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K Y B E R N E T I K A — VOLUME 39 (2003 ) , NUMBER 4, PAGES 4 9 3 - 5 0 6 

ON T H E OBSERVABILITY OF FUZZY 
SECOND O R D E R CONTROL SYSTEMS1 

JONG YEOUL PARK, P . BALASUBRAMANIAM AND HYUN-MIN KIM 

In this paper, the observability of fuzzy logic second order control system is studied 
from the aspect of fuzzy differential equations. The fuzzy observability in the weak sense 
is created using the concept of "likelihood" to indicate on which level and along which 
solution the state is most likely observable. One of the initial state range has been derived 
with the given input and output. The result generalizes the previous results. 

Keywords: fuzzy differential equation, second order control system, fuzzy solution, 
likelihood 

AMS Subject Classification: 93B07, 93C42 

1. INTRODUCTION 

In recent years there has been considerable effort in the investigation of abstract 
second order differential equations directly rather than to convert them into first 
order systems. Much of this effort was inspired by partial second order equations 
which serve as models for various problems in continuum mechanics. A useful ma­
chinery for the study of abstract second order equations is the theory of strongly 
continuous cosine families. For these reasons, there has been an increasing interest 
in studying equations that can be described in the form "of abstract fuzzy second 
order equations. 

Generally, several systems are mostly related to uncertainty and unexactness. The 
problem of unexactness is considered in general exact science and that of uncertainty 
is considered as vagueness or fuzzy and accident. Ding et al [4] combine differential 
equations with fuzzy sets to form a fuzzy logic system and analysed the observability. 
For fuzzy concepts recently the author [1] established the theory of metric space of 
fuzzy sets. In particular, Kaleva [7] researched the fuzzy differential equations and 
Cauchy problem. Seikkala [9] proved the existence and uniqueness of the fuzzy 
solution for the following systems: 

x'(t) = f(t,x(t)), x(0) = xo 

1This work was supported by grant No. 2000-1-10300-003-2 from the Basic Search Program of 
the Korea Science and Engineering Foundation. 
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where / is a continuous mapping from E+ x E into E and Xn is a fuzzy number. The 
fuzzy differential equations are kept in mind to describe the fuzzy logic system, which 
has several attractive features discussed in the last section. First the observability 
is analysed. 

This paper is to investigate the observability of the following nonlinear fuzzy 
second order control system (in short FSOCS) 

x"(t) = A(t)x(t) + B(t)U(t) + f(t), t G R, x(0) = x0, x'(0) = xx (1.1) 

y(t) = E(t)x(t)+D(t)U(t) (1.2) 

where A, B, C, and D are matrices whose elements are continuous functions and 
x(0) = £o, x'(0) = x\ are given initial conditions. If the inputs U(t) are crisp, then it 
is the classical controhsystem, when U(t) are the fuzzy inputs we have the FSOCS. 
In this paper, instead of the controllability problem, the observability problem is 
to be concerned about the initial state xo of the system be always identified by 
observing the output y and the input U(t) over a finite time. 

2. MATHEMATICAL PRELIMINARIES 

Let En be the fuzzy space based on E n , let .A, JB, D and E be crisp continuous 
matrices, let / : J —> En be a continuous fuzzy mapping and X, Y and U be fuzzy 
sets. We call the system 

X"(t) = A(t)X(t) + B(t)U(t) + f(t), t > 0 , 

X(0) = {x(0)}, X'(0) = {x'(0)} (2.1) 

Y(t) = D(t)X(t)+E(t)U(t) 

where A(t) is a generator of continuous cosine family {C(t) : t G E} in fuzzy sets. 
Then above equation (2.1) can be represented by the fuzzy mild form: 

X(t) = C(t)X0 + S(t)X1+ f S(t-s)B(s)U(s)ds + f(s), ( 2 2 ) 

Y(t) = D(t)X(t)+E(t)U(t)? 

