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Abstract. In this paper we study the finite element approximations to the parabolic
and hyperbolic integrodifferential equations and present an immediate analysis for global
superconvergence for these problems, without using the Ritz projection or its modified
forms.
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1. INTRODUCTION

According to the conventional error analysis for FEMs of the time-dependent prob-
lems, e.g. parabolic problems, either the Ritz projection or its modified forms are
necessary to be used as transitional tools. Especially, the interior pointwise super-
convergence estimates were obtained skilfully in Thomée, Xu and Zhang [10] by using
the Ritz projection for the parabolic equation

aa—quAu:f in Qx (0,7,
(1.1) u=0 on 09 x (0,7,

u(z,0) =v in €,

where Q C R? is a bounded domain. This result is essential. Also by means of the
Ritz projection, optimal L? error estimates were derived by Thomée and Zhang in

1



[11] for the parabolic integrodifferential equation

——Au—/Auxsds—f in Qx (0,77,
(1.2) w=0 on 99 x (0,7,
u(z,0) =v in Q.

The Ritz-Volterra projection, a modified Ritz projection, were first introduced by
Lin, Thomée and Wahlbin in [8] to get error estimates for the problem (1.2), hyper-
bolic integrodifferential equations and the related differential equations. In addition,
Y. P. Lin also considered the interior pointwise superconvergence for such problems
(an unpublished manuscript) by the Ritz-Volterra projection. In a word, in the pre-
vious studies for time-dependent problems, the Ritz projection or its modified forms
were indispensable in the error analysis of their FEMs. However, here we will use a
new analysis from [3], i.e. an analysis for the “short side” in the FE-right triangle plus
the sharp integral estimates of the “hypotenuse“, rather than using the Ritz projec-
tion or the Ritz-Volterra projection, to get the global superconvergence for parabolic
and hyperbolic integrodifferential equations, rather than the interior pointwise su-
perconvergence. Our analysis sharpens the results and shortens the proofs appearing
in the previous literature under the rectangular mesh assumption.

2. PARABOLIC INTEGRODIFFERENTIAL EQUATIONS WITH HOMOGENEOUS
BOUNDARY CONDITIONS

First of all, we discuss the model (1.2) which is simple to demonstrate our super-
convergent analysis for FEMs. Here and below, we assume that () is a rectangular
domain, T" a rectangular partition over Q with mesh size h and f, v sufficiently
smooth given functions. The weak form of (1.2) consists in finding u(.,t) € H}(Q)
(the Sobolev space) for any fixed t € [0,T] such that

(un9) + (Vau, Vig) + / (Vu(s), Vo) ds = (f0) Vo € HA(),
u(z,0) =

(2.1)

Let S§ C H(Q) consist of piecewise bilinear functions. Thus, a continuous Galerkin
approximation u"(x,t): [0,7] — S¥ is defined such that

N (R R / (Vul(s), Vi) ds = (f,0) Voo € SH(S),

u(0) = ipv,



where i,v € S} stands for the bilinear interpolation function of v. We need the

following

Lemma 2.1.
[(V(u—inu), V)| < ch®|lullallello Ve € S5

Proof. For an arbitrary element 7 € T", we assume that (-, y,) is its center,
s1, 83 are of length 2h, and sz, s4 of length 2k, its two sides being parallel to the
z-axis and y-axis, respectively. Consequently,

s1: Y =Yr — kr,
83: y:y‘r+k7’a
St x=2x; — hy,

S4: T =2+ hr.

Define the error functions
1 1
E(2) = 5l(@— o) = h2], Fy) =5y —y:)* = k7]

In order to complete the proof of Lemma 2.1 we only need to prove for the first
variable the inequality

From the definition of F(y) we derive

(2.3) F(y) =0, F'(y) = constant on si,s3
(24) FO)=1, (y—y) = S [FP)©.

Moreover, we have by the definition of ¢xu

(2.5) / (1 — intt)s dz = 0, / (1 — intt)s dz = 0.

81 3

From Taylor’s expansion of ¢, (z,y) and from (2.4) we obtain
/(U — i)z Py = /(U — i)z [P (T, Yr) + (Y — Yr)Pay (2, Y)]

— [ = ol W) e,7) + G 0) Oy ,0)
=I+11.



