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KYBERNETIKA — VOLUME 34 ( 1 9 9 8 ) , ŇUMBER 6, PAQES 7 2 5 - 7 3 8 

FINITE-DIMENSIONALITY OF INFORMATION STATES 
IN OPTIMAL CONTROL OF STOCHASTIC SYSTEMS: 
A LIE ALGEBRAIC APPROACH 

CHARALAMBOS D . CHARALAMBOUS1 

In this paper we introduce the sufficient statistic algebra which is responsible for prop­
agating the sufficient statistic, or information state, in the optimal control of stochastic 
systems. Certain Lie algebraic methods widely used in nonlinear control theory, are then 
employed to derive finite-dimensional controllers. The sufficient statistic algebra enables 
us to determine a priori whether there exist finite-dimensional controllers; it also enables 
us to classify all finite-dimensional controllers. 

1. INTRODUCTION 

The DMZ equation of nonlinear filtering of diffusion processes is a linear, stochastic, 
partial differential equation (PDE) which describes in a recursive manner the evolu­
tion of the unnormalized conditional distribution of the state process, {x(t);t > 0}, 
given the observations, {y(t);t > 0}. If this distribution has a density function, say, 
{n(x,t);t > 0}, then its Fisk-Stratonovich form evolves 

ATTOM) = Lon(x,t) + h(x) w(x,t) o ±y(t). (1.1) 

Consequently, {ir(x,s)]0 < s < t} evolves forward in time with initial condition 
7r(a?,0). Here, .Ln is certain second-order differential operator related to the drift 
and diffusion coefficients of the state process, the Kolmogorov forward operator, and 
h(x) is a zero-order differential operator related to the signal in the observations. 
Brockett and Clark [2] proposed that due to the analogy between (1.1) and the 
control system x(t) = f(x(t)) -f g(x(t))u(t), the Lie algebraic methods might be 
applicable to (1.1) as well. In particular, they proposed that the finite-dimensionality 
of solutions to (1.1) can be deduced from the Lie algebra generated by the operators 
io, h. Moreover Ocone [8], noted that if the Lie algebra generated by the operators 
Lo, ft, is finite-dimensional, then (under certain conditions) the Wei-Norman method 
can be used to derive the structure of the recursive filters, (see [1, 7, 8, 9]. Recently, 

1This work was supported by the Natural Science and Engineering Research Council of Canada 
under grant OGP0183720. 
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gauge transformations have been introduced in [3, 4, 6], to identify nonlinear control 
problems with finite-dimensional controllers. 

In the present paper we point out how the Lie algebraic methods can be used 
to address the question of finite-dimensionality of optimal controllers in problems of 
optimal control of partially observed stochastic systems. Note that in the absence 
of control optimality, this framework can be used to address the question of finite-
dimensionality of optimal (in least-squares sense) observers for nonlinear stochastic 
control systems. This framework would enable us to investigate the question of 
classification and finite-dimensionality of optimal controls a priori, by investigating 
the Lie algebra of certain operators associated with the model at hand. The Lie 
algebra method yields new classes of nonlinear systems which are not a subset of 
our earlier classes in [3, 4, 6]. 

In particular, the observation that leads to these developments is that for optimal 
control problems (with usual integral cost function) affine in the control inputs, the 
information state satisfies a controlled version of the DMZ equation, namely, 

±iru(x, t) = L0w
u(x, t) + LTCU(X, t) u(t, y) + h(x) wu(x, t) o ±y(t), (1.2) 

where u(-) is the control input and L is certain first-order differential operator. 
Therefore, by analogy with finite-dimensional nonlinear affine control systems, we 
view (1.2) as a bilinear equation with control inputs u(-), ^J/(*)- This gives rise to the 
investigation of the Lie algebra generated by the operators L0, L, h, which we call 
sufficient statistic algebra. In fact, from certain results of realization theory, we de­
duce that if the sufficient statistic algebra, Cs = {L0, L, A}L.A.> is finite-dimensional, 
then (under certain conditions) the optimal controller is finite-dimensional. 

