
Applications of Mathematics

René Henrion; Werner Römisch
On M -stationary points for a stochastic equilibrium problem under equilibrium
constraints in electricity spot market modeling

Applications of Mathematics, Vol. 52 (2007), No. 6, 473–494

Persistent URL: http://dml.cz/dmlcz/134691

Terms of use:
© Institute of Mathematics AS CR, 2007

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents
strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://dml.cz

http://dml.cz/dmlcz/134691
http://dml.cz


52 (2007) APPLICATIONS OF MATHEMATICS No. 6, 473–494

ON M -STATIONARY POINTS FOR A STOCHASTIC EQUILIBRIUM

PROBLEM UNDER EQUILIBRIUM CONSTRAINTS IN

ELECTRICITY SPOT MARKET MODELING*

René Henrion,Werner Römisch, Berlin

Dedicated to our friend and colleague Jiří V. Outrata

on the occasion of his 60th birthday.

Abstract. Modeling several competitive leaders and followers acting in an electricity
market leads to coupled systems of mathematical programs with equilibrium constraints,
called equilibrium problems with equilibrium constraints (EPECs). We consider a simplified
model for competition in electricity markets under uncertainty of demand in an electricity
network as a (stochastic) multi-leader-follower game. First order necessary conditions are
developed for the corresponding stochastic EPEC based on a result of Outrata. For applying
the general result an explicit representation of the co-derivative of the normal cone mapping
to a polyhedron is derived. Then the co-derivative formula is used for verifying constraint
qualifications and for identifying M -stationary solutions of the stochastic EPEC if the
demand is represented by a finite number of scenarios.

Keywords: electricity markets, bidding, noncooperative games, equilibrium constraint,
EPEC, optimality condition, co-derivative, random demand
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1. Introduction

In [17], J. Outrata formulated first order necessary conditions for the following

equilibrium problem with equilibrium constraints (EPEC):

(EPEC) min{fi(x
i, z) : 0 ∈ F (x, z) + NU (z)} (i = 1, . . . , N).

Here, the xi ∈ Rn refer to decisions taken by N players (e.g., market competitors),

whose objective functions fi do not only depend on their own decisions xi but also

*This work was supported by the DFG Research Center Matheon Mathematics for key
technologies in Berlin.
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on some parameter z which might represent an exterior decision (e.g., in a leader-

follower system). All decisions together are linked by a generalized equation 0 ∈

F (x, z) + NU (z) which could model some equilibrium constraint or the solution of a

parameter-dependent optimization problem. It is assumed that U is a closed convex

set and NU refers to its normal cone. In principle, (EPEC) is nothing else but a

coupled system of mathematical programs with equilibrium constraints (MPECs),

where each single MPEC describes the optimization problem solved by the individual

players given the decision of the other players. The vector (x̄1, . . . , x̄N , z) is declared

to be a solution to (EPEC), if for i = 1, . . . , N the vectors (x̄i, z) are solutions to

the MPEC

min{fi(y, z) : 0 ∈ F (x̄1, . . . , x̄i−1, y, x̄i+1x̄N , z) + NU (z)},

i.e., none of the players can improve his decision given the decisions of his competitors.

As pointed out in [17], these MPECs are typically nonconvex even under convexity

assumptions on the data fi, F , U . Therefore it makes sense to identify possible

solutions by means of first order necessary conditions. In [17], it was proposed to do

so by using Mordukhovich’s co-derivative D∗ of multifunctions (see [15]) as a basic

tool. For recent extensions of these ideas (e.g., to stability issues in the context of

quasi-variational inequalities), we refer to [16] (see also [15]). We cite the following

Theorem from [17], slightly adapted to the purposes of our paper:

Theorem 1.1. Let (x̄, z) be a solution to (EPEC). If, for all i = 1, . . . , N , the

multifunctions

u 7→ {(xi, z) : u ∈ F (x̄1, . . . , x̄i−1, xi, x̄i+1, . . . , x̄N , z) + NU (z)}

are polyhedral or satisfy the constraint qualification

0 = (∇xiF (x̄, z))T v,

0 ∈ (∇zF (x̄, z))T v + D∗NU (z,−F (x̄, z)(v)

}

=⇒ v = 0,

then, for all i = 1, . . . , N , there exist vi such that

0 = ∇xifi(x̄, z) + (∇xiF (x̄, z))T vi,(1)

0 ∈ ∇zfi(x̄, z) + (∇zF (x̄, z))T vi + D∗NU (z,−F (x̄, z))(vi).(2)

We shall adopt from [17] the name M (ordukhovich)-stationary point for any (x̄, z)

satisfying (1) and (2). The main difficulty in the verification of both the constraint
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qualification and the optimality conditions (1) and (2) is the computation of the co-

derivative D∗NU to the normal cone mapping associated with U . Explicit formulae

ready to use can be found in [2] and [18] for the cases of U being a nonnegative

orthant or a rectangle. On the other hand, many practical applications like electricity

spot market modeling lead to sets U which are general polyhedra. The purpose

of this note is threefold: first, it is intended to apply the ideas presented so far

to a simplified model of electricity markets under an independent system operator

regime similar to [4] and [11]. Second, and subordinate to this aim, an explicit

formula for D∗NU is derived for general polyhedra U . Third, the whole problem is

put into a stochastic framework which is of much interest due to uncertainties in

electricity demands. For discrete distributions, a characterizing system of relations

for identifying M -stationary solutions is provided and such solutions are explicitly

calculated for a simple example.

