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1. Introduction

There are many papers and books on statistical problems and their solution in

multivariate regression models. Nevertheless, many problems have not yet been
formulated and solved.

The aim of the paper is to make some remarks to them and present solutions of
several problems in the regular form of the multivariate model.

2. Notation and preliminaries

Let Y mean an n×m random matrix (observation matrix) with the mean value
E(Y) = XB and the covariance matrix Var[vec(Y)] = Σ ⊗ I. Here X is an n × k

known matrix and B is a k×m matrix of unknown parameters. The m×m matrix Σ
can be either totally known, or it is of the form Σ = σ2V, where σ2 ∈ (0,∞) is an
unknown parameter and the m×m positive definite matrix V is known, or Σ is of

the form Σ =
p∑

i=1

ϑiVi, where ϑ = (ϑ1, . . . , ϑp)′ is an unknown vector, ϑ ∈ ϑ ⊂ � p ,

ϑ is an open set and the m×m symmetric matrices V1, . . . ,Vp are known, or Σ is

*This work was supported by the Council of Czech Government J14/98:153100011.
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totally unknown. The notation Y = (Y1, . . . ,Ym) and vec(Y) = (Y′
1,Y

′
2, . . . ,Y

′
m)′

will be used throughout the paper.
The model will be written as

(1) Y ∼nm (XB,Σ⊗ I).

This model is regular if the rank r(X) of the matrix X satisfies r(X) = k < n and
the matrix Σ is positive definite.
Throughout the paper the model (1) is assumed to be regular.
The symbol PX denotes the projection matrix on the subspace M(X) = {Xu :

u ∈ � k}, i.e. PX = X(X′X)−1X′ and MX = I − PX . Further {A}i,j denotes
the (i, j)th entry of the matrix A, {A}i,· denotes the ith row of the matrix A
and {A}·,j is the jth column. Notation χ2

f (0) means the random variable with
central chi-square distribution and with the degrees of freedom equal to f , χ2

f (δ)
means the random variable with noncentral chi-square distribution with f degrees
of freedom and with parameter noncentrality equal to δ. The (1 − α)-quantile of
the central chi-square distribution is denoted by χ2

f (0; 1− α). The (1− α)-quantile
of the Student distribution with f degrees of freedom is tf (1− α) and the (1− α)-
quantile of the central Fisher-Snedecor distribution with (f, g) degrees of freedom
is Ff,g(0; 1 − α). The random variable with central Fisher-Snedecor distribution
is Ff,g(0), with noncentral distribution it is Ff,g(δ), where δ is the noncentrality
parameter.

The two following lemmas are well known, therefore they are given without proofs.

Lemma 2.1. The parametr matrix B is unbiasedly estimable and its BLUE
(best linear unbiased estimator) is

B̂ = (X′X)−1X′Y

and its covariance matrix is

Var[vec(B̂)] = Σ⊗ (X′X)−1.

In the case of normality B̂ is the best unbiased estimator.

Lemma 2.2. The unbiased estimator of the parameter σ2 is

σ̂2 = Tr(Y′MXYV−1)/[m(n− k)].

In the case of normality it is the best unbiased estimator and

σ̂2 ∼ σ2χ2
m(n−k)(0)/[m(n− k)], Var(σ̂2) = 2σ4/[m(n− k)].
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Lemma 2.3. Let ϑ(0) be an approximate value of the unknown vector ϑ. If

g ∈ M(SΣ−1
0

), where Σ0 =
p∑

i=1

ϑ
(0)
i Vi and

{SΣ−1
0
}i,j = Tr(Σ−1

0 ViΣ−1
0 Vj), i, j = 1, . . . , p,

then the ϑ(0)-MINQUE (minimum norm quadratic unbiased estimator) of the func-
tion g′ϑ, ϑ ∈ ϑ is

ĝ′ϑ =
p∑

i=1

λi Tr(Y′MXYΣ−1
0 ViΣ−1

0 ), (n− k)SΣ−1
0

λ = g.

If the matrix SΣ−1
0
is regular, then

ϑ̂ =
1

n− k
S−1

Σ−1
0




Tr(Y′MXYΣ−1
0 V1Σ−1

0 )
...

Tr(Y′MXYΣ−1
0 V1Σ−1

0 )


 .

In the case of normality ϑ̂ is the ϑ0-locally best quadratic unbiased estimator and

Var(ϑ̂|ϑ(0)) =
2

n− k
S−1

Σ−1
0

.