where S(t)x = J0 C(s)xds, x G En, t G E. In order to define the likelihood for the 
solution of equation (2.1), we construct a function h such that 

h : En x PKc(^n) -> ffi1 U {oo} 

and by setting 

h(u, Q) = sup \( ( \f(s) - u\2d^\ f : [0,1] -r i2, [ f(s)ds = LJ \ 
f [\Jo J Jo J (2.3) 

with the understanding that /I(CJ, J?) = —oo if u ^ ft. Here /i(o;, ft) has been 
interpreted as the maximum variance among all random variables supported inside 
i?, whose mean is u. Let A(t) be denote the fundamental matrix of the equation 

xn(t) = A(t)x(t)+f(t). 

We present the following definition of the weak form: 
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Definition 2 .1 . Let X be a weak solution (2.1) and Xa be the cY-level of X. Then 
likelihood of the solution on level a of (2.1) is 

La(X)= sup [ / h2(xa(t),C(t)x0 + S(t)Xl+ I S(t-s)B(s)Ua(s)ds 
xa£Xa -Jo ^ JO 

+ f s(t-s)f(S)dSyt\1/2. 

Thus, the maximum of La(X) is the "most likely" solution also well defined by 
Liapunov's theorem. Further if u G i?, the existence of the function / : [0,1] -> i? 
for which the sup^ in (2.3) is exactly attained (see [3]). Thus, the function h actually 
denotes the maximum. 

3. FORMATION OF FUZZY SECOND ORDER CONTROL SYSTEM 

If U(t) is a crisp, the deterministic SOCS is given by 

x"(t) = A(t)x(t) + B(t)U(t) + /(*), t > 0, x(0) = x0, x'(0) = xi,(3.1) 

y(t) = D(t)x(t)+E(t)U(t). (3.2) 

The above equation (3.1)-(3.2) are FSOCS if the inputs U(t) are fuzzy. Let 0 < a < 
1 and consider the differential inclusions 

x'^(t) = A(t)xa(t) + B(t)U(t) + fa(t), teJ (3.3) 

x(0) = x0, x,(0)=x1. (3.4) 

First we proof that the solution set Xa of (3.3)-(3.4) is nonempty, compact and 
convex in C( J ,E n ) . Let 

Mi = max||C(*)||, M2 = max||S(*)|| 
ZKZJ t c«/ 

Hi = max||/(t) | | , iV2 = max||B(t)|| N3 = max||«(t)||, u(t) e Ua(t), 
1 1 *» t vZ «/ ZKZJ 

then we see that [6] there is a selection u(t) G Ua(t) such that 

x(t) = C(t)x0 + S(t)x1+ J S(t-s)B(s)U(s)ds+ [ S(t - s)f(s)ds. 
Jo Jo 

Thus, we have 

IWOII < IIOWIIIkWII + l l^ l l lWi i 

+ / ' ||5-(t - s)B(s)U(s)\\ds + [ \\S(t - s)f(s)\\ds 
Jo Jo 

< Mi||x(0)|| + M2 | |xi| | + M2N2M3T + M2NxT. 
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From this we get Xa is bounded. Next, we prove that Xa is equicontinuous. In 
fact, for each x G Xa and for any £r, t2 G J, we have 

||x(-2)-*(«i)|| < WCto-cwwwxoW + WSM-swwwxiW 
II ft2 rti 

+ \\ / S{t2 - s)B{s)u{s)ds - / S{h - s)B{s)u{s)ds 
II jo jo 

+ 1 f 2 S(t2 - s)f(s)ds - I * S(h - s)f(s)ds 

< ||C7(*2) - c?^)! ! ! !^!! + ll-sr(*2) - -sr(*i)lll|a:i|| 

- + / ' \\S(t2 ~ s)B(s)u(s)ds - S(h - s)B(s)u(s)ds\\ 
Jo 

+ / 2 ||S(t2 - s)B(s)u(s)ds\\ 

Jh 

+ J * ||5(t2 - s)f(s)ds - S(t, - s)f(s)ds\\ 

< ||C7(*2) - c^i)!!!!^!! -i- ll-Sr(*2) - -S(*i)||||a:i|| 
+-V21V3 / * ||5(t2 - s)ds - S(h - s)ds\\ 