Since electricity production and trading decisions of smaller power firms (follow-

ers) do not influence market prices, electricity portfolio optimization models for such

firms may be developed without regarding their market interactions. Inputs of port-

folio optimization models are stochastic price and demand processes in the relevant

time horizon (see, e.g., [3]). To extend stochastic portfolio optimization models to

firms having market power (leaders), the use of modified market prices is suggested,

e.g., in [1].

To investigate the behavior of power firms in deregulated electricity markets, game-

theoretic models are employed (see, e.g., [7], [8], [28]). Such models have to incorpo-

rate the specific features of electricity markets, namely, the transmission network and

the bidding of price-quantity pairs of each generator in the network. When modeling

single-leader-follower games one arrives at mathematical programs with equilibrium

constraints (MPECs). Presently, theory and numerical methods for MPECs is well

developed. We refer to the monographs [14], [19], [5], the survey [12] and to [25], [6].

Extensions to stochastic MPECs (SMPECs) can be found in [26], [27] and applica-

tions to electricity markets are discussed, e.g., in [9], [21].

The modeling of multi-leader-follower games leads to coupled systems of MPECs

or equilibrium problems with equilibrium constraints (EPECs). In recent years,

much effort has been directed to the theory of such games [20] and to numeri-

cal methods [13] based on nonlinear programming and nonlinear complementarity

(re)formulations. Furthermore, EPEC models for electricity markets with generators

and customers located on a network have been developed and analyzed in [11], [10],

[22]. A stochastic EPEC (SEPEC) modeling of an electricity market under demand

uncertainty is studied in [4].
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2. A simplified model for competition in electricity spot markets

In the following, we consider a model for competition in electricity spot markets

which is a version, simplified for the purpose of our analysis, of models presented

in [4] and [11]. We assume that some electricity network is represented by an oriented

graph, whose m edges correspond to transmission lines and whose N nodes refer

to places at which a demand for electricity is observed and at which electricity is

generated. Neglecting, for the sake of simplicity, transmission losses, the satisfaction

of demand may be modeled as

(3) q + By > d.

Here, d ∈ RN refers to the vector of demands at each node, q ∈ RN is the vector

of electricity generated at the same nodes and y ∈ Rm represents the oriented flow

vector of electricity along the edges of the graph. B is the incidence matrix of the

electricity network. Typically, q and y are simply bounded by

0 6 q 6 q̂, −ŷ 6 y 6 ŷ,

where the inequality signs are to be understood component-wise. Generators bid a

cost function to an independent system operator (ISO):

ci(qi) = αiqi + βiq
2
i (i = 1, . . . N).

These may differ from the true cost functions

Ci(qi) = γiqi + δiq
2
i (i = 1, . . .N).

Throughout the paper, we shall assume that βi > 0 for i = 1, . . . , N , thus accepting

the idea that cost functions are typically convex and leaving aside the purely linear

case. More general cost functions were allowed in [4]. Here, we restrict ourselves to

the quadratic case as considered in [11]. The ISO determines a vector of generated

electricity satisfying the constraints above and minimizing the overall costs:

(4) min
q,y

{

N
∑

i=1

ci(qi) : (q, y) ∈ G

}

,

where

G := {(q, y) ∈ RN+m : q + By > d, 0 6 q 6 q̂, −ŷ 6 y 6 ŷ}.
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Note that, by convexity, an optimal solution q∗ of (4) is characterized as a solution

to the generalized equation

(5) 0 ∈

(

α + 2[diag β]q

0

)

+ NG(q, y).

Here, [diag β] denotes the diagonal matrix composed of diagonal entries βi. With

q∗ being an optimal solution to (4), the clearing price charged by generator i amounts

to the derivative of its bid cost function at q∗i (see [11]):

πi = αi + 2βiq
∗
i .

Thus, generator i’s profit calculates as

(αi − γi)q
∗
i + (2βi − δi)(q

∗
i )2.

Therefore, given some fixed bid coefficients (αj , βj) of the remaining competitors

j 6= i, generator i solves the following mathematical program with equilibrium con-

straints (MPEC):

(6) max
αi,βi,q,y

{

(αi − γi)qi + (2βi − δi)q
2
i : 0 ∈

(

θ(αi, βi, q)

0

)

+ NG(q, y)

}

,

where

θ(αi, βi, q) := (α1, . . . , αi−1, αi, αi+1, . . . , αN )

+ 2[diag(β1, . . . , βi−1, βi, βi+1, . . . , βN )]q

(compare (5)). Since all competitors solve a similar MPEC given the decisions of the

remaining ones, the coupled system of MPECs

min
αi,βi,q,y

{

(γi − αi)qi + (δi − 2βi)q
2
i : 0 ∈

(

α + 2[diag β]q

0

)

+ NG(q, y)

}

(7)

(i = 1, . . . , N)

forms an EPEC. This EPEC falls into the general class of type (EPEC) presented

in the introduction. Indeed, in our specific model, one has to put xi := (αi, βi),

z := (q, y), U := G as well as

fi(αi, βi, q, y) = (γi − αi)qi + (δi − 2βi)q
2
i ,

F (α, β, q, y) =

(

(α + 2[diag β]q

0

)

.(8)

Specializing Theorem 1.1 from the introduction to our setting, we obtain:
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Theorem 2.1. Let (α, β, q̄, y) be a solution to (7). If, for all i = 1, . . . , N , the

multifunctions

u 7→ {(αi, βi, q, y) : u ∈ F (α1, β1, . . . , αi−1, βi−1, αi, βi, αi+1, βi+1, . . . ,(9)

αN , βN , q, y) + NG(q, y)}

are polyhedral or satisfy the constraint qualification

(10)
0 = (∇(αi,βi)F (α, β, q̄, y))T v,

0 ∈ (∇(q,y)F (α, β, q̄, y))T v + D∗NG((q̄, y),−F (α, β, q̄, y))(v)

}

=⇒ v = 0,

then, for all i = 1, . . . , N , there exist vi such that

0 = ∇(αi,βi)fi(α, β, q̄, y) + (∇(αi,βi)F (α, β, q̄, y))T vi,(11)

0 ∈ ∇(q,y)fi(α, β, q̄, y) + (∇(q,y)F (α, β, q̄, y))T vi,(12)

+ D∗NG(q̄, y,−F (α, β, q̄, y))(vi).