���������
. In the univariate regular model Y ∼n (Xβ,

p∑
i=1

ϑiVi), β ∈ � k , ϑ ∈ ϑ,

the MINQUE of a function g′ϑ, ϑ ∈ ϑ, is

ĝ′ϑ =
p∑

i=1

λiY′(MXΣ0MX)+Vi(MXΣ0MX)+Y, S(MXΣ0MX )+λ = g,

{S(MXΣ0MX)+}i,j = Tr[(MXΣ0MX)+Vi(MXΣ0MX)+Vj ], i, j = 1, . . . , p.

If Y is normally distributed, then ϑ̂ is the ϑ0-locally best quadratic unbiased
estimator and

Var(ĝ′ϑ|ϑ0) = 2g′S−1
(MXΣ0MX )+g.

(In more detail cf. [13].)

If the relations

[MI⊗X(Σ0 ⊗ I)MI⊗X ]+ = Σ−1
0 ⊗MX ,

Tr{[MI⊗X(Σ0 ⊗ I)MI⊗X ]+(Vi ⊗ I)[MI⊗X(Σ0 ⊗ I)MI⊗X ]+(Vi ⊗ I)}
= Tr[(Σ−1

0 ViΣ−1
0 Vj)⊗MX ] = (n− k) Tr(Σ−1

0 ViΣ−1
0 Vj)

are taken into account, the statement can be easily obtained. �
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Lemma 2.4. In the case of normality, Y′MXY ∼ Wm(n − k,Σ) (Wishart
distribution with n − k degrees of freedom) and Y′MXY and B̂ are stochastically
independent. Thus the estimators σ̂2 and B̂ and also the estimators ϑ̂ and B̂ are
stochastically independent.

���������
. Cf. [1]. �

3. Confidence regions

The (1− α)-confidence ellipsoid for the matrix GBH (G is an r × k matrix with

full rank in rows andH is anm×s matrix with full rank in columns) can be obtained
in a standard way if the matrix Σ is either known or is of the form σ2V. In more
detail cf. also [1] and [14]. If Σ is unknown, then the following lemma can be of
some interest.

Lemma 3.1. Let the matrix Σ be unknown.
(i) If G = g′ (1× k row vector), then the (1− α)-confidence region for the vector

g′BH is

E = {u ∈ � s : (u′ − g′B̂H)(H′Y′MXYH)−1(u−H′B̂′g)

6 s

n− k − s + 1
g′(X′X)−1gFs,n−k−s+1(0; 1− α)}.

(ii) If H = h (m × 1 column vector), then the (1 − α)-confidence region for the
vector GBh is

E =
{
u ∈ � r :

(u−GB̂h)′[G(X′X)−1G′]−1(u−GB̂h)
h′Y′MXYh

6 r

n− k
Fr,n−k(0; 1− α)

}
.

���������
. (i) The random vector

η =
h′(B− B̂)g√
g′(X′X)−1g

∼ Ns(0,H′ΣH)

and the Wishart matrix

W = H′Y′MXYH ∼Ws(n− k,H′ΣH)
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are stochastically independent. The statement (i) follows from the Hotelling theo-

rem [11]

η′W−1η ∼ χ2
s[E(η′)(H′Σ−1H)−1E(η)]

χ2
n−k−s+1(0)

.

(ii) The random vector

η = G(B− B̂)h ∼ Nr[0,h′ΣhG(X′X−1G′]

and the random variable

W = h′Y′MXYh ∼ h′Σhχ2
n−k(0)

are stochastically independent and thus the statement (ii) is obvious. �

Some remarks to the case Σ =
p∑

i=1

ϑiVi is postponed to Section 5.

4. Testing linear hypotheses

Let in this section the matrix Y be normally distributed and the matrices G and
H be the same as in the preceding section.
In many situations the null and the alternative hypotheses are of the form H0 :

GB + H0 = 0 and Ha : GB + H0 6= 0, respectively. In such a case C.R. Rao
(in more detail cf. [11], Chapt. 8) proposed to modify the problem in the following
way. Let l ∈ � m be an arbitrary vector, βl = Bl, h0,l = H0l, σ2

l = l′Σl, σ̂2
l =

l′Y′MXYl/(n− k) ∼ σ2χ2
n−k(0)/(n− k). Then the l-class of test statistics for the

l-class of hypotheses H0,l : Gβl + h0,l = 0 versus Gβl + h0,l 6= 0 is

(Gβ̂l + h0,l)′[G(X′X)−1G]−1(Gβ̂l + h0,l) ∼ σ̂2
l rFr,n−k(δ),

δ = (Gβl + h0,l)′[G(X′X)−1G′]−1(Gβl + h0,l)/σ2
l .