Jo 

+M2N2N3(t2 -tl)+N1 J' \\S(t2 -s)- S(h - s)ds\\. 
Jo 

Since C(t) and S(t) are uniformly continuous and Xa is equicontinuous. From the 
Arzela-Ascoli theorem [3] we know that Xa is compact. Indeed, it is sufficient to 
prove that it is closed. Let Xk G Xa and Xk -> x for each integer k > 0 then there 
is a Uk G Ua such that 

xk(t) = C(t)x0 + S(t)x1+ I S(t-s)B(s)uk(s)ds+ I S(t - s)f(s)ds. 
. Jo Jo 

Since Xk G Lu*(J), there exists a subsequence {uk5} of {uk} such that {uk5} con­
verges weakly to u G L^n(J) (see [5, p. 292]). From Mazur's theorem, there exists 
a convex combination of Uk5, say V • ^i^A, which converges strongly to u. Since 
V . Aj == 1, we have 

X > i x * i (') = X ^ A i C W x o + X>;.S(i)xi + / S(t - s)B(s) J ^ A ^ (s)ds 
3 3 3 Jo i 

+ S A i f S(t-s)f(s)ds. (3.5) 
i y° 

Taking the limit on (3.5) and using of Fatou's lemma, we obtain 

x(t) = C(t)x0 + S(t)x! + / S(t- s)B(s)u(s)ds + [ S(t- s)f(s)ds. 
Jo Jo 
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Since Ua(t) is convex and closed, ^2jXjUk5(t) G Ua(t) and thus ^2j XjUkj(t) —r 
u(i) G Ua(t). From continuity of x we conclude that x G Xa. This proves the 
closeness of Xa. 

We now show that Xa is convex. Let x1,x2 G Ka, then there are u^t)^^) G 
Ua(t) such that 

Xl(t) = c(t)x0 + S(t)x1+ [ S(t-s)B(s)u1(s)ds+ [ S(t-s)f(s)ds 
Jo Jo 

x2(t) = C(t)x0 + S(t)x1+ / S(t-s)B(s)u2(s)ds+ / S(t - s)f(s)ds. 
Jo Jo 

Let x(t) = Xxx(t) + (1 - X)x2(t), 0 < A < 1, then 

x(t) = X<C(t)x0 + S(t)x1 + [ S(t-s)B(s)u1(s)ds+ [ S(t - s)f(s)ds\ 

+ (1 - A) lc(t)x0 + S(t)Xl + f S(t- s)B(s)u2(s)ds + [ S(t- s)f(s)ds\ 

= XC(t)Xo + (1 - X)C(t)Xo + XS(t)Xl + (1 - X)S(t)Xl 

+ [ S(t-s)B(s)[Xu1(s) + (1 - X)u2(s)]ds 
Jo 

+ [ S(t-s)[Xf(s) + (l-X)f(s)]ds. 
Jo 

Since Ua(t) is convex, we see that 

Xux(t) + (1 - X)u2(t) e Ua(t). 

Thus, we have 

X(t) G C(t)Xo + S(t)Xl + S(t- s)B(s)u(s)ds + [ S(t- s)f(s)ds, 
Jo Jo 

that is x G Xa. Therefore Xa is convex. Consequently, Xa is nonempty, compact 
and convex in C( j , Rn) . Thus from Arzela-Ascoli theorem [3] we know that Xa(t) 
is compact in Rn for every t G J. Obviously Xa(t) is convex in W1 and we have 
Xa(t) G i W R n ) , for every t G J. 