One observes that the difficult part both in the verification of the constraint qual-

ification and in the application of the first order necessary condition consists in

calculating the co-derivative D∗NG. This is the aim of the following section.

3. On the co-derivative of the normal cone mapping to a polyhedron

This section is devoted to the derivation of an explicit formula for the co-derivative

of the normal cone mapping to a polyhedron. Before addressing this topic, we recall

the definition of the Mordukhovich normal cone (also called limiting normal cone)

and the induced co-derivative (see [15]):

Definition 3.1. Let S ⊆ Rn be an arbitrary set and x̄ ∈ cl S. Then, the

Mordukhovich normal cone to S at x̄ is defined by

NS(x̄) := Limsup
x→x̄,x∈S

[TS(x)]∗,

where [TS(x)]∗ refers to the negative polar of the contingent cone TS(x) to S at x

(also known as the Fréchet normal cone) and ‘Limsup’ denotes the upper limit in

the sense of Kuratowski-Painlevé convergence.

For a multifunction Φ: Rn ⇉ Rp , consider a point of its graph: (x, y) ∈ gphΦ.

The Mordukhovich normal cone induces the following co-derivativeD∗Φ(x, y) : Rp ⇉Rn of Φ at (x, y):

D∗Φ(x, y)(y∗) = {x∗ ∈ Rn : (x∗,−y∗) ∈ NgphΦ(x, y)} ∀ y∗ ∈ Rp .
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Now, we consider a polyhedron C := {x ∈ Rn : Ax 6 b}, where b ∈ Rm and A is

a matrix of order (m, n). Let (x0, v0) ∈ gphNC . As C is convex, the Mordukhovich

normal cone NC reduces to the normal cone in the sense of convex analysis here. In

particular x0 ∈ C and v0 ∈ NC(x0). With ai and bi referring to the rows of A and

components of b, respectively, let

I := {i ∈ {1, . . . , m} : 〈ai, x
0〉 = bi}

be the set of active indices at x0. Since v0 ∈ NC(x0), there exits λi > 0 for i ∈ I,

such that

(13) v0 =
∑

i∈I

λiai.

We introduce the following subset of I:

J := {i ∈ I : λi > 0}.

Finally, for each index subset I ′ ⊆ I, we introduce the closed cone

(14) FI′ = {h ∈ Rn : 〈ai, h〉 6 0 (i ∈ I \ I ′), 〈ai, h〉 = 0 (i ∈ I ′)}

as well as the characteristic index set

(15) χ(I ′) := {j ∈ I : 〈aj , h〉 = 0 ∀h ∈ FI′}.

Proposition 3.2. With the notation introduced above, one has

NgphNC
(x0, v0) =

⋃

J⊆I1⊆I2⊆I

PI1,I2 × QI1,I2 ,

where

PI1,I2 = con{ai : i ∈ χ(I2) \ I1} + span{ai : i ∈ I1},

QI1,I2 = {h ∈ Rn : 〈ai, h〉 = 0 (i ∈ I1), 〈ai, h〉 6 0 (i ∈ χ(I2) \ I1)}.

Here, con and span refer to the convex conic and linear hull, respectively.

P r o o f. First note that the set gphNC is no longer convex although the poly-

hedron C is. As a consequence, the Mordukhovich normal cone NgphNC
(x0, v0) to
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this set evaluated at the point (x0, v0) need not be convex either. According to a

well-known result by Dontchev and Rockafellar ([2, Proof of Theorem 2]), one has

(16) Ngph NC
(x0, v0) =

⋃

Fj⊆Fi

(Fi − Fj)
∗ × (Fi − Fj),

where the Fi are the closed faces of the cone

K0 := TC(x0) ∩ {v0}⊥

and TC denotes the tangent cone to C in the sense of convex analysis. As in Defini-

tion 3.1, we use an asterisk for denoting the negative polar (or dual) cone. Combining

the well-known representation

TC(x0) = {h ∈ Rn : 〈ai, h〉 6 0 (i ∈ I)}

with (13) and the definition of the index set J , one immediately derives that

K0 = {h ∈ Rn : 〈ai, h〉 6 0 (i ∈ I \ J), 〈ai, h〉 = 0 (i ∈ J)}.

Now, any closed face of K0 is given by a cone FI′ as introduced in (14) and with I ′

being an arbitrary index set with J ⊆ I ′ ⊆ I. Clearly, the implication

I1 ⊆ I2 =⇒ FI2 ⊆ FI1

holds true for all index sets I1, I2 such that J ⊆ I1, I2 ⊆ I. While the reverse

implication cannot be derived in general, one may easily show the following for the

same index sets:

FI2 ⊆ FI1 =⇒ FI2 = FI1∪I2 .

In other words, there exists an index set I3, such that FI2 = FI3 ⊆ FI1 and I1 ⊆ I3.

Summarizing, any pair of index sets I1, I2 with J ⊆ I1 ⊆ I2 ⊆ I induces a pair

of closed faces of K0 such that one is a subset of the other, and, conversely, any

such pair of closed faces of K0 can be represented by a pair of index sets I1, I2 with

J ⊆ I1 ⊆ I2 ⊆ I. Consequently, we may rewrite (16) as

(17) NgphNC
(x0, v0) =

⋃

J⊆I1⊆I2⊆I

(FI1 − FI2 )
∗ × (FI1 − FI2).