If l belongs to the minimum eigenvalue λmin of the matrix Σ, then this test is the
most sensitive test of all statistics from the l-class.
Analogously the k-class of test statistics can be constructed for the hypotheses

H0 : BH + H0 = 0 versus H0 : BH + H0 6= 0 even in the case that Σ is totally
unknown.
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Lemma 4.1. Let Σ be unknown and G = I. Then a k-class of test statistics is

(H′B̂′k + H′
0k)′[H′Y′MXYH]−1(H′B̂′k + H′

0k)
k′(X′X)−1k

∼ s

n− k − s + 1
Fs,n−k−s+1(δ),

δ =
(H′B̂′k + H′

0k)′[H′ΣH]−1(H′B̂′k + H′
0k)

k′(X′X)−1k
,

where k is any vector from
� k .

���������
follows from the relations

(H′ ⊗ k′) vec(B̂) ∼ Ns[(H′ ⊗ k′) vec(B),k′(X′X)−1kH′ΣH],

H′Y′MXYH ∼ Ws(n− k,H′ΣH)

and from the stochastical independence of B̂ and Y′MXY. Now the Hotelling
theorem is used in order to complete the proof. �

5. Outliers

To reveal an outlier observation in the multivariate model is in general a more
complicated problem than in the univariate one. Several approaches to solution

have been studied; in more detail cf., e.g. [3, p. 292–317]. One approach is described
in the following text. It is based on the idea that the observation Yi,j +∆i,j is made

instead of the suspicious observation Yi,j . To verify this assumption the test of the
hypothesis ∆i,j = 0 is performed.
The residual matrix v is given by the relation v = Y −XB̂ and the covariance

matrix Var[vec(v)] of the vector vec(v) is Var[vec(v)] = Σ⊗MX .

A value vi,j = {Yi}j − {X}j,·{B̂}·,i, i = 1, . . . , m; j = 1, . . . , n, is suspicious if

(2) |vi,j |/
√

σi,i{MX}j,j > u(1− 1
2α),

where u
(
1 − 1

2α
)
is the (1 − 1

2α)-quantile of the normal distribution N(0, 1) for a
sufficiently small value α.

If Σ = σ2V, then instead of (2) the inequality

|vi,j |/
√

σ̂2Vi,i{MX}
j,j

> tm(n−k)(1− 1
2α)
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is used. Here σ̂2 = Tr(Y′MXYV−1)/[m(n−k)] and tm(n−k)(1− 1
2α) is the (1− 1

2α)-
quantile of the Student distribution with m(n− k) degrees of freedom.
If Σ is unknown, it can be estimated as Σ̂ = (n − k)−1Y′MXY, (n − k)Σ̂ ∼

Wm(n− k,Σ), and the inequality

|vi,j |/
√
{Σ̂}i,i{MX}j,j > tn−k(1− 1

2α)

indicates the possibility that an outlier occurs in the measurement {Yi}j .

Let residuals v
1,j

(1)
1

, . . . , v
1,j

(1)
s1

, v
2,j

(2)
1

, . . . , v
2,j

(2)
s2

, . . . , v
m,j

(m)
1

, . . . , v
m,j

(m)
sm
be suspi-

cious. Now instead of the model

vec(Y) ∼ Nnm[(I⊗X) vec(B),Σ⊗ I],

the model

vec(Y) ∼ Nnm

[
(I⊗X,E)

(
vec(B)

∆

)
,Σ⊗ I

]

is considered. Here

E =




E1, 0, . . . , 0
0, E2, . . . , 0
. . . . . . . . . . . . . . . . . . . .

0, 0, . . . , Em


 , Ei =




(
e(si)

j
(i)
1

)′

...(
e(si)

j
(i)
si

)′


 ,(3)

r(Ei) = si, i = 1, . . . , m,

and ∆ = (∆′
1, . . . ,∆

′
m)′, ∆i ∈

� si , i = 1, . . . , m, s = s1 + . . .+sm. The symbol e
(n)
i

means the n-dimensional vector with 1 at the ith position and with other components
equal to 0.

Let the null and alternative hypotheses be

H0 : ∆ = 0 and Ha : ∆ 6= 0.