It follows by integration by parts that
I=([ = [ )= iaF st [0 i F et vr)

=1 f[g. N '
By (2.3) and (2.5)
(2.6) I =0.
By integration by parts and by (2.3)
(2.7) I, = /F(u — IpU) zyy Pz (T, Yr),
and thus

Fu —int)ayyex (2, yr)

(2.8)

1= [
/Fumyy ez(2,y) = Fypay (2, y)]
_ /7—umyy[F<pI(x,y) - %(FQ)’soxy(rf,y)k

Notice that
(F3)'(y) = 2k$, (FH(y) =0 on sy, s3.

Therefore, we have again by integration by parts and (2.5)

(/ / ) (F?)" (u = inu)apay (2, )

-5 /T(F2)N(u — AU ey Py (T, Y)

= —1 /(FQ)N(U — Zhu)xy@xy(x y)

- </ / ) (F?)(u — ipw)ayPay (2, y)

(2.9)

1 .

+ 6 /(FZ)/(U — 1hU) ayy Pay
1

— 5 [ uapn.

Then, by (2.8) and (2.9),

(210) /(U - ihu)zﬁpm = /umyy[F(pm - %(FZ)IQOI?J]



Because ¢ vanishes on 9Q and gy, Fo, Uy, (F?) ¢, are continuous across sy and
s4, we gain by further integration by parts with respect to (2.10) and summation

fwmimien= 3 > ([ - [ )metre—52ra

/Qumyy[F‘P 3(F2) ©y)

over T € TH

1
= */ Ugayy[Fo — g(Fz)ISDy}-
Q
And thus, we get by the inverse estimates of FEM

(0= i) 22)| < CH2[ullalllo-

Theorem 2.1. For sufficiently smooth u and u; we have
t s 1/2
o = inl < et | [ el 4 lullac+ [ uGeylaan)? as
0 0
Proof. Let 6(z,t) = u(z,t) — ipu(x,t). Then
(2.11)
t
(01, 0) + (VO, V) +/ (VO(s), Vi) ds = (us — inug, ) + (V(u — ipu), Vo)
0

—I—/O (V(u(s) —inu(s)), Vi) ds

Taking ¢ = 64, we have according to Lemma 2.1

162 + Loz 4 / (V6(s), VO(1)) ds — [0

2dt

< o (IWIQ T lluflat / |u<s>||4ds) 16l

or
d [t 9
S0+ | (99 Vo) ds - o

. 2
< ch? (|ut|2 + ||u|4 +/0 |U(3)||4d5>



Integrating with respect to ¢, we conclude from 6(x,0) = 0 that

t t S
07 < c / 6 ds + ch / (lellz + ol + / lu(r) 1+ dr)? ds

By virtue of Gronwall’s Lemma, we finally obtain

t s
62 < bt / (lellz + ol + / lu(r) adr)? ds
0 0
And thus, Theorem 2.1 follows.

Theorem 2.2. For sufficiently smooth u, u; and us we have

lue = ufflo < Ch2{[(lm(0)|2 + [|u(0)]|4)* +/0 (lwtell2 + lluella

T llulla)?ds]V2 + ||Ut||2}-

Proof. Differentiating (2.11) with respect to ¢, we have, for p € S&,

(01, 0) + (VO, V) + (VO(t), Vi) = (ur — inuse, ) + (V(ur — inue), Vo)
+ (V(u —ipu), Vi),

and hence, with ¢ = 6;,

1d 1d

2
5o 1003 + Bl + 5 1613 < b (ulla + el + 1l

C
§||9t||o

or
d
2 0el5 +1672) < eh? (lluaellz + luella + flulla)®.

Integrating with respect to ¢, we obtain from 6(0) = 0 that
t
16:115 + 617 < [16:(0)115 + Ch4/0 (l[ueellz + lluella + [[ulla)® ds

Let t =0 and ¢ = 6;(0) in (2.3). Then

16:(0)llo < ch®([lue(0)]]2 + [|u(0)]1),



and thus

16ello < ch? [(lue(0)]]2 + [|u(0)]]4)*

(2.12) 1/2

t

+/ (llueellz + lluella + [lulla)® ds
0

Therefore, Theorem 2.2 follows from the triangle inequality

luf —uello < |luf —inuello + l[inue — uello-

O

In order to derive the L°>° superconvergence, like in [7] (or [10]) we introduce the
discrete Green’s function G € S at any point z € Q such that for ¢ € S

Then, the following lemma holds (see Lemma 2.1, 2.3 and 3.3 in [10]).
Lemma 2.2.