We claim that

(18) FI1 − FI2 = QI1,I2 ∀ I1, I2 : J ⊆ I1 ⊆ I2 ⊆ I,
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where QI1,I2 is defined in the statement of the proposition. Recall that, by the

very definition of χ in (15), one always has that I2 ⊆ χ(I2) ⊆ I. Now, given any

h ∈ FI1 − FI2 , one has h = h1 − h2 for some h1 ∈ FI1 and h2 ∈ FI2 . The inclusion

I1 ⊆ I2 along with (14) then implies that

〈ai, h1〉 = 〈ai, h2〉 = 0 (i ∈ I1); 〈ai, h1〉 6 0 (i ∈ I \ I1); 〈ai, h2〉 = 0 (i ∈ I2).

By (15), we have that 〈ai, h2〉 = 0 for all i ∈ χ(I2). Moreover, 〈ai, h1〉 6 0 for all

i ∈ χ(I2) \ I1. Altogether, this establishes the inclusion ‘⊆’ of (18).

For the reverse inclusion, let h ∈ QI1,I2 be arbitrary. In the case of χ(I2) = I,

it follows from the definition of QI1,I2 that h ∈ FI1 ⊆ FI1 − FI2 (due to 0 ∈ FI2 ).

Hence, we may assume now that χ(I2) $ I. By (15), we have

χ(I2) = {j ∈ I : 〈aj , h
′〉 = 0 ∀h′ ∈ FI2}.

As a consequence, for all j ∈ I \ χ(I2) there exists some hj ∈ FI2 such that

〈aj , hj〉 < 0. We put

h∗ :=
∑

j∈I\χ(I2)

hj .

Note that h∗ is well-defined by I \ χ(I2) 6= ∅. Clearly, h∗ ∈ FI2 and

〈ai, h
∗〉 = 〈ai, hi〉 +

∑

j∈I\χ(I2)
j 6=i

〈ai, hj〉 < 0 ∀ i ∈ I \ χ(I2)

by the definition of hi and by 〈ai, hj〉 6 0 for all j ∈ I \ χ(I2) (recall that hj ∈ FI2 ).

This allows to define

t := max

{

0, max
i∈I\χ(I2)

{

−
〈ai, h〉

〈ai, h∗〉

}}

> 0.

Finally, put h̄ := h + th∗. Due to h ∈ QI1,I2 and h∗ ∈ FI2 , we have

〈ai, h〉 = 0 (i ∈ I1); 〈ai, h
∗〉 = 0 (i ∈ χ(I2)); 〈ai, h〉 6 0 (i ∈ χ(I2) \ I1).

Consequently, recalling that I1 ⊆ I2 ⊆ χ(I2), it follows that 〈ai, h̄〉 = 0 for all i ∈ I1

and 〈ai, h̄〉 6 0 for all i ∈ χ(I2) \ I1. We claim that

〈ai, h̄〉 = 〈ai, h〉 + t〈ai, h
∗〉 6 0 ∀ i ∈ I \ χ(I2).

Indeed, the inequality is obvious if 〈ai, h〉 6 0, because of t > 0 and 〈ai, h
∗〉 < 0. If

〈ai, h〉 > 0, then the same inequality follows from

t > −
〈ai, h〉

〈ai, h∗〉
∀ i ∈ I \ χ(I2)
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by the definition of t. Summarizing the previous relations, one arrives at h̄ ∈ FI1 .

Therefore, h = h̄− th∗ ∈ FI1 −FI2 , where we used that th∗ ∈ FI2 due to t > 0. This

finishes the proof of (18).

Evidently, PI1,I2 = Q∗
I1,I2

for PI1,I2 as defined in the statement of the proposition.

Consequently, the proposition is proved upon referring to (18) and (17). �

R em a r k 3.3. If the vectors {ai : i ∈ I} happen to be linearly independent, then

χ(I ′) = I ′ for all I ′ ⊆ I and the definitions of PI1,I2 and QI1,I2 in Proposition 3.2

simplify accordingly.

Corollary 3.4. In the setting of Proposition 3.2, one has the following:

D∗NC(x0, v0)(s) ⊆ con{ai : i ∈ χ(Ia(s) ∪ Ib(s)) \ Ia(s)} + span{ai : i ∈ Ia(s)}

if 〈ai, s〉 = 0 ∀ i ∈ J and 〈ai, s〉 > 0 ∀ i ∈ χ(J) \ J

and

D∗NC(x0, v0)(s) = ∅ otherwise.

Here,

Ia(s) := {i ∈ I : 〈ai, s〉 = 0}, Ib(s) := {i ∈ I : 〈ai, s〉 > 0}.

P r o o f. From the definition of the co-derivative and from Proposition 3.2, it

follows that

D∗NC(x0, v0)(s) = {r : (r,−s) ∈ Ngph NC
(x0, v0)}(19)

= {r : ∃ I1, I2 : J ⊆ I1 ⊆ I2 ⊆ I, r ∈ PI1,I2 , −s ∈ QI1,I2}.

Since QI1,I2 ⊆ QJ,J for all I1, I2 with J ⊆ I1 ⊆ I2 ⊆ I, it follows that D∗NC

(x0, v0)(s) is non-empty only if −s ∈ QJ,J which means, by definition, that 〈ai, s〉 = 0

for all i ∈ J and 〈ai, s〉 > 0 for all i ∈ χ(J) \ J . This proves the second statement of

the corollary. We show that

(20) QIa(s),Ia(s)∪Ib(s) ⊆ QI1,I2 ∀ I1, I2 : J ⊆ I1 ⊆ I2 ⊆ I ∀ s : −s ∈ QI1,I2 .