2. MATHEMATICAL CONSTRUCTS 

Consider the Ito stochastic differential system 

t m 

dx(t) = f(x(t))dt + J2gj(x(t))uj(t,y)dt + Y,°Mt))dwj(t)> *(°) € »", (2.1) 

<*«(') = hj(x(t))dt + dbj(t), yj(0) = 0 G ft, 1 < j < d. (2.2) 

Here {wi(t);t 6 [0,T]} and {bj(t);t G [0,T]}, are mutually independent standard 
Brownian motion processes, for all 1 < i < m, 1 < j < d, which are also independent 
of the random variable x(0). u(-) = [u\, u^,..., u*]'(-) is a vector of control processes. 
All stochastic processes are defined on a probability space (Q, T, Pu) equipped with 
a complete filtration, {F0x>t £ [0,T]}, and a finite-time interval, [0,T]. 

The usual optimal control problem addresses the minimization over the controls 
u(-) G i/adj (see Definition 2.3), of the integral cost criterion J(u): 

J(u) = EU<£ £(x(t), u(t, y)) dt + <p(x(T)) \ . (2.3) 



Finite-Dimensionality of Information States in Optimal Control of Stochastic Systems ... 727 

Notation 2.1. 

"/" denotes transposition of a matrix, h denotes k x k identity matrices, {t t j}n
= 1 , 

{a*,i}n,i=i denote finite sequences in 9ft; 

C°°(M) denotes the vector space of all infinite differentiable real-valued functions 
defined on an n-dimensional differentiable manifold M; 

$(*) = M * ) , 9 i ( x ) , -.-<>9t] (*), [g]ij(x) = 9ij(x)} h(x) = [hi, ft2,.. -,hd]'(x), 
y(t) = [yuy2,-.-yd]'(t); 

$ : 3ftn —• 9ft is C 2 with compact support; 

{^otJ* ^ [OJ-TD denotes the complete filtration generated by the observations <T-

algebra, cr{y(s)\0 < s < t}, Eu, E denote expectations w.r.t. measures Pu, P , 
respectively. 

Assumption 2.2. 
U is a compact subset of 9ft*; 

/ : » n -+ »n,(/t- : 3ftn — »n , (7 i : 3ftn -> 3ft", 1 < i < £y 1 < j < m, are C°°(^n) vector 
fields, fy : 9ftn - • §ft, 1 < j < d, are C0°(3in) functions, and 

l/l + kil + lftl + |fc*l<*i(l + M). Vi,i,fc; 

1: 3ftn x (7 — 3ft, <p : » n -> 3ft, £ > 0, y> > 0, and 

| /(*. ii)| < *2 (1 + |*| + \u\)k>, |p(*)| < k4 (1 + |* | )* 5 ; 

The random variable x(0) has distribution Ilo(dx) = wo(x) da?, with TTQ(-) G L2(9ftn). 

Definition 2.3. The set of admissible controls denoted by U__ is defined by 

U__ = {ti(-);ti(-) e L2([0,T];^),i/(<,y) 6 U C 3ft*, a.e. *,P-a.s.} . 

2.1. Sufficient statistic 

Let ]!*(<&) = Eu ]^(x{i))\T\t] denote a measure-valued process; let 

Ao,t = exp ( E j f M ' W J d w W - ^ E j f *J(*W)d») 

Introduce the Radon-Nikodym derivative, (see [4, 5]), ^ - | ^ 0 , r = -^o,T- By aversion 
of Bayes formula we have: 

„ ^ _ -g[*(»(<))Ao,,|̂ ,t] _, ,,(*) 

Here Ilt(-) and 7rt(-) are measure-valued processes; the latter is the unnormalized 
version of the former. 
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Theorem 2 .4 . [5, 4] Let $ 6 O2(9t*n) and suppose 7r,(-) has a density function 
7 r : £ " x f i x [ 0 , T j - + 3 ? . Then 

*.(*) = £ [*(*(.))Ao,«|^,.] = / *(*)*(*,.)<--•, (2.5) 
Jstn 

where 7r(«) is a solution of the controlled version of the DMZ equation (Fisk-
Stratonovich form): 

