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NONREGULAR DECOUPLING WITH STABILITY 
OF TWO-OUTPUT SYSTEMS1 

J A V I E R R U I Z - L E Ó N , J O R G E A . T O R R E S M U Ň O Z A N D F R A N C I S C O L I Z A O L A 

In this paper we present a solution to the decoupling problem with stability of linear 
multivariable systems with 2 outputs, using nonregular static state feedback. The problem 
is tackled using an algebraic-polynomial approach, and the main idea is to test the con­
ditions for a decoupling compensator with stability to be feedback realizable. It is shown 
that the problem has a solution if and only if Morse's list I2 is greater than or equal to the 
infinite and unstable structure of the proper and stable part of the stable interactor of the 
system. A constructive procedure to find a state feedback, which achieves decoupling with 
stability, is also presented. 

1. INTRODUCTION 

The row-by-row decoupling of linear multivariable systems by static state feedback 
has been extensively studied since the 1960's. This problem has been solved for the 
case of systems with the same number of inputs and outputs, or square systems 
(see for instance [5] and [1]), which is usually referred to as the regular decoupling 
problem. The regular decoupling problem with stability by static state feedback has 
been solved in [8] and [10]. 

Regarding the decoupling of systems with more inputs than outputs, or non-
regular decoupling problem, even though there exist solutions for particular cases, 
namely, systems with 2 outputs [2, 7], and systems whose essential orders are all 
equal [3], the problem remains unsolved in its full generality. 

The aim of this paper is to study the nonregular decoupling problem with stability 
for linear systems with two outputs. We present a solution to this problem in terms 
of structural information of the system. It is shown that a linear system with 2 
outputs and 3 or more inputs is decouplable with stability if and only if Morse's list 
I2 [9] is greater than or equal to the infinite and unstable structure of the proper 
and stable part of the stable interactor of the system. The problem is tackled using 

1This work was supported by the National Council of Science and Technology of Mexico (CONA-
CYT) through grant No. 31844-A. 
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an algebraic-polynomial approach, and the main idea is to test the conditions for a 
decoupling compensator with stability to be feedback realizable. 

The problem statement is presented in Section 2. In Section 3, we introduce 
the main ingredients in the study of this problem, namely: the stable interactor, 
the extended system, the extended stable interactor, and feedback realization of 
precompensators. The main result is presented in Section 4, which relies also on 
technical results presented in Appendix 1 and Appendix 2. The problem statement 
and preliminaries will be presented in a general setting for linear systems with p 
outputs and m inputs, and the assumption of p = 2 will be made evident until 
Section 4. An example is presented in Section 5, which illustrates the procedure 
to obtain a nonregular state feedback, which decouples with stability a 2-output 
system. Finally, we end up with some conclusions. 

2. PROBLEM STATEMENT 

We consider in this work linear multivariable controllable systems described by 

, , o ™ \ x ^ = Mt) + Bu(t) 

\ y(t) = Cx(t) 

where x G Mn, u G Mm and y G Mp are, respectively, the state, input and output 
vectors of the system. Further, in Section 4 we will restrict ourselves to systems 
(A, 29, C) with 2 outputs and 3 or more inputs, i. e., p = 2 and m > 3. 

The system (A, 2?, C) is said to be row by row decouplable with stability by static 
state feedback if there exists a state feedback 

(F,G) :u(t) = Fx(t)+Gv(t) 

where F G MmXn and G G Mmxp are constant matrices, rank G = p (nonregular 
static state feedback), and v(t) is a new input vector, such that the input Vi(t) 
controls the output yi(t), i = 1,... ,p, without affecting the other outputs, and the 
closed-loop system (A + BF, BG, C) is internally stable, i. e., the eigenvalues of the 
matrix A + BF are located in the open left half complex plane. 

From the input-output point of view, the previous formulation is equivalent to 
the existence of a state feedback (F,G) such that the transfer function TF,G(S) of 
the closed-loop system (A + BF, BG, C) is of the form 

TFG(s) = C(sl -A- BF)~lBG = d i a g W s ) , . . . , wp(s)} =: W(s) (1) 

and the closed-loop system (A + BF, BG, C) is internally stable, which implies also 
that Wi(s) ^ 0, i = 1,... ,p, are strictly proper and stable rational functions. 