Indeed, the definitions of the respective index sets yield that I1 ⊆ Ia(s) and

χ(I2) ⊆ Ia(s) ∪ Ib(s) ⊆ χ(Ia(s) ∪ Ib(s)).

Now, if h ∈ QIa(s),Ia(s)∪Ib(s), then

〈ai, h〉 = 0 ∀ i ∈ Ia(s), 〈ai, h〉 6 0 ∀ i ∈ χ(Ia(s) ∪ Ib(s)) \ Ia(s).
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It follows that

〈ai, h〉 = 0 ∀ i ∈ I1, 〈ai, h〉 6 0 ∀ i ∈ χ(I2) \ Ia(s).

Due to

χ(I2) \ I1 ⊆ (χ(I2) \ Ia(s)) ∪ (Ia(s) \ I1),

one arrives at 〈ai, h〉 6 0 for all i ∈ χ(I2) \ I1, whence h ∈ QI1,I2 . This estab-

lishes (20). Recalling that PI1,I2 = Q∗
I1,I2
, it results from (20) that

PI1,I2 = Q∗
I1,I2

⊆ Q∗
Ia(s),Ia(s)∪Ib(s) = PIa(s),Ia(s)∪Ib(s).

Now, we may continue (19) as

D∗NC(x0, v0)(s) ⊆ PIa(s),Ia(s)∪Ib(s),

which proves the first statement of the corollary. �

The following simplification of Corollary 3.4 is possible under the assumption of

linear independence:

Corollary 3.5. If the {ai : i ∈ I} are linearly independent, then Corollary 3.4

simplifies to

D∗NC(x0, v0)(s) = con{ai : i ∈ Ib(s)} + span{ai : i ∈ Ia(s)}

if 〈ai, s〉 = 0 ∀ i ∈ J,

and

D∗NC(x0, v0)(s) = ∅ otherwise.

P r o o f. In view of Remark 3.3, we have that χ(J) = J and, by Ia(s)∩Ib(s) = ∅,

that

(21) χ(Ia(s) ∪ Ib(s)) \ Ia(s) = (Ia(s) ∪ Ib(s)) \ Ia(s) = Ib(s).

Then, Corollary 3.4 yields the assertion of the proposition with the first identity

replaced by an inclusion. To prove the reverse inclusion, let

r ∈ con{ai : i ∈ Ib(s)} + span{ai : i ∈ Ia(s)}

be arbitrary. Then, by the definition and due to (21), r ∈ PIa(s),Ia(s)∪Ib(s). Ex-

ploiting (21) once more, the definitions of Ia(s) and Ib(s) provide that −s ∈

QIa(s),Ia(s)∪Ib(s). Consequently, r ∈ D∗NC(x0, v0)(s) by the definition of D∗NC .

This finishes the proof. �
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Another simplification of Corollary 3.4 can be obtained without linear indepen-

dence, but under the assumption of strict complementarity (i.e., λi > 0 for all i ∈ I

in (13)):

Corollary 3.6. If J = I, then

D∗NC(x0, v0)(s) =

{

span{ai : i ∈ I} if 〈ai, s〉 = 0 ∀ i ∈ I,

∅ otherwise.

P r o o f. The second case follows immediately from Corollary 3.4 and from

J = I. Now, in the first case, one has 〈ai, s〉 = 0 for all i ∈ J , hence J ⊆ Ia(s) ⊆ I.

Consequently, Ia(s) = I and Ib(s) = ∅. Then,

D∗NC(x0, v0)(s) ⊆ span{ai : i ∈ I}

by virtue of Corollary 3.4. For the reverse inclusion, let r ∈ span{ai : i ∈ I} be

arbitrary. Observing that χ(I) = I, one has r ∈ PI,I and −s ∈ QI,I . Therefore, r ∈

D∗NC(x0, v0)(s) by the definition of D∗NC and by Proposition 3.2. �

Corollary 3.6 shows that the conic part in the representation of the co-derivative

comes into play only if strict complementarity is violated. For later purpose, we give

a slightly more handy formulation of Corollary 3.6.

Corollary 3.7. If J = I, then

r ∈ D∗NC(x0, v0)(s) ⇐⇒ s ∈ kerAI and r ∈ imAT
I .

Here, AI refers to the matrix whose row vectors are the ai for i ∈ I.

4. Application to the electricity market model

In this section, we illustrate the results of the previous section by applying them

to special instances of the electricity market model. We consider the EPEC (7). For

the simplicity of the presentation, we restrict our considerations to so-called interior

solutions. By this we mean a solution (α, β, q̄, y) of (7) satisfying

(22) αi, βi > 0, 0 < q̄i < q̂i, −ŷi < yi < ŷi (i = 1, . . . , N).

Recall that (α, β, q̄, y) being a solution of (EPEC) implicitly entails that (q̄, y) ∈ G.

The positivity of the bidding coefficients αi, βi is a very natural assumption. The re-

maining relations characterize a solution where no generator and no flow of electricity

reaches its simple lower and upper bounds.
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4.1. Verification of the constraint qualification

As one can see from the concrete shape of F in (8), this mapping is bilinear in the

couple (β, q) of variables. Thus, it fails to be polyhedral and, in order to apply the

first order necessary conditions of Theorem 2.1, one first has to verify the constraint

qualification of that same theorem.

Lemma 4.1. If the incidence matrix B of the electricity network has rank m

(i.e., the network is acyclic), then any interior solution to (6) satisfies the constraint

qualification of Theorem 2.1.