The hypothesis can be tested iff M
(

0(km,s)

Is,s

)
⊂ M

(
I⊗X′

E′

)
. This follows by

the following consideration. Let a univariate model Y ∼ Nn(Xβ,Σ), β ∈ � k , and
the hypothesis H0 : Hβ + h = 0 versus Ha : Hβ + h 6= 0, be assumed. If Σ is p.d.
and

R2
0 = min{(Y −Xβ)′Σ−1(Y −Xβ) : β ∈ � k},

R2
1 = min{(Y −Xβ)′Σ−1(Y −Xβ) : Hβ + h = 0},
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then the test statistic is R2
1 − R2

0. If M(X′) ∩ M(H′) = {0}, then M(X) =

M(XMH′), which is a consequence of the relations r

(
X
H

)
= r(X) + r(H) (as-

sumption) and r

(
X
H

)
= r(XMH′ ) + r(H) (in general; cf. [12, p. 137). Thus

r(X) = r(XMH′ ) ⇔ M(X) = M(XMH′ ). The projection matrix PΣ−1

X (in the

norm ‖u‖Σ−1 =
√

u′Σ−1u, u ∈ � n ) is the same as the projection matrix PΣ−1

XMH′ , and

since R2
1 = (Y−PΣ−1

XMH′ )
′Σ−1(Y−PΣ−1

XMH′ ) and R2
0 = (Y−PΣ−1

X )′Σ−1(Y−PΣ−1

X ),
the test statistic is zero in this case. It is obvious how to proceed in the case of

multivariate models.

Further,

M
(

0(km,s)

Is,s

)
⊂M

(
I⊗X′

E′

)
⇔ ∀{i = 1, . . . , m} M

(
0k,si

Isi,si

)
⊂M

(
X′

E′
i

)
.

Since it is assumed that r(I ⊗X,E) = (mk) + s (regularity), we have

M
(

0(km,s)

Is,s

)
⊂M

(
I⊗X′

E′

)
.

Lemma 5.1. In the regular model

vec(Y) ∼ Nnm

[
(I⊗X,E)

(
vec(B)

∆

)
,Σ⊗ I

]

the BLUE of ∆ is

∆̂ = [E′(Σ−1 ⊗MX)E]−1E′(Σ−1 ⊗MX) vec(Y) ∼ Ns{∆, [E′(Σ−1 ⊗MX)E]−1}.

The test statistic of the hypothesis H0 : ∆ = 0 versus Ha : ∆ 6= 0 is

∆̂′[E′(Σ−1 ⊗MX)E]∆̂ ∼ χ2
s(δ), δ = (∆∗)′[E′(Σ−1 ⊗MX)E]∆∗,

where ∆∗ is the actual value of the vector ∆.
���������

is elementar. �
	�

�������

5.2. If Emn,n = e(m)
j ⊗ In,n, then the hypothesis ∆ = 0 cannot be

tested, since

M
(

0
I

)
6⊂ M

(
I⊗X′

(e(m)
j )′ ⊗ In,n

)
.
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Lemma 5.3. The best estimator of σ2 in the model

(4) vec(Y) ∼ Nnm

{
[(I⊗X),E]

(
vec(B)

∆

)
, σ2(V ⊗ I)

}

is

σ̂2
cor = [vec(Y)]′{V−1 ⊗MX − (V−1 ⊗MX)E

×[E′(V−1 ⊗MX)E]−1E′(V−1 ⊗MX)} vec(Y)/[m(n− k)− s]

=
1

m(n− k)− s
{m(n− k)σ̂2 − [vec(Y)]′(V−1 ⊗MX)E[E′(V−1 ⊗MX)E]−1

×E′(V−1 ⊗MX) vec(Y)} ∼ σ2χ2
m(n−k)−s(0)/[m(n− k)− s]

where

σ̂2 =
1

m(n− k)
Tr(Y′MXYV−1)

(the estimator in the model (1)).
���������

. In the regular model Y ∼ Nn(Xβ, σ2V), β ∈ � k , the best estimator σ̂2

is given by the relation

σ̂2 =
1

n− k
Y′(MXVMX)+Y.

Analogously the model (4) can be considered. Here

[M(I⊗X,E)(V ⊗ I)M(I⊗X,E)]+ = V−1 ⊗ I− (V−1 ⊗ I)(I ⊗X,E)

×
(

V−1 ⊗X′X, (V−1 ⊗X)E
E′(V−1 ⊗X), E′(V−1 ⊗ I)E

) (
I⊗X′

E′

)
(V−1 ⊗ I)

= V−1 ⊗X− [V−1 ⊗X, (V−1 ⊗ I)E]
(
11 , 12
21 , 22

) (
V−1 ⊗X′

E′(V−1 ⊗ I)

)
,

where

11 = V ⊗ (X′X)−1 + [I⊗ (X′X)−1X′]E[E′(V−1 ⊗MX)E]−1E′

× [I⊗X(X′X)−1],

12 = − [I⊗ (X′X)−1X′]E[E′(V−1 ⊗MX)E]−1,

21 = − [E′(V−1 ⊗MX)E]−1E′[I⊗X(X′X)−1],

22 = [E′(V−1 ⊗MX)E]−1.