We can suppose without loss of generality that the system (A, B, C) is stable; if 
not, there always exists a preliminary state feedback, which stabilizes the system, 
since we are considering it to be controllable. Thus, the transfer function matrix of 
the system, T(s) = C(sl — A)~lB, is a strictly proper and stable rational matrix. 
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3. PRELIMINARIES 

3.1. The stable interact or 

Let u(t) = Fx(t) + Gv(t) be a regular static state feedback applied on the stable 
system (A,B,C), such that the closed-loop system (A + BF,BG,C) is internally 
stable. The closed-loop transfer function is given by 

TFG(s) = C(sl - A - BF)~lBG. 

After some manipulations we obtain 

TFG(s) = C(sl - A)~lB[I - F(sl - A)~lB]-lG = T(s)R(s) 

where T(s) = C(sl — A)~lB is the transfer function of the system (A, B, C), and 

R(s) := [I - F(sl - A^B^G. 

Since the closed-loop system is supposed to be stable, then R(s) must be clearly 
a proper and stable rational matrix. Further, from 

R-'is) = G~l[I - F(sl - A)-'B] = d - ^ J _ - ^ G - 1 [ / - F Adj(sJ - A)B] 

it can be seen that R~1(s) is also proper and stable, since (A, B, C) is stable. Then, 
we have the following result. 

Remark 1. Let T(s) be the transfer function of the stable system (A, B, C). Then, 
the effect of a regular static state feedback u(t) = Fx(t) + Gv(t) which preserves 
internal stability can be represented in transfer function terms as a biproper and 
bistable matrix postmultiplying T(s). 

This can be considered as the matrix interpretation of the fact that we are neither 
allowed to introduce unstable poles nor to cancel out unstable zeros in order to keep 
the internal stability of the closed-loop system. 

At this stage, it is important to consider the information of the system (A, B, C) 
which remains invariant under the action of biproper and bistable compensation, 
and consequently, invariant under the action of a regular state feedback which pre­
serves internal stability. This information is contained in the stable interactor (or 
7r-interactor) of the system, defined below ([4, 10]). 

In the study of problems involving stability from an algebraic point of view, it 
is important to consider the properties of the ring of proper and stable rational 
functions Mps(s). This set is known to be a Euclidean ring [11], the degree of a 
proper and stable rational function f(s) G Mps(s), hereafter denoted degpsf(s), 
taken as the number of infinite plus unstable zeros of f(s), 
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L e m m a 1. Let T(s) be the transfer function of (A,B,C). Then, there exist a 
biproper and bistable matrix B(s) G Mmxm(s) and a nonsingular lower triangular 
matrix ^~1(s) G Mpxp(s), unique up to units of the ring IRps(s)y such that 

T(s)B(s)=[$Jl(s) 0 ] , (2) 

where 
" viiW (o) 

*?{') = : •.. 
_ <ppi(s) ... (ppp(s) _ 

and the rational functions y>ij(s) € !Rps(s) satisfy, for i > j , 

<Pij(s) = 0, or degps (pij(s) < degps (pu(s), 

(3) 

and they are of the form 
/ ч au(s) 

Ч>ІІ(S) = 
Tnu 

( \ aij(s) 
3 irni> 

where au(s) G M[s] is a polynomial with only unstable roots (antistable polynomial), 
7T = s 4- P is a stable term and aij(s) G M[s] is a polynomial. 

Notice that the proper and stable rational matrix ^Jx(s) is actually the column 
Hermite form of T(s) over the ring of proper and stable rational functions Mps(s). 

The rational matrix $ s (s) , which is the inverse of $5"
1(5), is known as the sta­

ble interactor of the system, and it contains the information of the system that is 
invariant under a regular state feedback which preserves internal stability. In par­
ticular, it contains the infinite zeros and unstable zeros of the system, information 
that plays a key role in the decoupling problem with stability. While the classical 
system interactor $(5) is a polynomial matrix with certain properties [12], the stable 
interactor $ s (s) is in general a nonsingular lower triangular rational matrix having 
only unstable poles. That $s(s) has only unstable poles can be seen from the fact 
that the numerator of the determinant of $7 x (s) is the product of the antistable 
polynomials au(s), i = l , . . . , p . Observe also that if the system (A,B,C) has no 
unstable zeros, then $ s (s) is a polynomial matrix. 