1
|11 < clog

1
IG% o < e 110:G2]lo < c(log 2)/2, [|0.G% T
h h

Theorem 2.3. For sufficiently smooth u and u; we have

||uh —u

mm<c#{m

|2,00 + llutll2 + [Julla
¢ 2
+ /0 [[u(s)llads + [(lut(0)[|2 + [|u(0)]|4)
t
*AwmﬁmeMMM“}
Proof. Setting ¢ = G" in (2.11), we have
t
0(z) = — / 0(z,s)ds — (64, GZ) + (ue — ipuy, GZ)
0
t
+ (V(u —ipu), VGI) + / (V(u(s) — inu(s)), VG ds,
0
and it follows from Lemma 2.1, 2.2 and (2.12) that
t t
wm</meHmﬂmuﬂm+/w@Ms
0 0

t 1/2
+{(IUt(0)II2+IIU(0)||4)2+/0(IUtt|2+IUtI4+IIUII4)2dS} }



According to Gronwall’s Lemma, we finally get

t
0(2)| < ch® {IIUtIIz + Jlulla +/0 [u(s)]lads

t 1/2
+{(IUt(0)II2+IIU(0)||4)2+/0(IUtt|2+IUtI4+IIUII4)2dS} }

and Theorem 2.3 follows from the well-known estimate for ||u — ipu

l0,00 and the
triangle inequality

= 1" lo,00 < [l = intello,o0 + Ilinu — w* flo.00-

Theorem 2.4. For sufficiently smooth u, u; and us, we have

' 1\ 1/2
o inul e < o (10g ) { o + 1l
t
# [ lueds + | (a0l + 1))

t 1/2
[ Cl + s+ o as| .
0
Proof. Taking ¢ = 9,G” in (2.11), we have
t
9.0(z) = — / D.0(z,5)ds — (0;,0.G") + (us — inus, 0.G")
0
t
+ (V(u —ipu), VO.G") + / (V(u(s) —inu(s)), VO.G") ds,
0
and it follows from Lemmas 2.1, 2.2 and (2.12) that
t ) 1 1/2 t
0.0 < [ 1.0 9l as + en? (rog ) " L+l + [ o)
0 0

t 1/2
+{(IIUt(0)I2+IU(0)|4)2+/0(IIUttII2+IIUtII4+IIuII4)2dS] }

Again by Gronwall’s Lemma, we finally get Theorem 2.4. O
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Theorems 2.1 and 2.4 are the basis for the global superconvergence. Numerical
analysts are used to utilize the averaging technique to get the interior pointwise su-
perconvergence. Instead, we use an interpolation postprocessing technique from [4]
(or [5]) to obtain the global superconvergence. For this purpose, we assume that 7"
was obtained from 72" by subdividing each element of 72" into four congruent ele-
ments. Thus, we can define a nodal biquadratic interpolation operator IQZh associated
with T2" of mesh size 2h. It is easy to check that

|1,p VQDGS(}JL (p:2,oo),

Byin =13, |I3¢llip < clle

1350 = ¢llip < ch?llellsp  (p=2,00).

And thus, we have the following main

Theorem 2.5. For sufficiently smooth v and u;, we have

t s 2 1/2
[ (vl + e+ [ eyt ds]
0 0

Proof. Due to the nature of I2,, we have

13 u" = ulls < ch? { [lufls +

2ol —u =12, (u" — i) + (13,0 — u).