Now it is easy to complete the proof. �

Let the matrix Σ be unknown but let a matrix S be at our disposal and fS ∼
Wn(f,Σ). Let the matrix S be stochastically independent of the vector ∆̂.
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Lemma 5.4. Let E = Im,m ⊗ e(n)
i . Then

∆̂ = [I⊗ ({MX}i,i)−1{MX}i,·] vec(Y) ∼ Nm

(
∆,

1
{MX}i,i

Σ
)

and

∆̂′S−1∆̂{MX}i,i ∼
fm

f −m + 1
Fm,f−m+1(δ), δ = {MX}i,i(∆∗)′Σ−1∆∗.

���������
. It is sufficient to use the Hotelling theorem (cf. proof of Lemma 2.2).

�
	�

�������

5.5. In Lemma 5.4 the degrees of freedom of the Wishart matrix must

be larger thanm−1. SinceY′M
(X,e

(n)
i )

Y is the Wishart matrix with n−k−1 degrees

of freedom and it is stochastically independent of ∆̂, it can be used in the test from
Lemma 5.4, however, n > m + k must be valid.

Lemma 5.6. Let Y ∼ Nn(Xβ,Σ), β ∈ � k , be the regular model and let

fS ∼Wn(f,Σ) (f > n) be stochastically independent of Y. Let

ˆ̂
β = (X′S−1X)−1X′S−1Y

(plug-in estimator) and v̂ = Y−X ˆ̂
β. If G is an r× k matrix with full rank in rows,

i.e. r(G) = r 6 k, then

(Gβ −G ˆ̂
β)′[G(X′S−1X)−1G′]−1(Gβ −G ˆ̂

β)
1 + (1/f)v̂′S−1v̂

∼ fr

f − n + k − r + 1
Fr,f−n+k−r+1(0).

���������
. It is a consequence of [10], [5, Theorem 7.3.8] and [4]. �

Lemma 5.7. Let in the model (2) the matrix E be of the form E = e(m)
j ⊗e(n)

i . If

we have at our disposal the matrix S, fS ∼ Wm(f,Σ), independent of the observation
matrix Y, then the plug-in estimator of ∆i,j is

ˆ̂∆i,j =
1

{MX}i,i{S−1}j,j
{S−1}j,·



{MX}i,·Y1

...

{MX}i,·Ym



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and

1
{MX}i,i{S−1}j,j

(
∆i,j − ˆ̂∆i,j

)2

1 + (1/f)v̂′S−1v̂
∼ f

f −m + 1
F1,f−m+1(0),(5)

v̂ =
1√

{MX}i,i

(
I−

e(m)
j {S−1}j,·
{S−1}j,j

)


{MX}i,·Y1

...

{MX}i,·Ym


 .(6)

���������
. Let in Lemma 5.6 the vector

(7) ξ =
1√

{MX}i,i



{MX}i,·Y1

...

{MX}i,·Ym


 ∼ Nm

(√
{MX}i,ie

(m)
j ∆i,j ,Σ

)

be considered instead of Y. Further, G = 1, fS ∼ Wm(f,Σ). The estimator ∆̂i,j is
the same as the estimator ∆̂i,j from the model (7). Thus the relations (5) and (6),

based on Lemma 5.6, can be obtained. �
	�

�������

5.8. In Lemma 5.7 the matrix Y′MXY cannot be used, since the

assumption of stochastical independence is not satisfied. We have to have another
Wishart matrix fS at our disposal, e.g. from a former experiment.

6. The matrix Σ is of the form
p∑

i=1

ϑiVi

Let the regular model

vec(Y) ∼ Nnm

[
(I⊗X,E)

(
vec(B)

∆

)
,Σ⊗ I

]
,

where Σ =
p∑

i=1

ϑiVi, be considered in this section. The matrix E is of the form (3).

Let

h(ϑ) = ∆̂′(ϑ){E′([Σ−1(ϑ)⊗MX ]E}∆̂(ϑ),

where
∆̂(ϑ) = {E′[Σ−1(ϑ) ⊗MX ]E}−1E′[Σ−1(ϑ) ⊗MX ] vec(Y).