Next, we want to show that ay varies in [0,1], the family Xa(t) forms a fuzzy set 
in En. In order to obtain this result, we need to check all the three conditions of 
the following theorem: 

Theorem 3.1 . [8] If u G En, then 

(i) [u]<* e PKc(^n) for all 0 < a < 1, 

(ii) [ix]a2 C [u]ai for all 0 < a± < a2 < 1, 

(iii) if (ak) is a nondecreasing sequence converging to a > 0, then [u]a = f] [u]ak. 
0 < a < l 



498 J.Y. PARK, P. BALASUBRAMANIAM AND H.-M. KIM 

P r o o f . We have already proved the first condition of Theorem 3.1. Now we 
need to prove conditions (ii) and (hi) of Theorem 3.1. 

Let 0 < a i < a2 < 1. Since [U(t)]a2 C [U(t)]ai, we have Sfu{t)]a2 C Sfu{t)]ai and 
the following inclusion 

xa(t) € A(t)xa(t) + B(t)[U(t)]a> + f(t) 

C A(t)xa(t) + B(t)[U(t)]a*+f(t). 

Thus we obtain 

xa2(ť) Є C(t)x0 + S(t)x1+ I S(t-s)B(s)SL{t)]Q2ds+ f S(t-s)f(s)ds 
Jo Jo 

C C(t)x0 + S(t)Xl + f S(t- s)B(s)S}u(t)]ai ds+ [ S(t - s)f(s)ds. 
Jo Jo 

This implies that Xa2 C Xai, and thus Xa2(t) C Xai(t). This implies that the 
condition (ii) in Theorem 3.1 is fulfilled. In order to prove the condition (iii), let 
(ah) be a nondecreasing sequence converging to a > 0. We need first to prove that 
Xa(t) = C\k>iXah(t)- Since 

[u(t)r=npw\ 
k>l 

we have 
ç i _ o l 

ö[u(t)}° - łľ)Пfc>1[L/(í)]0ífc-
Thus we obtain 

xa(t) € C(t)x0 + S(t)Xl + I S(t- s)B(s) p | [U(s)]akds + I' S(t- s)f(s)ds 
jo k>x jo 

C(t)x0 + S(t)Xl + I S(t- s)B(s)[U(s)]a''ds + I S(t - s)f(s)ds, k>l. 
jo jo 

fc>l 
rt 

c 

Hence we have 

xa cxak, 
which yields Xa C f]k>1X

ak. This proves one direction of inclusion. To prove 
other direction, let x be the solution to following the inclusions: 

xak(t) € A(t)xak(t) + B(t)[U(t)}a*+f(t), fc>l. 

Then we have 

x(t) e C(t)x0 + S(t)xi + J S(t- s)B(s)SL{t)]akds + f S(t- s)f(s)ds 
jo jo 

and thus 

x(t) € C(t)x0 + S(t)xi + J S(t- s)B(s) f] S}u{t)]akds + f S(t- s)f(s)ds 
jo fc>! jo 

C C(t)x0 + S(t)xi + [ S(t- s)B(s)dsS}u{t)]ads + [ S(t- s)f(s)ds. 
jo jo 
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This means that x G Xa. Therefore f|it>i Xak CXa. • 

Now applying Theorem 3.1, there exists X(t) G En, t G J such that Xa(t) is a 
solution set to the differential inclusion (3.3)-(3.4). Thus we proved that instead of 
equation (3.1)-(3.2), the equations are FSOCS which can be rewritten as 

X"(t) = A(t)X(t) + B(t)U(t) + f(t), X(0) = {xo}, X#(0) = {*!}, (3.6) 

Y(t) = D(t)X(t) + E(t)U(t) (3.7) 

4. OBSERVABILITY OF FUZZY SECOND ORDER CONTROL SYSTEM 

Consider the FSOCS (3.6)-(3.7), the concept of observability is described with the 
following problem: given system (3.6)-(3.7) and its inputs and outputs over a finite 
interval J , calculate the range of the initial state x0. For this purpose we give the 
following definition: 

Definintion 4.1. The state xo / 0 of system (3.6)-(3.7) is said to be likely ob­
servable at level a over the interval J if the knowledge of the a-level input U(t) and 
the a-level output Y(t) over J suffice to determine the range of x0. If the likelihood 
of the solution on level a reaches the maximum, then the solution (3.6)-(3.7) is said 
to be most likely observable at a-level. 