And thus, according to Theorem 2.1,

¢ s , 1172
[ (all+ e+ [ puteytaar) ds]
0 0

Analogously we have by Theorem 2.4

13, u" = ully < ch? S [lulls +

Theorem 2.6. For sufficiently smooth u, u; and u;, we have
2 h 2 1\1/2
17— ullyoe < ch® (10g 3 )3 s e + el + s

+/Ot [u(s)]lads + {(Iut(o)lz + [|u(0)]]4)*

t 1/2
+/ (lueellz + lluella + ||u||4)2d8} }
0



3. PARABOLIC INTEGRODIFFERENTIAL EQUATIONS
WITH BOUNDARY INTEGRAL CONDITIONS

Now we will consider the semidiscrete Galerkin approximation to the problem

%:Au+f(x,t) in Qx (0,77,
t
(3.1) Ou _ / u(z,s)ds  on 99 x (0,T],
8n 0
u(z,0) = v(x) in Q,

where n(z) = (n1(z),n2(x)) is the outer-normal direction on 9. The weak form of
(3.1) reads as follows: Find u(.,t) € H*(f2) such that

(urn9) + (Vu, Vig) — / (u(s), ) ds = (f.) Ve € H(Q),
u(z,0) = v.

(3.2)

where

(o, ¥) = /m o da.

Assume that S" C H'(f2) consists of piecewise bilinear functions without the zero
boundary condition. Then, a semidiscrete Galerkin approximation u”(z,t): [0,T] —
S" is defined such that

(ul, ) + (Vul, V) — / (u(s), ) ds = (f,) Ve € S™(Q),

u(0) = ipv,

(3.3)
where i,v € S” is the bilinear interpolation function of v. We need the following
(see [6])

Lemma 3.1.

[l

c
|3,aﬂ elul 4+ =|lull?  Ve>o0.
4e

Lemma 3.2. For ¢ € Sh, %4_%:1, 1< p< oo,

ch?[[ulls plel1.q,

V(u—ipu), V)| <
(V(u — inu), V)| {h|u )

|4,p |0,q~

Proof. The proof of the lemma is similiar to that of Lemma 2.1 when we notice
that for any ¢ € S"(Q),

lellogor < ch ™ %%@llogr T€T™

10



Lemma 3.3. For sufficently smooth v and u; we have

t S 1/2
||uhu|o<ch2{||u||2+[/0 (el + lul2 + / ||u<T>|§dT>ds] }

Proof. Let 6(z,t) = u”(z,t) — ipu(z,t). We have

(01, ) + (VO, Vo) — / (0(s), ) ds = (ur — ipug, ) + (V(u —ipu), Vo)
(3.4) 0

- / (uls) — inu(s), o) ds

and hence, with ¢ = 6 and Lemmas 3.1, 3.2,

1d K 1
57 1018-+108 = [0, 000) as < et + 013 + 3 + G101
4 ! 2 1 2 2
+ et [ fulds + 5101 + clol
or ‘
1d 2 1
5 g0+ 510 < e [ 10 ds + G101 + el
t
el + ul+ [ el )
that is

d t
219116+ 1911F < C/O 10(s) 117 ds + clle]|3

t
T eht (Iml% sl + [ |u|§ds) .

Integrating with respect to ¢, we obtain from 6(0) = 0 and Gronwall’s Lemma that

t t S
1612 + / 16113 ds < ch? / (||ut|3+|u|§+ / |u|3df) s

t s 1/2
10]l0 < ch? { / (nutn% +lulf+ | ||u||%df) ds]

Then, Lemma 3.3 follows from the triangle inequality

or

lu" = ullo < " = inullo + i — ullo.

11



Theorem 3.1. For sufficiently smooth v and u; we have

t S
o — il < ch? [|u|§+ / (|u|§+ Juclg + | |u|§dr) ds]

Proof. Taking ¢ =0, in (3.4), we get

1/2

1d
2 dt

d

62 — —
01— =

16,02 + / (6(s).6(1)) ds + (6.6)

) d . )
= (ut — ipue, 0;) + E(V(u —ipu), VO) — (V(us — ipus), VO)

d t

@, (u(s) —inu(s),0(t)) ds + (u —ipu,0).

In virtue of Lemmas 3.1, 3.2 and by integration with respect to ¢ we have

t t
07 < c / 16112 ds + c[|6]2 + ch / (ull? + [[uell2) ds + ch?Jul2

or
t t
[EIFS C/o H9llfd8+0\|9llﬁ+ch4/o (ull3 + lluell3) ds + ch*[lull3.

