d(k o M)) = (C) / / d/x. D 

The next example leads to the Weber integral (see [22]). 

Example 9. 

1. Let B := 1, let JL be a continuous Archimedean t-conorm with generator 
g : [0,1] -* [0,co], and let /x be a ^-decomposable fuzzy measure which is 
continuous from below. Then there are 3 possibilities: (S),(NSA) and (NSP) 
(see [22] and the explicite description after (26) in Section 3). 
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2. We define Aa,*e[o.B] a o x : = # ( a 'P(z))-

Then o is a pseudo-multiplication which satisfies (Z) and the weak left-right 
distributivity law with respect to (+, _L, J_). By Lemma 8 we get 

/ \ (o)Jfdfi = g(-V((C)Jfd(gon)). 
ft? 

In the cases (S) and (NSA) we arrive at a Weber integral: 

/\(o) f fd^ = g^[f fd(goll)). 
fer J J 

3. In the case (NSP) Sugeno and Murofushi already investigated the connections 
of the t-conorm integral with the Weber integral (see [15]). 

The last example shows that the t-conorm integral is a generalization of the 
Quasi-Sugeno integral. 

Example 10. Let 0 < B < oo, A = II = V, let o : [0, B}2 -> [0, B] be a pseudo-
multiplication satisfying (Z), and let fi : A —> [0yB] be a fuzzy measure (it is not 
required that // is continuous from below ). Then we have: 

/ \ (o) ffdn = (S) ffdfi:= sup [aofx(f>a)]. 
feJr J J a€[0,B] 

P r o o f . First we note that o is a pseudo-multiplication which satisfies the left 
distributivity law with respect to (V, V). By Definition 8 we have to show: 

sup (o) sd/jL= sup [aofi(f > a)}. 
f,s€S J a€[0 ,£ l s<f,s<=:E J a€[0 ,£] 

To prove ">" let a G [0,B] be arbitrary and choose the simple function s := 
a l(/>a) 5-i /• Then we first get 

a o 

and then 

џ(f >cx) = (o)sdџ< sup (o) sdџ 
J s<fys£S J 

sup [aoџ(f > a)} < sup (o) / sdџ. 
Є[0,Б] s<fìSЄS J 

Now we show the inequality " < " and take s E £, s < / . 
Again, let s ^ 0 with a representation 5 = ^ ^ = 1 a>i 1A» with ao = 0 < a\ < d2 < 
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• • • < o n < B , where Ai G A are pairwise disjoint, and Bi -= U?=t Aj , 1 < i < n. 
But then Lemma 5 (d) yields 

(o) sdfi = U?=i[(ai - A a^x) o fi(Bi)] 

n 

= V -a* ° /*(/ - a*)i - SUP -a ° /*(/ - a)i 
t= l a€[0 ,B] 

sup (o) sdfi< sup [ a o / i ( / > a)]. 
s<f,seS J ' aG[0,B] 

so that 
D 

Looking at the the many examples, given in [2], we see that, starting with a 
concrete ordinal sum representation of the pseudo-addition A the corresponding 
pseudo-multiplication o can be presented by using the generators of the pseudo-
addition. And then the corresponding integral can be presented with the aid of the 
generators of the pseudo-addition, too. 

We remark that all pseudo-multiplications, which are presented in [2] have the 
form (79) of Theorem 6. Since we have only required the weak condition (DL*) in 
Theorem 6, we get (of course) the representation of the pseudo-multiplication o only 
on 'Archimedean intervals'. By additional assumptions we have more information 
and get more 'complete results'. By applying Lemma 8 we can evaluate the fuzzy 
integral on "Archimedean intervals". 

Finally we here want to give an outline of a more general result, which is based 
on the paper [20]. 

We say that a fuzzy measure /i satisfies ccc (countable chain condition) if it is 
continuous from below and if there are at most countably many, pairwise disjoint 
measurable sets of positive /i-measure. We refer to [20] for further explanations and 
characterizations. 

For a ^-decomposable fuzzy measure // satisfying ccc there exist disjoint sets 
WI> Wk £ A, k G K± satisfying 

(a) / i ( x \ [ | J WkUWI])=01 (117) 
fc€K_L 

(b) / \ / \ /i(M) G{0}U (a£, 6£] and (118) 
fcGKx M£A,MQWk 

(c) / \ n(M) idempotent of J_. (119) 
MeA,MCWk 

Using the theorem of monotone convergence and Theorem 14 we get, supposing 
(DR), the following decomposition theorem: 

(o) J /d/x = ( UkeK± (o) J fdfx)u ((o) J / d / i ) . (120) 
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Using (106) in Theorem 13 we get exactly the generalized Sugeno integral (see Ex­
ample 10) 

(o) f fdfi = (S) f fdii = sup [ a o / i ( ( / > a ) n W » ] f (121) 
JWi JWi a€[0,B] 

and if A and II are Archimedean then we get a representation loke in Lemma 8 (a). 

(o) / fdfi = /it"1* ((C) f k(f) d(g o M ) ) , (122) 
Jwk

 v Jwk ' 

where gk(x) := gk(x),gk(0) := 0. 
For the representation of non-Archimedean A and II, Theorem 10 can be applied. 
For another decomposition theorem we refer to [4]. 

13. SUMMARY 

We have presented here our idea of a fuzzy integral, but perhaps the time is ready 
for collecting all results on fuzzy integrals in a unified framework for at least two 
reasons. First, to have them in a handy form, and not distributed in publications 
coming from all over the world. And second, to get a starting point for new ideas 
and new results. 

In our three papers we have undertaken some steps into this direction, but some­
times it is still difficult to compare different results in the literature. For example, 
results of Section 3 can sometimes not be compared directly with our results: in 
Theorem 2 we have the assumptions A = II and the continuity from below of // is 
assumed, whereas in Theorem 17 the decomposibility of /x is required. 

We have the feeling that the introduction of weak distributivity seems to be of 
some advantage because we get rather general results. 

Of course, still many problems are left. Let us mention only two problems: 

— The extension of the integral with values in the interval [—B, B]. We refer to 
the remarks in [2]. 

— It would be nice to have further results like Radon-Nikodym-like theorems (see 
for example [20]). 

Finally we would like to thank Sugeno and Murofushi for their pioneering work 
in [15] and [20]. Based on their papers, we were able to contribute to this topic. 

(Received October 27, 2004.) 
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