Let ||A|| be the norm of the matrix A. Then we have the sufficient condition for 
the observability of the system (3.6)-(3.7) is given by the following theorem: 

Theorem 4.2. System (3.6)-(3.7) is likely observable on level a over the interval 
J if E(T)C(T) is nonsingular. Further, let u0(t) and y0(t) be the center points of 
U(t) and Y(t), respectively, and let xa be the possible initial point on a-level then 
we have the range estimation for initial value on a-level given by 

\\xa-x0\\ < ||[£?(T)C(r)]-1||(||E(r)||||5(T)||max||a:a(r)-x1(T)|| 

+ (mg(J\Va(T)-yo(T)\\ + \\D(T)\\ m « Jua(T) - u0(T)\\ 
ya{i )EYa\l ) Ua{l )tUa{l ) 

+ \\E(T)\\ maxJ|S(*)|| ma*\\B(t)\\ [ max ||«„(t) - «0(t)l|dt 
0<t<7 0<*<I JO waGCja(t) 

+ ||JB(T)|| max ||5(t)|| max ||fl(t)|| / max | | /a(t) - /o(t)l|d« ] .(4.1) 11 o<t<T WMo<t<T Jo faeFa(ty y 

P r o o f . From Section 3, for the system (3.6)-(3.7), Xa(T) is given by 

Xa(T) = C(T)x0 + S(T)Xl + f S(T- s)B(s)Ua(s)ds + f S(T - s)fa(s)ds, 
Jo ^0 
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then we have 

Ya(T) = E(T) lc(T)x0 + S(T)Xl + f S(T - s)B(s)UQ(s)ds 

+ J S(T- s)fQ(s)ds J + D(T)Ua(T). 

Thus we get 

[E(T)C(T)]Xo € YQ(T) - E(T)S(T)Xl - DUQ(T) 
T T 

• - E(T) f S(T - s)B(s)Ua(s)ds - E(T) f S(T - s)fa(s)ds. 
Jo Jo 

Let xa be the possible initial value, then we can rewrite the above as 

[E(T)C(T)]xa(0) e Ya(T) - E(T)S(T)xa - E(T) - DUa(T) 
T 

-E(T) f S(T - s)B(s)Ua(s)ds) 
jo 

T 

-E(T) [ S{T-s)fa(s)ds. (4.2) 
Jo 

We can also have 

[E(T)C(T)]x0 - g(0)] € Y0(T) - E(T)S(T)Xl - D(T)u0(T)) 
T 

-E(T) f S(T - s)B(s)u0(s)ds 
jo 

T 

-E(T) [ S(T-s)fa(s)ds. (4.3) 
Jo 

Combining (4.2) and (4.3), we can estimate the distance between xa, XQ and x\ as 
follows: 

Yo(T) - E(T)S(T)xx - Dщ(T) 

т 

||E(T)O(T)(xQ - x 0)| | < maxd 

-E(T) f S(T - s)B(s)u0(s)ds - E(T) f S(T - s)f0(s)ds 
Jo Jo 

Ya(T) - E(T)S(T)xQ - DUQ(T) 