If the hypothesis H0 : ∆ = 0 is true and ϑ = ϑ∗ (actual value of the vector ϑ),
then h(ϑ∗) ∼ χ2

s(0).
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Lemma 6.1. Let

∂h(ϑ)
∂ϑ′

∣∣∣∣
ϑ=ϑ∗

= ξ′, ξ′ = (ξ1, . . . , ξp).

Then

ξi = − ∆̂′(ϑ∗)(E′{[Σ−1(ϑ∗)ViΣ−1(ϑ∗)]⊗MX}E)∆̂(ϑ∗)

− 2∆̂′(ϑ∗)E′{[Σ−1(ϑ∗)ViΣ−1(ϑ∗)]⊗MX} vec(v),

where

vec(v) = vec(Y)− (I⊗X,E)
(

vec(B̂)
∆̂(ϑ∗)

)
,

vec(B̂) = [I⊗ (X′X)−1X′] vec(Y)− {I⊗ [(X′X)−1X′]}E[E′(Σ−1(ϑ∗)⊗MX)E]−1

×E′(Σ−1(ϑ∗)⊗ I){I⊗ I− I⊗ [(X′X)−1X′]} vec(Y).

���������
. Since

ξi =
∂h(ϑ)
∂ϑi

∣∣∣∣
ϑ=ϑ∗

= 2∆̂′(ϑ∗){E′[Σ−1(ϑ∗)⊗MX ]E}∂∆̂(ϑ)
∂ϑi

∣∣∣∣
ϑ=ϑ∗

+ ∆̂′(ϑ∗)
{
E′

[∂Σ−1(ϑ)
∂ϑi

∣∣∣
ϑ=ϑ∗

⊗MX

]
E

}
∆̂(ϑ∗)

and
∂Σ−1(ϑ)

∂ϑi

∣∣∣∣
ϑ=ϑ∗

= −Σ−1(ϑ∗)ViΣ−1(ϑ∗),

we have

∂∆̂(ϑ)
∂ϑi

∣∣∣∣
ϑ=ϑ∗

= −{E′[Σ−1(ϑ∗)⊗MX

]
E

}−1

×E′{[Σ−1(ϑ∗)ViΣ−1(ϑ∗)]⊗MX}[vec(Y)−E∆̂(ϑ∗)− (I⊗X)vec(B̂)].

Now we can easily obtain the expression for ξi. The estimator vec(B̂) can be obtained
in a standard way for the model considered. �
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Lemma 6.2. Let

Ai = E′{[Σ−1(ϑ∗)ViΣ−1(ϑ∗)]⊗MX}E, i = 1, . . . , p,

Bi = E′{[Σ−1(ϑ∗)ViΣ−1(ϑ∗)
]
⊗MX

}
, i = 1, . . . , p.

Then

E(ξi) = −Tr[Ai Var(∆̂)], i = 1, . . . , p,

Var(ξ) = 2SVar(∆̂) + 4CVar[vec(v)],Var(∆̂),

where

Var(∆̂) = {E′[Σ−1(ϑ∗)⊗MX ]E}−1,

Var[vec(v)] = Σ−1(ϑ∗)⊗MX − (I⊗MX)E

× {E′[Σ−1(ϑ∗)⊗MX ]E}−1E′(I⊗MX),

{SVar(∆̂)}i,j = Tr[Ai Var(∆̂)Aj Var(∆̂)], i, j = 1, . . . , p,

{CVar[vec(v)],Var(∆̂)}i,j = Tr{Bi Var[vec(v)]B′
j Var(∆̂)}, i, j = 1, . . . , p.

���������
. The vectors ∆̂ and vec(v) are stochastically idependent. Under the null

hypothesis (∆ = 0) and by virtue of Lemma 6.1 we have E(ξi) = −Tr[Ai Var(∆̂)],
i = 1, . . . , p, and

cov(ξi, ξj) = cov(∆̂′Ai∆̂, ∆̂′Aj∆̂)− 2 cov[∆̂′Bi vec(v), ∆̂′Aj∆̂)

−2 cov[∆̂′Ai∆̂, ∆̂′Bj vec(v) + 4 cov[∆̂′Bi vec(v), ∆̂′Bj vec(v)],

moreover,

cov(∆̂′Ai∆̂, ∆̂′Aj∆̂) = 2 Tr[Ai Var(∆̂)Aj Var(∆̂)],

cov[∆̂′Bi vec(v), ∆̂′Aj∆̂)] = cov[∆̂′Ai∆̂, ∆̂′Bj vec(v)] = 0,

cov[∆̂′Bi vec(v), ∆̂′Bj vec(v)] = Tr[Bi Var[vec(v)]B′
j Var(∆̂)],

and consequently

Var(ξ) = 2SVar(∆̂) + 4CVar[vec(v)],Var(∆̂).