P r o o f. We ignore the equation in (10) and observe that, using the partition

v = (va, vb), the inclusion in (10) may be written as

(23) −

(

2[diag β]va

0

)

∈ D∗NG((q̄, y),−F (α, β, q̄, y))(v).

Now, (q̄, y) ∈ G implies that q̄ + By > d. If any inequality in this system were

strict, then one could strictly decrease the cost function ci(qi) in (4). This is because

αi, βi > 0 (see (22)) and so ci is strictly increasing. Then, however, (q̄, y) could not

be a solution of (4). Consequently, q̄ + By = d and so I = {1, . . . , N} for the set

of active indices defined in Section 3 (note that the other inequalities defining G are

non-binding due to the assumption (22)). It follows that for some λ ∈ RN
+ , (5) may

be transformed into

(24)

(

α + 2[diagβ]q̄

0

)

=

(

λ

BT λ

)

.

By (22), comparison of the first components yields that λi > 0 for all i ∈ {1, . . . , N}.

Hence, J = I for the index set introduced below (13). This allows to apply Corol-

lary 3.7. We note that the matrix AI occurring in this corollary coincides in our con-

crete setting with the matrix −(I | B) describing the inequality system q̄ + By > d

which was actually shown to be active in each of its components. The minus-sign

is due to the fact that the polyhedron C in Section 3 is described by means of

‘6’-inequalities. Applying now Corollary 3.7 to (23) one obtains the relations

(25) va + Bvb = 0;

(

2[diag β]va

0

)

=

(

µ

BT µ

)

for a certain multiplier vector µ ∈ RN . Combination of the two components in the

second equation yields

BT [diag β]Bvb = 0.

Since βi > 0 for all i = 1, . . . , N according to (22) and B has rank m by assumption,

it follows that the (m, m)-matrix BT [diag β]B has rank m too. Hence, vb = 0 and,

referring to the first equation of (25), va = 0, and so v = 0, as was to be shown. �
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We do not continue here to derive the first order necessary conditions from Theo-

rem 2.1 because it turns out that these do not uniquely identify a stationary solution.

Rather a continuum of such solutions is obtained. This is consistent with a corre-

sponding observation in [11] related to simultaneous bidding of linear and quadratic

cost coefficients. We shall rather follow the idea in [11] to consider partial bidding

of, say, linear cost coefficients in order to identify solutions. Before doing so, we

generalize our setting by allowing the demands di in (3) to be random.

4.2. Formulation of a stochastic equilibrium problem under equilibrium

constraints (SEPEC)

Since every player i ∈ {1, . . . , N} does not know the demands dj at least for j 6= i,

but hopefully has access to historical data, it is natural to assume that d is a random

vector on some probability space (Ω,F ,P) whose probability distribution is known

(approximately). This assumption leads to a polyhedral-valued multifunction G

defined on Ω with values in RN+m given by

G(ω) := {(q, y) ∈ RN+m : q + By > d(ω), 0 6 q 6 q̂, −ŷ 6 y 6 ŷ}.

Hence, the pair (q, y) of generation and flow has to be considered as a RN+m -valued

random vector on (Ω,F ,P) and the ISO has to minimize the expected overall costs,

i.e.,

(26) min
q,y

{E( N
∑

i=1

ci(qi(ω))

)

: (q(ω), y(ω)) ∈ G(ω),P-a.s.} .

Furthermore, the EPEC (7) now becomes the following stochastic equilibrium prob-

lem with equilibrium constraints (SEPEC)

min
αi,βi,q(·),y(·)

{E((γi − αi)qi(ω) + (δi − 2βi)q
2
i (ω)) : 0 ∈

(

α + 2[diag β]q(ω)

0

)

(27)

+ NG(ω)(q(ω), y(ω)),P-a.s.} (i = 1, . . . , N),

where the pairs (αi, βi), i = 1, . . . , N , are deterministic and have to be determined

before the realization of the demand, and the pairs (qi(·), yi(·)), i = 1, . . . , N , are

stochastic. In the terminology of two-stage stochastic programming with recourse,

the cost coefficients (αi, βi) are first-stage decisions, while (qi(·), yi(·)) are second-

stage or recourse decisions.

Notice that the stochastic EPEC (27) is well defined if G(ω) 6= ∅ holds P-a.s. This
fact is a consequence of the measurability of the set-valued mapping G (e.g., [23, The-

orem 14.36]). Due to measurable selection theorems (see, e.g., [23, Corollary 14.6])
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there exists a measurable function (q(·), y(·)) : Ω → RN+m such that (q(ω), y(ω)) ∈

G(ω), P-a.s. The expectations exist since q is bounded by q̂.

The stochastic EPEC (27) corresponds to a coupled system of (specific) stochas-

tic MPECs. Theoretical aspects of stochastic MPECs and their solution by sam-

pling methods are studied in [26], [27]. Existence and stability results for solutions

and numerical methods for stochastic EPECs are widely open. We shall suppose

in the following section that the underlying probability distribution of random de-

mands is discrete as a consequence of approximating some continuous distribution.

This is common practice in stochastic optimization in order to make the result-

ing problems amenable to solution methods of linear and nonlinear programming.

Moreover, in our problem, discretization allows to get back to an (enlarged) deter-

ministic (EPEC) of the same type as considered before. Therefore, the methodology

developed for EPECs applies at the same time to discretized SEPECs.

4.3. Identification of M-stationary solutions for discrete random de-

mands and partial bidding of linear coefficients.