Let T(s) G Mpxm(s) be the transfer function of (A,B,C) and let $ 5 (s) be its 
stable interactor. Factorize $ s (s) as 

#.(.) = r.Wdhg{sí5,-,^5} (4) 

where gi(s), i = 1 , . . . ,p, are proper and stable rational functions of the least possible 
degree, such that the elements of the ith column of Ts(s) have no unstable or infinite 
poles. In other words, gi(s) G Mps(s) are the least degree proper and stable rational 
functions such that T8(s) is a proper and stable rational matrix. 
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The integers 
nieyS := degp s $i(s), i = 1,... ,p, 

are called the s-essential orders of the system (A, B, C) and the matrix Ts(s) is called 
the proper and stable part of the stable interactor $«(s) (see [4]). 

The non null degrees of the proper and stable rational functions in the Smith 
form of Ts(s) over Mps(s), denoted {Si}, will be called the infinite and unstable 
structure of Ts(s). 

3.2. The extended system and the extended stable interactor 

Besides the information about the infinite and unstable zeros of the system, in 
the nonregular decoupling problem with stability is also important the information 
about Morse's list I2 [9]. To make this information appear, it is necessary to define 
a so-called extended system. 

Consider 
T(s) = C(sl - A)~lB = N(s)D~1(s), 

where N(s), D(s) is a right coprime matrix fraction description of the system 
(A,B,C). Let U(s) be a unimodular matrix such that 

N(s)U(s)=[Q(s) 0 ] 

where Q(s) G MpXp[s] is a nonsingular polynomial matrix (which can be considered 
lower triangular without loss of generality), and define 

" Q(s) o 
K(s) := 

U Ira—p 
u-Ҷs). 

The matrix U(s) can be chosen such that Te(s) = K(s)D~x(s) is strictly proper. 
Since we are supposing the system to be stable, it follows that Te(s) is a strictly 
proper and stable rational matrix. The matrix Te(s) is called an extension of T(s), 
and a realization of Te(s) with the same order of the system (A,B,C) is called an 
extended system [6]. 

L e m m a 2. (Ruiz et al [10]) Let T(s) be the transfer function of the system 
(A,ByC), and let Te(s) be the transfer function of its associated extended sys­
tem. Then there exist a biproper and bistable matrix Bi(s) and a nonsingular lower 
triangular matrix $7/(5), such that 

Te(8)B1(8) = *-1(8), (5) 

and the stable interactor $ e s ( s ) of Te(s) has the form 

*i,s(s) 0 

$2,S(s) $3,S(s) 

where $i,«(s) is the stable interactor of T(s), and the matrix $3,«(s) is given by 

S s . ^ d i a g K ' , . . . , ^ — ' } (7) 

where {CTJ} is Morse's list I2 of the system. 

Ф e s(s) (6) 
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3.3. Feedback realization of precompensators 

A given proper compensator C(s) is said to be feedback realizable on the system 
(A, I?, C) if there exists a state feedback (F, G) such that 

C(s) = [I- F(sl - A)-lB]~lG. 

The following result states the conditions for a full column rank proper compen­
sator to be realizable by a nonregular static state feedback, which preserves internal 
stability. 

Lemma 3. [10] Let the matrices iVi(s) and D(s) be a right coprime matrix 
fraction description of the system (A,B,In), i.e., T(s) = CNi(s)D~1(s), and let 
C(s) G M™xm(s) be a proper and stable compensator. Then C(s) is realizable on 
(A, £ , C) by a static state feedback which preserves internal stability if and only if 
there exists a biproper and bistable matrix V(s) G iR m x m such that 

- V(s)C(s) = 
0 

, and 

— V(s)D(s) is a polynomial matrix. 

It is clear that if we propose a compensator such that the compensated system 
is decoupled with stability, then solving the decoupling problem with stability by 
state feedback amounts to find the conditions for this compensator to be feedback 
realizable. This idea will be used in the proof of Theorem 1. First, we have the 
following result, which can be deduced from the previous Lemma 3. 