7r(x,/) = 7r(x,0)+ / Lon(x,s)ds + y2 LjTr(x)s)uj(s,y)ds 
Jo j^lJo 

+ Z i / hj(x)ir(x)s)odyj(s)) (2.6) 
i = i J o 

^*>w4t,^M^) w-i;(*£+s7(*)) (*)W-
t,,; = l -* j = l x ^ J ' 

i i W W = - E ^ ^ + ^ f o u ) ) (*)(*)• ^ ' - ^ (2.7) 

-*(*)(«)= U - J E A J J (*)(*)• 

Moreover, for t/ G Wad the cost function (2.3) has the representation 

JO,T(U) = E \ [ I £(z)u(t)y))ir(z)t)dzdt+ I ip(z)ir(z)T)dz\. (2.8) 
[Jo J*tn J*tn ) 

In the formulation of Theorem 2.4, the conditional density is assumed to be an infor­
mation state. Therefore, by construction (2.6) propagates the information available 
to the controller. In the sequel we assume the measure-valued process irt(-) has a 
unique density 7r() satisfying (2.6). 

Definition 2.5. Let X, Y : C°°(M) -+ C°°(M)) be differential operators with C00 

coefficients. The vector space of all differential operators (with C°° coefficients) is a 
Lie algebra with the Lie bracket of X, Y defined by 

[X, Y] (*) = X(Y(*)) - Y ( X ( * ) ) , V$ e C°°(M). 

Definition 2.6. The estimation algebra CE of the filtering problem (2.1), (2.2) 
(with Uj = 0, 1 < j < £), is the Lie algebra generated by, {£0,^1,^2,. • . ,̂ d}> 
defined by 

CE = {Lo,huh2,...,hd}hA. (2.9) 
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The sufficient statistic algebra Cs of the control problem (2.1)-(2.3) is the Lie 
algebra generated by, {Ln, Li,L2y..., Li, h\, h2,..., /i*}, defined by 

Cs = {LQy L\, L2,..., Li, hi,h2,...y h<t}LA . (2.10) 

3. SUFFICIENT STATISTIC ALGEBRAS 

Assumptions 3.1. Assumption 2.2 hold, m = n, and [ci, <r2y..., <rn] [<r\} <T2, . . . 
...,<Tn]'(x) = Jn, that is, CT(X) is orthogonal; in the scalar case it is assumed that 
a = 1. To avoid trivial situations let J3?=1 h* ̂  0. 

Define 

Di-i^-fi> 1<{<-n> ^ E ^ + E / ' + E ^ - (31) 
°Xi .=i ax% .=i <=i 

Then 

Ô = U E A ? - ' ? ) - (3-0 

We shall need the following calculations. 

Lemma 3.2. Let 

Then 

[Di,Dj] = wjti, l<i,j<n; 

[Di,hj] = jfchj, l<i<n,l<j<d; 

[Dlhj] = g,(hj) + 2£.{hj)Di, l<i<n,l<j<d; 

[Li, h>] = - E » . ' ^ ( * y ) . 1 < » < ,̂ 1 < i < d; 

[DlDi] = 2witiDi + -^-(witi), l<i,j<n; 

[Lo,Di] = ^ E ( 2 ^ . ^ + ^ K ' ) ) + ^ ( ^ - - ^ - - » 5 
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- < * ' < « , 1 < 3 < t\ 

\*M = -±{ě$^(^) 
+ 2 d W ^ [k -f]+j% ^J) £ 

+9k"dSrk
 ( / i ) + ^ é ; <*> [é; ~f]} -

" " f Q2 

,- ^ d < ^ d d i ^ 5 1 ð2 

l < f , j < l 

Proof. Use the definition of Lie bracket. 0 

Definition 3.3. The sufficient statistic Cs (resp. £#) is said to have maximum 
rank if xi 6 Cs (resp. CE), VI < t < n. 

3.1. The linear case 

Here we analyze the linear control system 

l n 

dx(t) = Fx(t)dt + J2Bjuj(t,y) + J2Gjdwj(t), 
(3.3) 

dy;(<) = S-fy^-ÍO <-• + <%(<). l^J<d-
ť=l 

Lemma 3.4. (Scalar case). Suppose n = - ? = d = r a = l. The sufficient statistic 
algebra has dimension 4 with basis 

Cs = Spán í L0 = ^(D 2 - r,), x, D = | - - Fx, l i . (3.4) 
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The non-zero commutative relations are 

[L0,x] = D, [L0,D] = D+~(V), [D,x] = l. 