Assume that the probability distribution of d is discrete with finite support and

denote by d(1), . . . , d(K) ∈ RN the K different scenarios of d. The scenarios induce K

different polyhedra of scenario-dependent generation and transmission constraints

Gk := {(q, y) ∈ RN+m : q + By > d(k), 0 6 q 6 q̂, −ŷ 6 y 6 ŷ} (k = 1, . . . , K).

According to the remarks at the end of Section 4.1, we suppose now the quadratic

bid coefficients to be known, hence, β = δ, and only the linear bid coefficients to be

the subject of optimization. The generalized equation (5) now has to be established

for each scenario k as follows:

(28) 0 ∈

(

α + 2[diag δ]q(k)

0

)

+ NGk
(q(k), y(k)) (k = 1, . . . , K).

Accordingly, generator i’s profit under scenario k equals

(αi − γi)q
(k)∗
i + δi

(

q
(k)∗
i

)2
,

where q(k)∗ is a solution of (28). Then, in order that every generator maximizes its

expected profit, the underlying SEPEC becomes

min{fi(αi, q, y) : 0 ∈ F (k)(α, q, y) + NGk
(q(k), y(k)) (k = 1, . . . , K)}(SEPEC)

(i = 1, . . . , N),

487



where q = (q(1), . . . , q(K)), y = (y(1), . . . , y(K)) and

fi(αi, q, y) =

K
∑

k=1

pk

[

(γi − αi)q
(k)
i − δi

(

q
(k)
i

)2]
(i = 1, . . . , N),

F (k)(α, q, y) =

(

α + 2[diag δ]q(k)

0

)

(k = 1, . . . , K).

Here, the pk are the probabilities for the demand scenarios d
(k), so in particular they

fulfill the relations
K

∑

k=1

pk = 1, pk > 0 (k = 1, . . . , K).

In order to apply Theorem 2.1, we rewrite (SEPEC) as a usual EPEC. To this aim

we put

F := (F (1), . . . , F (K)), G := G1 × . . . × GK .

Owing to the calculus rule

NG(q, y) = NG1(q
(1), y(1)) × . . . × NGK

(q(K), y(K)),

(SEPEC) boils down to (EPEC) as presented in Section 2. Since F is a linear

mapping, the multifunction (9) is polyhedral and we may directly apply the necessary

optimality conditions of Theorem 2.1 without checking the constraint qualification.

As in Section 4.1, we shall be interested in so-called interior solutions for the ease

of presentations. Owing to the scenario character of parts of the solution, we have

to make this concept more precise: A solution (α, q̄, y) of (7) with the data specified

above is called an interior solution if it satisfies

(29) αi > 0, 0 < q̄
(k)
i < q̂i, −ŷi < y

(k)
i < ŷi (i = 1, . . . , N, k = 1, . . . , K).

Recalling that partial derivatives just with respect to αi rather than with respect to

(αi, βi) have to be considered now, we deal with

∇αi
fi(αi, q, y) = −

K
∑

k=1

pkq
(k)
i ,

[∇αi
F (α, q, y)]T = ((eT

i , 0) | . . . | (eT
i , 0)),

where ei denotes the ith standard unit vector in RN . Then, writing the ith multiplier

in the necessary optimality conditions as

vi =
(

v
(1)
i , . . . , v

(K)
i

)

,
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the first equation (11) becomes

(30)
K

∑

k=1

pkq̄
(k)
i =

K
∑

k=1

v
(k)
ii .

Next, repeating (scenario-wise) the same argumentation as the one leading to (24),

and taking into account that β = δ, one verifies the existence of λ(k) ∈ RN
+ , such

that
(

α + 2[diag δ]q̄(k)

0

)

=

(

λ(k)

BT λ(k)

)

(k = 1, . . . , K).

This may be condensed into the relations

(31) BT (α + 2[diag δ]q̄(k)) = 0 (k = 1, . . . , K).

When describing the polyhedron G introduced above as an inequality system of the

type Ax 6 b as required in Section 3, one would have to put

A :=







Ã 0
. . .

0 Ã






, Ã :=















−I −B

−I 0

I 0

0 −I

0 I















,

x := (q(1), y(1), . . . , q(K), y(K))T , b := (−d(1), 0, q̂,−ŷ, ŷ, . . . ,−d(K), 0, q̂,−ŷ, ŷ)T .

On the other hand, looking for interior solutions according to (29), only the inequal-

ities of the type q(k) + By(k) > d(k) are binding (compare the discussion in the

beginning of the proof of Lemma 4.1). Hence,

(32) q(k) + By(k) = d(k) (k = 1, . . . , K)

and the matrix AI introduced in Corollary 3.7 has the shape

AI =







(−I | −B) 0
. . .

0 (−I | −B)






.

Then, with the partition v
(k)
i =

(

[v
(k)
i ]a, [v

(k)
i ]b

)

∈ RN × Rm , Corollary 3.7 allows to

extract the following two conditions from the inclusion (12):

(33) [v
(k)
i ]a + B[v

(k)
i ]b = 0 (i = 1, . . . , N ; k = 1, . . . , K).
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Moreover,

∇yfi = 0,

∇qfi = (∇q(1)fi, . . . ,∇q(K)fi) (i = 1, . . . , N), where

∇q(k)fi(αi, q, y) = (0, . . . , 0, pk[γi − αi − 2δiq
(k)
i ], 0, . . . , 0),

and

∇yF = 0,

∇qF (α, q, y)T vi =





2[diag δ][v
(1)
i ]a

. . .

2[diag δ][v
(K)
i ]a



 (i = 1, . . . , N).