Lemma 4. The system (A,B,C) is decouplable with stability by a nonregular 
static state feedback, such that the transfer function of the closed-loop system is 
given by 

TFG(s) = C(sl - A - BF)~lBG = diag{<?i(s),.. .,gp(s)} 

where {gi(s)} are the proper and stable rational functions in (4), if and only if there 
xps exists a biproper and bistable matrix V(s) G JRm x m(s) such that 

V(s) г.OO 
X(s) 0 

and (8) 

(9) — V(s)<f>es(s)K(s) is a polynomial matrix, 

where Ts(s) is the proper and stable part of the system interactor $i j 5 (s) , and X(s) 

-V*) is a proper and stable matrix such that X(s) 
is column biproper and bistable. 

Regarding the feedback realization of precompensators, the following result shows 
that there always exists a state feedback such that $es

l(s) is the closed-loop transfer 
function of a extended system. 
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L e m m a 5. The matrix Bi(s) appearing in (5) is realizable by regular state feed­
back. 

P r o o f . With K(s), D(s) being a right coprime matrix fraction description of 
Te(s), and from Lemma 3, the matrix Bi(s) will be proved to be feedback realizable 
if the product B^1(s)D(s) is polynomial. 

From (5) we have that 

TeOOIM*) = K(s)D-1(s)B1(s) = $"1(;5). 

Then, it follows that 
B^(s)D(s) = <f>es(s)K(s) 

is polynomial, since $es(s) is a rational matrix with only unstable poles, B\(s) is 
biproper and bistable, and D(s) is stable. • 

The fact that the product $es(s)K(s) is polynomial will be also used in the 
procedure to find a realizable compensator that decouples a system with stability. 

4. MAIN RESULT 

In this section we present as main result the necessary and sufficient conditions for a 
linear multivariable system with 2 outputs and more than 3 inputs to be decouplable 
with stability. Roughly speaking, the problem is solvable if and only if Morse's list 
I2 is big enough to compensate the unstable and infinite zero structure of the proper 
and stable part of the stable interactor of the system. 

T h e o r e m 1. Let (A, B,C) be a linear multivariable system with 2 outputs and 
3 or more inputs m. Let {oT,o~2, • • • i^m-2} be Morse's list I2 of the system, and 
Si be the infinite and unstable structure of the proper and stable part of the stable 
interactor. Then, the system (A,B,C) is decouplable with stability if and only if 

m - 2 

Ői < ^ аi' (10) 
i=l 

P r o o f . The necessity of the result is proved as follows: From Lemma 4, there 
Vu (s) V12(s) 

exists a biproper and bistable matrix V(s) = 

(8) and (9). Since X(s) 

,r , x T^ / \ i fulfilling conditions 
V2i(s) V22(s) J 

is column biproper and bistable, then there exist proper 

and stable matrices Ri2(s) and R22(s) such that 

bistable. Then, from 

Г(s) R12(s) 
X(s) R22(s) 

is biproper and 

0 

V21OO V22(s) 

T(s) R12(s) 

X(s) R22(s) 

Г(s) R12(s) 

0 ±m—p 
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it can be seen that the infinite and unstable structure of V22 (s) is equal to 5\. 
From this, and since the product 

Vn(s) V12(s) 

V21(s) V22(s) 

Ф i » Q ( в ) 0 

Ф2,3(s)Q(s) Фз,.(a) 

is polynomial, and $ 3 j S = diag {n*1 . . . ,7r°'m-2}, then we have that (10) holds. 

For the sufficiency, given that 5\ < YH^\ aii w e w ^ show how to obtain a state 
feedback which decouples the system with stability. First, the case of systems with 
3 inputs will be considered, and afterwards it will be shown how to reduce the case 
of more than 3 inputs to the case of systems with 3 inputs. 

Consider that (A,B,C) has 2 outputs and 3 inputs. For these systems we have 
only one element in Morse's list I2, namely or, and (10) becomes 

5\ < o\. 

The extended interactor in this case has the general form 

*«(«) = 

- - 1 
-•--V / 

ҡni 0 

o 2 i ( s ) OÍ22(S) 

Tl-nзi 
ҡn2 

o 3 i(s) Oí32(s) 

0 

L ҡnзi ҠП32 

1 

(11) 

Tni 

O ц 

Q 2 1

 ҡПl+П2-П21 

Oi\\OL22 

0 2 1 0 3 2 c r i-f n i 4-712 — n21— T132 
a з 1

 ҡ<гi+ni-nзi 

O ц 

0 

7 Г П 2 

o 2 2 

^ 3 2

 ҡ<Tl+П2-ПҘ2 

o 2 2 

0 

0 

o n o 2 2 

where a n , a 2 2 are antistable polynomials, and because of the properties of ^Js(s) 
in Lemma 1 we have that 

— n 2 i < n 2 , 

— n 3 i < or, n 3 2 < <Ji, 

— ni < n 2 . 