т 
-E(T) f S(T - s)B(s)Ua(s)ds - E(T) f S(T - s)fQ(s)ds 

jo jo 
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Finally, we obtain 

\\xa-x0\\ < \\[E(T)C(T)]-l\\(\\E(T)\\\\S(T)\\ max \\xa(T) - Xl(T)\\ 

+ y^Íl{T)^
T) - y°(T)l1 + ^T\^liT)^

T) - U 0 ( T ) I 1 

+ 

\\E(T)\\maxT\\S(t)\\maxT\\B(t)\\ J j n « « | |u a (t) - u0(t)\\dt 

II^TÍI^max^llSÍOI^m^llSíř)!! ̂  ^max^H/^íť) - /o(ř)l|dtj • • 

5. COMPUTATION OF La(X) 

Let i7 G PKC(^71)- Its Chebyshev center c(i7) is the unique point u G i7 where the 
function 

4>n(x) = max||uj - x|| 

attains its global minimum. The Chebyshev radius of i7 is then 

r(i7) = max ||cO — c(i7)||. 
u>£f2 

Let 
i7* = co{u G i7 : \\u - c(i7)|| = r(J7)}. 

Proposi t ion 5 .1 . (Bressan [2]) Let u G E n , i7 G PKc(^n)- Then 

h(u,fi)2 < r 2 ( i 7 ) - | | o ; - c ( i 7 ) | | 2 . 

Furthermore, if i7 = i7*, then 

/ i (o; , r2) 2=r 2( i7)- . | |a ; -c( i7) j | 2 . 

A fuzzy set W is called a fuzzy box if Wa is a box in Rn, 0 < a < 1, i.e., 

Wa = K , 6 ? ] x - . - x [<,&«] c E " . 

Let 
UQ(t) = [o?(*),6?(*)] x ••• x K(t),bZ(t)] C Ua(t) 

be the biggest box contained in Ua(t) and let 

U°a = [c?(t), <-?(*)] x ••• x [<£(.),<£(*)] D Ua(t) 

be the smallest box containing Ua(t). Similarly let 

Y«(*) = [C? (*), Aa(*)] X ••• X K(t),K(t)] C YQ(t) 

be the biggest box contained in Ya (t) and let 

Y2 = \g?,h?]x...x\ti,hZ]DYa(t) 

be the smallest box containing Ya(t). 
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Proposition 5.2. If U(t) is a fuzzy box for each t, then the likelihood of the 
solution on level a is 

La(X) = sup 
Xa£Xa 

I r2 (c(t)x0 + S(ť)x! + í S(t- s)B(s)Ua(s)ds J dť 

/ \\xa(t) - c [C(t)x0 + S(t)xi + f S(t- s)B(s)Ua(s)d 
jo II V jo 

2 ' 

dí 
1/2 

(5.1) 

P r o o f . Since U(t) is a fuzzy box for each t, then Ua(t) = U*(t). It is easy to 
verify that 

f S(t-s)B(s)Ua(s)ds= (f S(t-s)B(s)Ua(s)di 

hence the second equality of Proposition 5.1 holds, that is, ft = i?*. This implies 
(5.1). 

Since usually the input is not necessarily a box, we have to use the biggest and 
smallest boxes to approximate it, so that we can find the likelihood of the solution 
on each level. 

6. EXAMPLE 

Consider a FSOCS represented by 

x"(t) = Xx(t) + U(t)+e~\ x(0)=xo, x,(0)=x1 (6.1) 
y(t) = x(t). (6.2) 

Assume that 
Ua = 1 - a, Ya = - + Vl-a. 

Let 
A = A, B = C = 1, D = 0 and T = TT/2. 