Thus, Corollary 3.7 together with the inclusion (12) yields the existence of multipliers

µ(k) ∈ RN such that

(

w
(k)
i

0

)

=

(

µ(k)

BT µ(k)

)

(k = 1, . . . , K, i = 1, . . . , N), where

w
(k)
i :=

(

2δ1v
(k)
i1 , . . . , 2δi−1v

(k)
i,i−1, 2δiv

(k)
ii + pk[γi − αi − 2δiq̄

(k)
i ],

2δi+1v
(k)
i,i+1, . . . , 2δNv

(k)
iN

)T
.

Here, v
(k)
ij denotes the jth component of the vector v

(k)
i . In brief,

(34) BT w
(k)
i = 0 (k = 1, . . . , K, i = 1, . . . , N).

Summarizing, M -stationary solutions of (SEPEC) are characterized by the rela-

tions (30), (31), (32), (33) and (34).

4.4. Explicit calculation of M-stationary solutions for a small example

Finally, we want to illustrate the results of the previous section by explicitly cal-

culating the solution of (SEPEC) for the smallest meaningful example, namely a

network consisting of N = 2 nodes which are linked by one single arc (m = 1). In

this case, the incidence matrix simply becomes

B =

(

1

−1

)

.

First, (30) may be shortly written as

(35) E q̄i =
K

∑

k=1

v
(k)
ii (i = 1, 2),
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where ‘E ’ refers to the expected value. With the concrete shape of B, (31) takes the
form

(36) α1 + 2δ1q̄
(k)
1 = α2 + 2δ2q̄

(k)
2 (k = 1, . . . , K).

Summing up all these equations upon multiplying them by the probabilities pk, one

arrives at

(37) α1 + 2δ1E q̄1 = α2 + 2δ2E q̄2 .

Next, we derive from (34) the equations

(38)
2δ1v

(k)
11 + pk[γ1 − α1 − 2δ1q̄

(k)
1 ] = 2δ2v

(k)
12

2δ2v
(k)
22 + pk[γ2 − α2 − 2δ2q̄

(k)
2 ] = 2δ1v

(k)
21

}

(k = 1, . . . , K).

Summing up over k the upper equations, we get

2δ1

K
∑

k=1

v
(k)
11 + γ1 − α1 − 2δ1E q̄1 = 2δ2

K
∑

k=1

v
(k)
12 .

Taking into account (35), this reduces to

(39) γ1 − α1 = 2δ2

K
∑

k=1

v
(k)
12 .

Furthermore, (33) yields

v
(k)
11 = −v

(k)
13 , v

(k)
12 = v

(k)
13 , v

(k)
21 = −v

(k)
23 , v

(k)
22 = v

(k)
23 (k = 1, . . . , K).

Hence,

(40) v
(k)
11 = −v

(k)
12 , v

(k)
21 = −v

(k)
22 (k = 1, . . . , K).

Combining the first of these relations with (39) and (35), we obtain

(41) γ1 − α1 + 2δ2E q̄1 = 0.

Similarly, the corresponding second relations in (38) and (40) allow to derive that

(42) γ2 − α2 + 2δ1E q̄2 = 0.
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Finally, reading the components of (32) with the concrete shape of B gives

(43) q̄
(k)
1 + y(k) = d

(k)
1 ; q̄

(k)
2 − y(k) = d

(k)
2 (k = 1, . . . , K).

Adding both equations leads to

(44) q̄
(k)
1 + q̄

(k)
2 = d

(k)
1 + d

(k)
2 (k = 1, . . . , K).

Summation over k entails that E q̄1 +E q̄2 = Ed1 +Ed2 . Now, this last equation along

with (37), (41) and (42) constitutes a system of four linear equations in the four

unknowns α1, α2, E q̄1 and E q̄2 , which is easily solved, yielding the solution

α1 = γ1 + δ2

(Ed1 + Ed2 +
γ2 − γ1

2(δ1 + δ2)

)

,

α2 = γ2 + δ1(Ed1 + Ed2 +
γ1 − γ2

2(δ1 + δ2)

)

,E q̄1 =
1

2
(Ed1 + Ed2 ) +

γ2 − γ1

4(δ1 + δ2)
,E q̄2 =

1

2
(Ed1 + Ed2 ) +

γ1 − γ2

4(δ1 + δ2)
.

With these α1 and α2 one may combine (44) and (36) in order to identify the scenario-

dependent amounts of electricity generation of both competitors:

q̄
(k)
1 =

1
2 (γ2 − γ1) + (δ1 − δ2)(Ed1 + Ed2 ) + 2δ2

(

d
(k)
1 + d

(k)
2

)

2(δ1 + δ2)
(k = 1, . . . , K),

q̄
(k)
2 =

1
2 (γ1 − γ2) + (δ2 − δ1)(Ed1 + Ed2 ) + 2δ1

(

d
(k)
1 + d

(k)
2

)

2(δ1 + δ2)
(k = 1, . . . , K).

Next, using either of the two equations in (43), we may resolve for the scenario-

dependent amount of electricity sent from node 2 to node 1:

y(k) =
1

2
(γ1 − γ2) + (δ2 − δ1)(Ed1 + Ed2 ) + 2δ1d

(k)
1 − 2δ2d

(k)
2 (k = 1, . . . , K).

The expected value of this flow calculates asEy =
1

2
(γ1 − γ2) + (δ1 + δ2)(Ed1 − Ed2 ).

Finally, we determine the expected profits Eπi of both competing generators:Eπ1 =

K
∑

k=1

pk

[

(α1 − γ1)q̄
(k)
1 + δ1

(

q̄
(k)
1

)2]
= (α1 − γ1)E q̄1 + δ1E(q̄1 )2,Eπ2 = (α2 − γ2)E q̄2 + δ2E(q̄2 )2.
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