Observe also that: 

i) The lowest power of 7r in the elements (2,1) and (3,1) of $ e s ( s ) is greater than 
n\ (since n 2 i < n 2 , n 3 2 < or, and n 3 i < <7i). 

ii) The lowest power of 7r in the element (3,2) of $ e s ( s ) is greater than n 2 (since 

^32 < or)-
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The matrix K(s) is given by 

K(s) = 
Q(s) 0 

0 1 tt-Ҷ-0 = 
u(s) 
2l(s) 

0 
922(в) 

1 
u-Ңs). (12) 

Since a n (s) contains the unstable zeros of the first row of T(s) and qn(s) contains 
the stable and unstable zeros of the first row of T(s), then an(s) divides </n(s), 
denoted as an(8 ) | (7n(8). The same holds for a22(8) and 922(5), i.e., a22(s) | 922(5)-

Finding a biproper and bistable matrix V(s) that satisfies condition (8) is not 
so difficult, the problem is that this matrix must also satisfy the polynomiality 
condition (9). Based on the previously stated forms and properties of the extended 
interactor <$>es(s) and matrix K(s), a general procedure is provided in Appendix 1 to 
find a biproper and -bistable matrix V(s) (see (18)) and a decoupling precompensator 
satisfying conditions (8) and (9) for systems with 2 outputs and 3 inputs. 

Once the biproper and bistable matrix V(s) and the decoupling precompensator 
satisfying (8) and (9) have been found following the procedure in Appendix 1, then a 
nonregular state feedback which decouples the system with stability is obtained from 
a constant solution X, Y, with X nonsingular, to the polynomial matrix equation 

XD(s) + YNx(s) = V(s)$es(s)K(s), 

as 
E = - x - г Қ G = X~l h 

0 

where N\(s), D(s) is a normal external description of the system. 
To complete the proof of Theorem 1, in Appendix 2 it is shown how the case of 

a system (A, B,C) with 2 outputs and more than 3 inputs can be reduced to the 
previously considered case of a system with 2 outputs and 3 inputs using nonregu­
lar state feedback, thus solving the decoupling problem with stability for linear 
multivariable system with 2 outputs. • 

5. EXAMPLE 

эt the system (A, B ,G) be given by 

' - 3 --3 - 1 0 0 0 0 1 1 
1 0 0 0 0 0 0 0 0 

0 1 0 0 0 0 0 0 0 

0 --1 0 - 4 - 6 --4 - 1 0 1 

A = 0 0 0 1 0 0 0 0 0 

0 0 0 0 1 0 0 0 0 

0 0 0 0 0 1 0 0 0 

0 0 0 0 0 0 0 - 2 - 1 

0 0 0 0 0 0 0 1 0 

в = 

1 0 1 
0 0 0 
0 0 0 
0 1 0 
0 0 0 
0 0 0 
0 0 0 
0 0 1 
0 0 0 
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c = 
1 2 1 0 0 0 
1 2 1 0 0 1 

and whose transfer function is 

0 
-2 

Г(в) = C(sI-Ä)-lB 

8 + 1 

s6 + 6s5 + 15s4 + 20s3 + 14s2 + 8s + 1 

(sTT? 

0 0 

s - 2 s - 2 

(s + l ) 4 (s + 1)8 

After some computations, the stable interactor of the system (A,B,C) and the 
associated extended stable interactor for n = s + 1 result to be 

Ф.00 = 

S + 1 0 Г s-2 
0 

(s + 1)4 (s + 1)4 = (s + 1)3 

- 1 1 
s - 2 s-2 J 

(S + 1) 4 

0 

0 

s - 2 

(sTг? 