Moreover, Cs = CE-

Proof. See Theorem 3.5. D 

Theorem 3.5. (Multidimensional case). The sufficient statistic (resp. estimation) 
algebra has dimension at most 2n + 2 and 

Cs C C = SpaníL0 = \ f j > ? ~v\ , 

xi,x2,.. .,xn,Di,D2,... ,Dn,\\ , (resp. CE Q C). 

(3.5) 

The non-zero commutative relations are 

1 d 

»=i 
[L0, xj] = Dj, [L0, Dj] = E (FU - Fj,i) Dt + ^(l), 

[ 1, if i-h 
\<j<n; [Di,Xj] = \ 

[ 0 , if i±j. 

Moreover, if CE is maximum rank the CE = Cs = C. 

Proof. 
1 n n 

Yi±[L0thj] = - £ [ f l ? , A / ] = E f f i A l<j<d; 
2 . = i 

n n 

* = 1 / = 1 *=1 

Therefore, .Di, L>2,. - •, Dn may all be elements of Cs, and \ e Cs. Also, from the 
computation 

n n n 

zy = [Lo, Yi] = 2 > o , B,,,A] = E E ^-* 
i = l » = 1 J k = l 

(Ft,* - Fi,k) Dk + \Y Hi,iJ^l\ l<J<d> 

we deduce that z\, x2,..., xn may all be elements of Cs. Now, 
n n n n 

yi|fc = [Yj, n] = E E tfW • # M-̂ 1 = E E H>,iH*,tm,i, l<j,k<d. 
i = l *=1 t = l i?=l 
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Proceeding we calculate 

Loj = l^W = s\±V-*-±B>j£] 

- -±±{*--s«)(l4"*)}"5£*-^*>- '->-* 
Hence, Lo,j is a linear combination of elements D\, JD2,..., Dn, x\, #2, •. • #n - 1 . In 
addition, 

n 

[Lif At] = - £ ftj-ff*,*, 1 < j < l, 1 < t < </; 
J b = l 

n 

[Lj, Di] = - 53 BtjE.,*, 1 < j < *, 1 < i < d; 
fc = l 

П 

[ i i . y ^ - J ^ B * ^ , * , i < i < / , i < t < d . 
fc=l 

Therefore, we deduce that Cs C C. If C is maximum rank then X{ € £ 5 , VI < t < n, 
hence Cs = C (similarly for CE)- D 

3.2. The nonlinear drift case 

Here we investigate the nonlinear control system 

/ n 

dx(t) = /(*(*)) d* + £ ^ ( i , y) d* + £ *i(*(0) d^i(0. 
i=i i=i 

(3.6) 
dЮ(0 = ]£#,,.*.• dí + d6,(ť), l< j<d. 

« = i 

L e m m a 3.6. (The two-dimensional case). Suppose n = 2, m = 2, J? = d = 1, 
and 

/i = £ j = i ^ i , i * i . / 2 = / 2 ( * i , * 2 ) , 5 2 , i = 0 . (3.7) 

1. If tiVjj = constant, for i ^ j and 

2 « 2 

r? = V ^— /,- + V " ft + ft2 = Quadratic function of (xi, x2) > 0, (3.8) 
, = i dXi , = i 

then the sufficient statistic (resp. estimation) algebra has dimension at most 6 and 

£ 5 C J C = S p a n | L 0 , x 1 , x 2 , - | - , D 2 = ^ - - / 2 , l | (resp. CE C C). (3.9) 
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If Cs (resp. CE) is maximum rank then Cs = C (resp. CE = C). 

2. If h\ = H\t\X\ and 77 = A nonnegative quadratic function of x\ + 7(^2) for some 
T G C00(i.R), then the sufficient statistic algebra is 

£ 5 = Spa .n|L 0 ,x i ,—,l | . 

The non-zero commutative relations are 

[Lo,xt] = Dit 1 < » < 2; 
J 1=1 

[L0,D2] = ^ + iAí,); [^(Ö2]=_(-|-(Л)+u;ii2); [£,,,] 

- { 
1, if * = 1, 

0, if i = 2. 