And thus, it follows from Lemma 3.3 and Gronwall’s Lemma that
t s
2 2 2 2 2
o0 < et [l + [ (ull + ot + [l ar ) as]
0

In order to obtain L™ estimates we need the following (see [13] or see p. 67 Lemma

1/2

O

4 in [9] for the special case)

Lemma 3.4. For a bounded domain 0 C R? satisfying the cone condition,
i.e. there being a fixed cone G such that for all x € §) there exists a cone G, C ()
congruent with G whose vertex is x, we have

1\ /2
|¢|o,w<c[|¢|o+(logﬁ) soh] Vo e s

Proof. It is possible that [13] is not available. So, we write the proof again.
For arbitrary p > 2, v € C*(Q) and z € , there exists a cone G, C Q. By means
of Sobolev’s integral identity and simple calculations, we get

[o(@)] < (mes Go) ' [[ollo.c. + K[ Vollop.c.

12



where

, 1/1’/ 1
Kc(/ |z —y|7? dy) and -
Gy p

Let H be the height of G,. Then

and thus

[v(z)]

Because C°°({2) is dense in W1?(£), we obtain

<e{lolop+ @ p) " o

1,p}-

[

From the inverse estimates of FEM, we derive

looo < e{llellop+ @)W lelip} Vo € WHR(Q).

lolkp < ch2(1/p_1/2)\<p|k Vo € Sh(k =0,1and p > 2),

which, together with the above inequality, leads to

Ipllo.ce < ¢ {n? lillo + (2 = )77 B2/ Yy }

Choosing p > 2 such that e =1 — % = (log %)_1, we obtain

h?/P=1 = ¢(constant).

Furthermore,
2¢e
2—p = ~ 2¢,
p 1+e¢
1 1+e 1
p 2 2

and we finally get

I

1\ /2
0,00 < € [|<P|0 - <log E) <p|1] Yy € S™.

13



Theorem 3.2. For sufficiently smooth u and u; we have

t
. e (Il 4 [ Gl +

s 1/2
+/ | w||2 dr) ds] }
0

Proof. The theorem follows from Lemmas 3.3, 3.4, Theorem 3.1 and the

triangle inequality

1\ 1/2
Ju" = ullo.cc < ch?(10g ) {|u

lu” = ullo.co < llu" = inullo,co + llint — ullo.c-

Theorem 3.3. For sufficiently smooth u, u; and us, we have

luf = uello < ch®® {{uellz + [|ue ()13 + [[u(0)]F + lull3

t s
- (|mt|§+ ol + i+ [ |u|§dr) ds}.

Proof. Differentiating (3.4) with respect to ¢, we have, for ¢ € S"
(ettv @) + (Vetv v‘P) - <9(t)7 @) = (utt - ihuttv @) + (V(Ut - ihut)a V@) - <’LL - ihu, @) )

and hence, with ¢ = 6, and Lemmas 3.1, 3.2,

1d, , 1d
51003 + 108 — 516

15,00 < ch?luel3 + cllOcF + ch® ull3

1 1

Z\atﬁ + ch|ullf + Z'etﬁ'
Integrating, we have

t t
2 2 2 2 2 2 2
16:ll5 < 116:(0)[]5 + cllf]lx +C/0 16615 ds +Ch4/0 (lweellz + lluellz + llull3) ds.

Let t =0 and ¢ = 6;(0) in (3.4), then to Lemma 3.2 yields

16:(0)llo < ch™*([lue(0)|2 + [[u(0)]la),

which, together with Theorem 3.1 and Gronwall’s Lemma, leads to Theorem 3.3 by
the triangle inequality

lJug — uello < |Juf — inuello + [linue — uelo-

14



Theorem 3.4. For sufficiently smooth u, u; and us we have

_ 1\ 12
o vl < o (1og ) {13 + Ju(O)1

t s
+3A (mum§+num§+|wngé nm@df)dﬂlﬂ

t
+mm+wmm+/uu
0

t s T 1/2
+Ad{W@+A(W%+Wﬁ+A|m@Qd{ }

Proof. Setting ¢ = 9,G” in (3.4), we have

|2,oc dS

t
(0:,0.G") + 0.0(z,t) — / (0(s),0.G") ds
0
t
= (ur — tpu, 0,G) + (V(u — ipu), V@ZG};) - / <u(5) —ipu(s), 8ZGZ> ds.
0
By virtue of Lemmas 2.2 and 3.2