- 1 

г.(-) 

$es(s) 

8 + 1 0 

(s + 1)4 (s + l ) 4 

s - 2 s - 2 

0 s(s + I ) 2 

where it can be seen that 

0 

0 

(s + 1)4 

<$i = 3, C J I - = 4 

and since 8\ < G\ , then the system is decouplable with stability. 
Following the procedure from Appendix 1, the decoupling compensator with sta­

bility C(s) (state feedback realizable) and the biproper and bistable matrix V(s) 
satisfying conditions (8) and (9) are found as 

5 - 2 

V(s) = 

C(s) = 

1 2s + 5 

(s + 1)3 

s4 + 4s3 + 6s2 + 4s + 2 

џ+W 
2s2 + l 

0 

0 

4 (s + l ) 2 

1 2s2 + Зs + 5 

4 (s + 1)3 

2s 2 + l 

(s + 1)2 

(s + l ) 2 

l ( s + 2)(2s2 + 6s + 7) 

4 (s + l ) 3 

1 2s4 + 12s3 + 29s2 + ЗЗs + 18 

4 (s + l ) 4 

8-2 

" ( s + 1)3 
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From a constant solution to a polynomial matrix equation, we obtain the state 
feedback ( E G ) , 

2 5/2 1/2 0 0 0 0 - 2 - 2 
0 1 0 0 0 0 0 0 - 1 

-1 -7/2 -5/2 0 0 0 0 - 1 - 1 

which produces the closed-loop decoupled and stable system (A+BF, BG, C), whose 
transfer function is 

" 0 0 " 
, G = - 1 1 

2 0 

TFG(s) = C(sl -A- BF)BG = 
(s + \ү 

0 

0 

5 - 2 

Js~TW J 

6. CONCLUSIONS 

In this paper a solution to the nonregular decoupling problem with stability for 
linear systems with 2 outputs has been presented. The structural solution is stated 
in terms of Morse's list I2, and the infinite and unstable structure of the proper and 
stable part of the stable interactor of the system. A constructive procedure to find 
a state feedback, which achieves decoupling with stability has also been presented. 

Even though this is a partial result in the sense that only applies to linear systems 
with 2 outputs and 3 or more inputs, to our knowledge it is the first result that 
provides necessary and sufficient conditions in the case of nonregular decoupling 
with stability. 

APPENDIX 1 

Computation of a biproper and bistable matrix and a decoupling precompensator 
satisfying conditions (8) and (9) for a linear system (A, JB,C) with 2 outputs and 3 
inputs. 

Given that 5\ < o~i, the following procedure allows to find a biproper and bistable 
matrix V(s) and a decoupling precompensator 

C(s) Г.(a) 
X(s) 

satisfying conditions (8) and (9) for a linear system (A,B,C) with 2 outputs and 3 
inputs. 

Consider the forms and properties of the extended stable interactor $es(s) and 
matrix K(s) given by (11) and (12). A first choice for the feedback realizable de-
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coupling compensator is 

C0(s) Г.(«) 
X(s) 

«22 
7,-ái 

a21 

0 

(13) 

where Ts(s) is the proper and stable par t of the stable system interactor, X(s) is 
a proper and stable matr ix such t h a t CQ(S) is column biproper and bistable, and 
k = deg 0.21(5). 

In such a case, the .simplest biproper and bistable matr ix satisfying condition (8) 
is the following 

0 0 1 

Vo(s) 0 1 ^ 

1 0 -ţ*22 
7Гðl 

(14) 

Next, we have to prove the polynomiality condition (9). Observe tha t the poly-
nomiality of the matr ix V(s)$es(s)K(s) is equivalent to the polynomiality of the 
mat r ix V(s)$es(s)M(s), where 

M(s) := Q(s) 
0 

0 
Lm—p 

SIПCЄ 

Фes(s)K(s) = ФMM^U-^s 

and U(s) is a unimodular matr ix. 

It can be seen t h a t the only elements in the matr ix Vo(s)$es(s)M(s) t h a t could 

be no polynomials are the (2,1) and (3,1) entries, the first one containing terms of 

the form 

a2i (s)ps (s)ir-k+ai+ni ~n31 

and the second one containing terms of the form 

a22 (S)P4 (S)7V~01 +ai + n i - ^ 2 - n 2 1 +n 2 

a22(s)p5(s)7r-°1+(Tl+ni-n31 

where 

n , x qii(s)a2i(s)a32(s) , 
P4\s) = — 7 - ^ — j - ^ — , and 

Pь(s) = -

aц(s)a22(s) 

qn(s)a3i(s) 

an(s) 

Depending on the values of ri\ and 6\ we can have one of the following two cases: 
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— If 

n i > 5\ 

then the entries (2,1) and (3,1) of the matrix V0(s)$es(s)M(s) are also polyno­
mials, and the proposed compensator C0 and the biproper and bistable matr ix 
V0(s) satisfy conditions (8) and (9); end of the search. 