The solution of (6.1) at the a-level is given by 

xa(t) e C(t)x0 + S'^xx + I S'(t - s)Uads + [ S(t- s)e~sds, t G L - T , T ] , 
Jo Jo 

where A generates a cosine family C(t) = cost, so that S(t) = sint. Hence, the 
equation (6.2) becomes 

C(t)x0 - S(t)xx + J S(t- s)e~sds e ya - [ S(t- s)Uads. 
Jo Jo 

Let xa be the possible initial value on level a, we can rewrite the above inclusion as 

C(t)xa + S(t)Xl + J S(t- s)e~sds € ya - [ S(t- s)Uads. 
Jo Jo 



On the Observability of Fuzzy Second Order Control Systems 503 

If a / 1, let uo and 2/0 be the center points of Ua and ya respectively, then we have 

C(t)x{0) + S{t)x1+ [ S(t-s)e-sdsey0- [ S(t-s)U0ds. 
Jo Jo 

Thus, we have 

C(t)[xa - XQ] = I ya - / S(t - s)Uads - lyQ - / S(t- s)U0ds j , ua G Ua > . 

Hence, we get 

Since 

we have 

\\xa -x0\\< f | |y a ~ S/o|| + T max ||ixa - u 0 | | ) . 

ya ~ 2/o|| = (1 - a) ' , ||ixa - i/oll = 1 - «, 

| | ^ - x 0 | | < ( l - a ) 1 / 2 + T ( l - a ) . 

Figure 6.1 shows that when T becomes larger, the range becomes larger. This 
means that time increases the difficulty to determine the initial value. As a -> 1, 

-1 1 1 1 г-

<x = 0.5 

• <x = 0.85 

Fig. 6.1. The upper bounds of | |x a - xo\\ with different T. 
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Fig. 6.2. The solution at different a-level in (6.3). 
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0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

Fig. 6.3. The likelihood of the solution on different a-levels. 



On the Observability of Fuzzy Second Order Control Systems 505 

then \\xa - xo\\ -r 0, thus we will get closer and closer to our initial value x0- Now, 
we determine which level is most likely to help us to determine the range of the 
initial value. Since 

cos tx0 + sintoi + / sin(t - s)e sds + / sin(t - s)(l - a)ds 
Jo Jo 

= xo cos t + x\ sin t + / s\w(t - s)e~sds + (1 - a) / sin(t - s)ds 
Jo Jo 

the Chebyshev radius of the L. H. S. of the above equation is 

r2 f cos£x0 + sintai + / sin(t — s)e~sds + / sin(t - s)(l — a)ds ) 

= ( 1 - a ) 2 / s in(£-s)ds 

and the Chebyshev center as 

cI costxo + sintx\ + / sin(t — s)e~sds + / sin(£ — s)(l — a)ds ) 

= xo cos t + x\ sin t + / sin(£ — . 
Jo 

Furthermore we have 

s)e sds. 

xa(t) — cl costxo-r-sintxi + / sin(t — s)e 5ds + / sin(t — s)(l — a)ds ) 

/ sin(t — s)d; 
Jo 

= a\ max 

Clearly, the likelihood of the solution on a-level is given by La(X), where 

La(X) = sup / (1 - a ) 2 I / sin(t - s)ds > dt - a\ max{sin(£ - s)ds} dt 
on Jo I JO J JO 

{ T rT "1 1 / 2 

(1 - a)2 I (1 - cos*)2d* -a\ I max(l - costfdt \ 
Jo Jo ) 

( T ) 1 / 2 

= sup < (1 - a ) 2 f ( 1 - 2 cos t + cos2 *)d* - 4a\T \ 

= s u p { ( l - a ) 2 ( 3 7 r / 4 - 2 ) d t - 2 a 2 7 r } 1 / 2 
= ^{(l-a (Зn-8)-8^}1/2. 
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The solution with likelihood ^ {(1 - a)2(37r - 8) - 8?r} 1 / 2 is 

xa(t) = xo cos t + x\ sin t + / sin(£ — s)e~sds + (1 — a ) ( l — cost) 
Jo 

= (*o - ~) cost + (xi + - ) sin* + -e~l + (1 - a ) ( l - cos t ) . (6.3) 
<<£ Zi Zi 

Figure 6.2 is the solution when a = 0.5, 0.85 and 1 in (6.3). Figure 6.3 shows the 
likelihood oF the solution on different a-levels. 
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