Further,

vec(v) =
[
I⊗ I− (I⊗X,E)

(
Σ−1 ⊗ (X′X), Σ−1 ⊗ I)E
E′(Σ−1 ⊗ I), E′(Σ−1 ⊗ I)E

)

×
(

Σ−1 ⊗X
E′(Σ−1 ⊗ I)

)]
vec(Y)

= {(I⊗MX)− (I⊗MX)E[E′(Σ−1 ⊗MX)E]−1E′(Σ−1 ⊗MX)} vec(Y).

Now the expression for Var[vec(v)] can be easily obtained. �
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Definition 6.3. The set

{δϑ : P{h(ϑ∗) + ξ′δϑ > χ2
s(0; 1− α)} 6 α + ε}

is the nonsensitiveness region for the level α of the test for the hypothesis ∆ = 0.

Lemma 6.4. Let

U = {E′[Σ−1(ϑ∗)⊗MX ]E}−1,

V = Var[vec(v)],

{SU}i,j = Tr(UAiUAj), i, j = 1, . . . , p,

{CU,V }i,j = Tr(UBiVB′
j), i, j = 1, . . . , p,

a = [Tr(A1U), . . . , Tr(ApU)]′.

The set

L∆ =
{
δϑ : −δϑa′ + t

√
δϑ′(2SU + 4CU,V )δϑ < cε

}

can be used as a nonsensitiveness region for the level α of the test for the hypothesis

∆ = 0. Here cε is a solution of the equation

α + ε = P{k(ϑ∗) > χ2
s(0; 1− α)− cε}

and t is a sufficiently large real number.
���������

.

P{h(ϑ∗) + ξ′(ϑ∗)δϑ > χ2
s(0; 1− α)}

= P
{
h(ϑ∗) + ξ′(ϑ∗)δϑ > χ2

s(0; 1− α)
∣∣ |ξ′(ϑ∗)δϑ| < c

}
P{|ξ′(ϑ∗)δϑ| < c}

+ P
{
h(ϑ∗) + ξ′(ϑ∗)δϑ > χ2

s(0; 1− α)
∣∣ |ξ′(ϑ∗)δϑ| > c

}
P{|ξ′(ϑ∗)δϑ| > c}.

If c satisfies the condition P{|ξ′(ϑ∗)δϑ| > c} ≈ 0, then

α + ε = P{h(ϑ∗) + ξ′(ϑ∗)δϑ > χ2
s(0; 1− α)}

≈ P{h(ϑ∗) + ξ′(ϑ∗)δϑ > χ2
s(0; 1− α) & |ξ′(ϑ∗δϑ| < c}

> P{h(ϑ∗) > χ2
s(0; 1− α)− c}.

If c = cε, then

P{|ξ′(ϑ∗)δϑ| < cε} ≈ 1 ⇔ −a′(ϑ∗)δϑ + t
√

δϑ′(Var[ξ(ϑ∗)]δϑ < cε

for sufficiently large t,

which means

∀ {δϑ ∈ L∆}P{h(ϑ∗) + ξ′(ϑ∗)δϑ > χ2
s(0; 1− α)} 6 α + ε,

i.e. the probability of the first kind error of the test is smaller than α + ε. �
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Theorem 6.5. If

(δϑ− u0)′[t2(2SU + 4CU,V )− aa′](δϑ− u0) 6 cε
t2

t2 − a′(2SU + 4CU,V )+a
,

where

u0 =
cε

t2 − a′(2SU + 4CU,V )+a
(2SU + 4CU,V )+a,

then P{h(ϑ∗) + ξ′(ϑ∗)δϑ > χ2
s(0; 1− α)} 6 α + ε.

���������
. Obviously

t2[δϑ′(2SU + 4CU,V )δϑ] 6 [cε + a′(ϑ∗)δϑ]2

⇒ −a′(ϑ∗)δϑ +
√

δϑ′(2SU + 4CU,V )δϑ < cε,

t2[δϑ′(2SU + 4CU,V )δϑ] 6 c2
ε + 2cεa′(ϑ∗)δϑ + δϑ′aa′δϑ

⇔ δϑ′[t2(2SU + 4CU,V − aa′]δϑ− 2a′δϑcε 6 c2
ε

⇔ {δϑ− [t2(2SU + 4CU,V − aa′]+cεa}′t2(2SU + 4CU,V − aa′]

×{δϑ− [t2(2SU + 4CU,V − aa′]+cεa} 6 c2
ε − c2

εa
′[t2(2SU + 4CU,V − aa′]+a.