— If 

n i < 5i 

then we have to find a pair of unimodular matrices UR(S) and UL(S) such tha t 

V(s):=UL(s)V0(s)UR(s) 

and 

C(s):=U^(s)C0(s) (15) 

satisfy conditions (8) and (9). 

For simplicity, let us make the change of variables 

7T = S + (3 > S = 7T — (3. 

The polynomials entries (2,1) and (3,1) of the matrix $es(7r)M(7r), denoted re­
spectively as ($ e s M) 2 i (7 r ) y (<&esM)3i(7r) have the general form 

($eSM)2i(7T) = T07Tni+1 + Ti7Tni+2 + • • • + T̂ TT™1 

($ e sM)3 l(7T) = 0O7Tni+1 + 0i7Tn i + 2 + • • • + 0r27T™2 

where 9i and Tj are real numbers, and wi , w2 are integers such tha t w\ > n i + 1 , 
w2 > m + 1. Then, we can factorize these polynomials as 

($ e s M) 2 i (7 r ) = u?i(7r)7rni +(f2i(ir) 

($ e s M) 3 i (7 r ) =u3 1(7r)7rn i + <p3i(n) 

where 
5\—ni — l 

U>2I(TT) = ^2 T ^ 

i=l 

5i—ni — l 

W3l(7r) = 5 3 6ini 

i=l 

<P21 (7r) = Tpin
Sl + r / , 1 + 1 7 T 5 l + 1 + • • • + TYiTT™1 

^31 (VT) = 9p27TSl + 6p2+17T5l + 1 + • • • + 6r27TW\ 

We will suppose tha t the system has no stable zeros, thus implying tha t 0:11(5) = 
qn(s) and a22(s) = q22(s). Observe tha t this is not an important restriction since 
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stable zeros do not affect the conditions for decoupling with stability. Then, the 
product $es(7v)M(7r) can be written as 

Фes(тr)M(тr) = 
1 0 0 

u 2 i 1 0 
uзi 0 1 

г n i 0 0 

vñЧ») 

Ӯ2l 7ГП2 0 

Фзi <P32 П*1 

V 
П(s) 

Let us propose now 

Ы т г ) = VЬ(7Г)t/я(7Г) = 

-ti31 0 1 

-u2i - a2i7T~ku3i 1 ot2iir~k 

1 + a27r~Slusi 0 -a27T~Sl 

(iб) 

where Vi(7r)$es(7r)M(7r) is a polynomial matrix. 
Then we will have that 

C(ҡ) = U^(n)C0(n) = 

a2n
 U1 U 

u2ía2ҡ~Sl - a2íҡ~k 1 

l + a - n - ^ u з i 0 

(17) 

is such that 

Vг(ҡ)C(ҡ) = 
" 1 0 ] 

0 1 
0 0 

However, it can be noticed that Vi(7r) is not biproper because of the entries (1,1) 
and (2,1) of Vi(7r). TO overcome this difficulty, let 

UL(n) = 

be a unimodular matrix, where 

^13 (~) = 

^23 (7Г) 

1 0 CJIЗ (тг) 

0 1 CJ23 (7Г) 
0 0 1 

M31 

1 + a2ir-s-uzi 

M21 + CX2lTT~kU3l 

1 + a2'--s-U3i 

Thus, the matrix 
Vr(7T) = L7L(7T)yi(7r) 

is biproper and bistable, and satisfies 

(18) 

Vl(~)C(ҡ) = Һ 
0 
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From V(n) and Cv7r), and using n = s + /3, we obtain the matrices V(s) and 
C7(s), which are respectively the biproper and bistable matrix and the decoupling 
precompensator satisfying conditions (8) and (9). 

APPENDIX 2 

A nonregular feedback reduction of a 2-output system with more than 3 inputs to 
the case of 3-input channels. 