Proof. From Theorem 3.5 we have Y. = [L0, h{] = £?_ . #!,,•£., xi,i = [Vi, /»i] 
= J2l=i ^ly, Hence, -}§-•, x\, x2, D2,1 may be elements of £5. Also, 

2 2 

* - [-*, y,] = __ £ " M (««.« A- + ̂ > / , ) ) + 5 __ " M ^ M -

Since t_>,j are constants and rj is a quadratic function of (£.,£2), w e conclude that 
£1 = <*i£i + <*2*2 +a3^§7 + <*4.D2 + c*5. 

1. Proceeding we calculate 

W^cl i ] = 4 J : t { - U f c , ^ . W ) ( ^ - > l ) + A | 1 ^ ^ 

-\[v,Li]-
Since Bfc,i = 0, for k = 2 and / i = _3| = 1 Eij-xy we have 

-*, = -H2B'' i f»(^- /')+2Bi''Jr ( / i ) 

(jc-^+^aOTr**)}-!*-^* 
If we now substitute £§7/2 = ^fj/i + ti/i|2, then J_0,I is a linear combination 
of a?i,a?2,gj-,-D2,l; also, [£o,i>M-[£o,i,_-«i] ,[-Lo,i,Vi], are linear combinations of 
these elements as well. Hence, we deduce that Cs Q C. If Cs is maximum rank then 
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Cs = C and similarly for the estimation algebra. 

2. If we now let h]_ = Hlylx1 we have 

Yi=hl§1Du Xi,i = #?,!; Z1 = H1Awli2D2 + ^Hltl^(r1). 

HT} = QXI + 6 + 7 ( X 2 ) , for some Q > 0, a G (»2)' , $ G », 7 G C°°(»), then Zi is a 
linear combination of elements x1} ^ |- , 1. Tracing our earlier steps we deduce that 

Cs has basis L0, jf^-Di, -*i,l. D 

Theorein 3.7. (Multidimensional case). Suppose n = m, ,̂ cf are arbitrary, and 
n 

J=I 

/jfe + l = / j k + l ( - ^ l , ^ 2 , . . . , - P i b ) , 

/ n = / l ( s i , £ 2 , - - - , # n ) , 

Bij = 0, Vi>Jb, 1 < j<-£ . 

1. If Wij = constant, V l < i ' < f c , k + 1 < j < n and 

= Quadratic function of (x1,X2,..., -cn) > 0, 

then the sufficient statistic algebra has dimension at most 2n + 2 and 

( f) fi 
Cs C C = Span< £o,zi ,#2, • • «,#n, ^—, ^—,-• • 

ß 1 
..,-^-,-Djь+i,-Ojь+2,...,-Dn, 1 ̂  . 

(3.11) 

If Cs is maximum rank then Cs = £• 

2. If/it = E i = i # 0 ^ ) 1 < « < <*« w.-j = 0 , VI < i < fc, fc + l < j < n , and 

r? = A nonnegative quadratic function of 

\ , ^ ( 3 - 1 2 ) 

(a?i, x 2 , . . . , -rjb) + 7 (^+1 , zjb+2, • • •, #n), 
for some 7 G C00(.Rn""A:), then the sufficient statistic algebra has dimension at most 
2k + 2 and 

rscr-bSLwl^,*! ,^, . . . , .* ,^,^, . . . , - -^,! ! . 

If Cs is maximum rank then Cs = C. 

Proof . Follow the derivation of Lemma 3.6. D 
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3.3. The nonlinear drift and observations case 

Next we investigate the correlated nonlinear control system 

l n 

dx(t) = f(x(t)) dt + J29Mt)) Uj(t} y) dt + ]T Gj dwj(t), 

d
 i = 1 (3.13) 

n d 

dyj(t) = hj(x(t))dt + Ytaj,i^i(t) + Y/
Nhdbi(t)' l<J<d-

«=i «=i 

Let 
d 

Lo = A - i £ M l Mk = Y,hi[C-\k + Yk, 
* = 1 » = 1 

Yk = -Y^[Gа'C-l]i<k-£-, C = аа' + N, N = N^N^'>0, 
, = i д x i 

~A - i t i^4^( N ^ + f ' ' ' ) ' 
t,; J t = l x ' 

Mk = ftfxUC-'U-fpa'C-1]^, 
.=i i=i OXi 

1 < k < d, where A, Lj are defined earlier. The sufficient statistic and estimation 
algebras are given by 

£s = {L0,Li,L2,...,Li,Mi,M2,...,Md}LA , CE = {LQ,Mi,M2,. ..,Md}LA . 