Here a ∈M(2SU + 4CU,V ) is taken into account. This is valid since




Tr(A1U)
...

Tr(ApU)


 ∈M




Tr(A1UA1U), . . . , Tr(A1UApU)
Tr(A2UA1U), . . . , Tr(A2UApU)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Tr(ApUA1U), . . . , Tr(ApUApU)




and also the matrix CU,V is positive semidefinite.

Since

[t2(2SU + 4CU,V − aa′]+

=
1
t2

(
(2SU + 4CU,V )+ +

(2SU + 4CU,V )+aa′(2SU + 4CU,V )+

t2 − a′(2SU + 4CU,V )+a

)
,

we have

u0 = cε[t2(2SU + 4CU,V − aa′]+a

=
cε

t2 − a′(2SU + 4CU,V )+a
(2SU + 4CU,V )+a

and

c2
ε − c2

εa
′[t2(2SU + 4CU,V − aa′]+a = cε

t2

t2 − a′(2SU + 4CU,V )+a
.

By virtue of Lemma 6.4, the statement is proved. �
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For more on the nonsensitiveness regions in testing statistical hypotheses cf. [2],

[6], [7], [8], [9].

7. Numerical example

Let X be an n × 2 matrix, B =
(

β1,1, β1,2

β2,1, β2,2

)
, E = I2,2 ⊗ e(n)

i (i.e. the ith

measurements in both observation vectors Y1 and Y2 are suspicious) and Σ =

σ2
1

(
1, 0
0, 0

)
+ σ2

2

(
0, 0
0, 1

)
. Then

A1 =
( {MX}i,i/σ4

1 , 0
0, 0

)
, A1 =

(
0, 0
0, {MX}i,i/σ4

2

)
,

a = ( σ−2
1 , σ−2

2 )′ , U =
1

{MX}i,i

(
σ2

1 , 0
0, σ2

2

)
,

V =
(

σ2
1 , 0
0, σ2

2

)
⊗MX −

1
{MX}i,i

[I2,2 ⊗ (MXe(n)
i )]

(
σ2

1 , 0
0, σ2

2

)

×
{
I2,2 ⊗

[(
e(n)

i

)′
MX

]}
,

B1 =
(

σ−4
1 , 0
0, 0

)
⊗

[(
e(n)

i

)′
MX

]
, B2 =

(
0, 0
0, σ−4

2

)
⊗

[(
e(n)

i

)′
MX

]
,

SU =
(

σ−4
1 , 0
0, σ−4

2

)
, CU,V = 02,2.

If α = 0.05, ε = 0.04, t = 4, σ1 = 0.2, σ2 = 0.2, then cε = 1.017,u0 =
(0.000339, 0.001356)′ and

cε
t2

t2 − a′(2SU + 4CU,V )+a
= 1.0848.

Thus the nonsitiveness region for the level of the test can be characterized by the

ellipse

((δϑ− u0)′[t2(2SU + 4CU,V )− aa′](δϑ − u0) =)

(δϑ− u0)′
(

310000, −2500
−2500, 19375

)
(δϑ− u0) = 1.0848

with the centre given by the vector u0, with the first semiaxis equal to a = 0.007487
in the direction of the vector (0.999963, 0.008601)′ and with the second semiaxis
equal to b = 0.001871 in the orthogonal direction. Since ϑ1 = σ2

1 , ϑ2 = σ2
2 and
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√
a/σ1 = 0.865,

√
b/σ2 = 0.216, it can be seen that the value σ2 must be known

much more precisely (21.6 %) than the value σ1 (86.5 %).
The covariance matrix of the estimator ϑ̂ in this case is

Var(ϑ̂) =
2

n− 2
S−1

Σ−1 =
1

n− 2

(
0.00020, 0

0, 0.00320

)
,

thus we need at least 6 measurements (n − 2 � 0.00020/0.0074872 = 3.6) for
the estimation of the parameter ϑ1, but at least 916 measurements (n − 2 �
0.00320/0.0018712 = 914) for the parameter ϑ2 in order for the resulting level of

the test to be smaller than α + ε = 0.09.
This simple example shows how important a good knowledge of variance compo-

nents is for making order to make a reliable statistical inference.

Analogous consideration can be done with respect to the course of the power
function.

Acknowledgement. The author thanks the referee for his valuable remarks and
information on additional references.
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