The purpose of this section is to show that a system with 2 outputs and more 
than 3 inputs can be reduced to the case of 2 outputs and 3 inputs using nonregular 
static state feedback, concatenating thus all the structural information of Morse's 
list J2 in only one index a. 

Proposition 1. Let T(s) be the transfer function of the system (A, B,C) with 
2 outputs and m inputs, m > 3, and Morse's list I2 = {0T,o"2,... ,crm_2}. Then, 
there exists a nonregular static state feedback, such that the transfer matrix of 
the closed-loop system has 3 inputs and Morse's list I2 with an unique index a = 

G\ +°2 H lVm-2-

P r o o f . Since the matrix B\(s) in (5) is state feedback realizable, we can suppose 
without loss of generality that the transfer matrix of the extended system is $~ x (5). 
Then, Te(s) may be written as follows, 

г в ( в ) = ф - 1 W = Ä'(в)D-1(в) (19) 

where (K(s),D(s)) is a right coprime polynomial factorization of the extended sys­
tem. 

Let us consider first the case of 4 inputs, m = 4, in which case the inverse of the 
extended interactor may be written as 

Ф.7W 

Фn(s) 0 0 

Ф2l(s) ф22(s) 0 

Фзi(s) Фз2(s) 7Г -"1 

Фél(s) фiï(s) 0 

0 

0 

0 

Г-O-2 

(20) 

To prove Proposition 1, we find first a precompensator C(s) realizable by regular 
static state feedback and then we complete it with a constant nonregular input 
matrix gain G. 

Consider the following precompensator, 

0(8) 

1 
0 

0 
1 

0 
0 

0 
0 

-фái(s) 

0 

- ^ 4 2 (в) 

0 

1 

0 

— 7Г~ 

1 

(21) 
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In the product C~1(s)^es(s) the nontrivial terms are the (3,1) and (3,2) en­
tries, which can be reduced respectively to </?3i(s), and (f32(s) due to the fact that 
^es(s)^e~s

1 (s) = I. Then, we have that 

ć-1(в)Фe.O) = 

<Pn(s) 0 0 

f2l(s) <P22(s) 0 

<Pзi(s) Џ>32 (s) n*1 

Щl(s) >42(s) 0 

0 

0 

- 1 
(22) 

Now, from this expression and from (19) it can be seen that the product, 

C~1(s)D(s) = C-1(s)^es(s)K(s) 

is polynomial. Moreover, since C(s) is by construction a biproper and bistable 
matrix, then it is realizable by regular static state stabilizing feedback. 

To complete the desired nonregular feedback it is convenient to introduce a non-
regular constant input matrix gain G given by, 

G = 

1 0 0 
0 1 0 
0 0 0 
0 0 1 

In this way the transfer matrix of the closed-loop system TCCG(S) is given by 

UCG 00 = 
г — C Г i — ČГ2 

<Pn(s) 0 0 

<P2l(s) <P22(s) 0 

^31 (s) + <P41 (s)7r-ai (f32 (s) + (f42 ( s K - * 7 1 

Clearly, the corresponding extended interactor $es(s) is 

<Pn(s) 0 0 

<P2l(s) <p22(s) 0 Ф e s ( s ) = 

У З l O K 7 2 + Џ>4l(s) <p32(s)ҡ<» + ip42(s) Ҡ"1+^ 

Observe that using nonregular feedback amounts to cancel some inputs, in the 
previous case the third one, and as a consequence in order to get the new extended 
interactor one has to eliminate a virtual output after closing the loop. Also no­
tice that $es(s) has the structure of an extended interactor, having only one term 
corresponding to the list I2 of value u\ + a2. 

The above procedure can be repeated as many times as needed for the general 
case where the number of inputs m > 4 and as result one would obtain an extended 
interactor with a unique index in list I2 of value o\ + u2 + . . . 4- crm_2 as claimed. • 
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The proof of Proposition 1 is in some sense the generalization of an equivalent 
statement for the problem without stability requirements and using a precompensa-
tion approach, which is more suitable in the context of the present work (see [7]). 

The above result can be interpreted as a nonregular static state feedback action 
on the triplet (A, B,C) of the system in such a way that the resulting closed-loop 
system will have only one controllability chain in the maximal controllability output 
nulling subspace TV, which is the result of concatenating all the controllability chains 
inside it. 

(Received March 29, 2002.) 
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