Let <j> G C°°(^n) and set 

fi = f(ғ*J*i + [GGЪjҗф)* 1 < 1 ' < « -

hi = f (нiìjXj + [aG']i~ф) , \<i<d. 

(3.14) 

Theorem 3.8. [4]. Suppose (3.14) holds and 

gj = Bj, 1 < j < £, (i.e., independent of x). (3.15) 

V If 4 G C°°(3fxn) is a solution of 

5 t K 4 W + VW'&M&M + «-«li . <*>) 
t,J —1 

+ E £ BiJu>^7 W = ^ (*'G(-)x + 2m(«)* + *(«)) > 
t = l j = l * 
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for some Q(u) = Q'(u) > 0, m(u), 6(u), then Cs is isomorphic to the Lie algebra 

{ 1 d — 1 
A) - g E M* " 2 (*'Q(U)X + 2 m(«)* 

+ 6(u)),Li,L2,...,Lt,M1,M2,...,Md} 
J L.A. 

Moreover, if Q(u), m(u), 6(u) are independent of the control u then Cs is finite-
dimensional and 

{ 1 d — 1 
Ao - g E M * ~ 9 (X'^x + 2mar + ^' 

k=1 (3.16) 
d d d \ 

dxi,d^,-,dxZ,Xi,X2,--,Xn,1r 
If £5 is maximum rank then C = C. 

2, If <f» € O°°(3.-n) is a solution of 

5 t ( t « ^ -£-<*>+l^'^W^J(•>+***•> &»>) 

= 5 (*'#x + 2m* + *)' 

for some Q(«) = Q1 > 0, rn, 5, then ££? is finite-dimensional isomorphic to the Lie 
algebra 

CE = \A0-l^M^-l(x'Qx + 2mx + 6),M1,M2)...,Md\ , 
I Zk=i Z J L.A. 

with basis given by (3.16). 

4. ADDITIONAL GENERALIZATIONS 

Consider the nonlinear control system (2.1), (2.2). Here we are interested in mini­
mizing (over ti(-) € Wad) the exponential-of-integral cost function J$(u): 

Je(u) = E" jexp (9 J e(x(t),u(t,y))dt + 0<p(x(T))) 1 , 

where 0 > 0. Similar to Theorem 2.4, the information state approach to this control 
problem yields: 

IV)= in/ E{[ exp(0<p(x))ir°(x,T)dx\. (4.1) 
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Here, {7r9(x,s);0 < s < £}, is an information state; it is a solution of a certain 
controlled Feynman-Kac stochastic PDE. In particular, when 

t 

e(x,u) = e0(x) + Y<^x)u2v (4-2) 

we have 

t* l f* 
Tre{x,t) = ir(x,0)+ (L0 + 9eo)ire(x,s)ds + y2 Ljir

e(x,s)uj(s,y) 
Jo j=lV° 

+ V / 6£jTr0(x,s)u](s,y)ds + y] / hjTr"{x,s)odyj(s). 
j=1Jo j=lJo 

ds 

(4.3) 

The sufficient statistic algebra is 

ce
s = {LlLuL2,...,Ll,ee1)ee2,...)eel}h1,h2,...,hd}LA, (4.4) 

where L0 = L0 + 0e0. Clearly, Cs, can be used to classify nonlinear systems with 
finite-dimensional controllers. An important observation announced in [6], is that 
we can solve the so-called inverse control problem, by choosing the zeroth order 
differential operators, ^o>^i,^2,^. to force Cs> to be finite-dimensional. When 
IQ =polynomial in (a?i, x2).. . ,x n ) of degree at most two, and e$ = Constant, 
- ^ J <: A w e obtain finite-dimensional controllers for the classes of nonlinear 
systems discussed in earlier sections. 

(Received April 8, 1998.) 
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