1\1/2 t
o001 < 10z ) 0o+ [ 160:).0.6) s

1\1/2 1 ¢
ot (10g 1)l + c?tog (oo + [ 1

|2,o<> dS)

1\1/2 1t
<c(tos7) " Ioclo+ clog+ [0l ds
0

t
mm+/nwmmﬁ,
0

In Theorems 3.3 and 3.2 we have got respectively

1
+ e og - (Il +

16:15 < eh? {IW(O)I% + w17 + [lull3

(3.6) . .
+A(WM?+WN§+HMA§+AIWﬁdﬂd%,
1\1/2 t
610 < i (10 3) " [+ [ (Tl +
0
(3.7) . "
+/ ||u||§d7'> ds] .
0
From (3.5)—(3.7) we finally obtain Theorem 3.4. O
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Similarly to Section 2, we can get the global superconvergence by means of an
interpolation postprocessing technique, rather than using the averaging technique
by which one can only get the interior pointwise superconvergence.

Theorem 3.5. For sufficiently smooth v and u; we have
t
I3 =l < et + {1l + [ (Il + el
0

s 1/2
+ / ||w|2 dr) ds} }
0

Theorem 3.6. For sufficiently smooth u, u; and us, we have

1
HI22huh - u”l,oo < ch!® log E{'u |3,oo + {Hut(O)H% + HU(O)H?L

t
- [ (|utt||% T luel2 + 2

0
s 1/2
/ |u|§d7'> ds}
0

t
T fuellz + el oo + / 2,00 ds
0

t s T 1/2
T / ds[ / <||ut||§+||u||§+ / ||u||§da)d7} }

4. HYPERBOLIC INTEGRODIFFERENTIAL EQUATIONS

In the conclusion we study the hyperbolic integrodifferential equation

0?u ¢
w—Au—/Au(z,s)ds:f in Qx(0,7T],
0
(41) u=0 on 09 x (0,7,
u(z,0) = v, %(x,O) = w(z) in Q.

The weak form of (1.4) consists in finding u(.,t) € Hg(£2) such that

(ur9) + (Vu, Vi) + / (Vu(s), Vo) ds = (f0) Vo € HA(),

w(z,0) =v, u(z,0)=w.

(4.2)

16



Thus, a continuous Galerkin approximation u”(z,t): [0,7] — S& C Hg is defined
such that

wy o @I / (Vul(s), Vi) ds = (f.¢) Vo € SE(Q),

uh(0) = ipv,  uP(0) = ipw.
We have

Theorem 4.1. For sufficiently smooth u, u; and u;; we have

t
o il + =l < e sl + | [ (ol -+l
0

4 /0 |u(7')||4d7')2 ds] -

Proof. Setting 0(z,t) = u"(z,t) — ipu(x,t), we have
(4.4)

(01, ) + (VO, V) +/0 (VO(s), Vi) ds = (us — inust, ©) + (V(u — ipu), V)
+/0 (V(u(s) —ipu(s)), V) ds.

Hence, with ¢ = 6; and Lemma 2.1,

q
dt

1d
2 dt

1d

t
16015 + 555161 + 5 | (V8(5), Vo0 ds - I}
0

t 2
< cht (mnz Tl t / |u<s>||4ds) SPATES

Integrating with respect to ¢, we obtain from 6(0) = 6;(0) = 0 that
(4.5)

t t s 2
164112 + 162 < / (6.2 + 16]2) ds + et / <||Utt||2 T fulla + / |u<v>||4dv) ds,

which yields Theorem 4.1 by virtue of Gronwall’s Lemma and the triangle inequality

lJug — uello < |Juf — inuello + [linue — uello-
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Theorem 4.2. For sufficiently smooth u, u;; and usyy we have
luy = inuelly + [lugy — weello < eh® {{lusell2 + [([|use(0)2 + [|u(0)[14)?

t
+/ (wteellz + weellz + luella + llulla

0
n ||u<T>|4dT>2ds1l/2}.
0

Proof. Differentiating (4.4) with respect to ¢, we have, for ¢ € S¥,

(Ote, ) + (VO Vo) + (VO(), Vo) = (uter — inute, p) + (V(ur — inur), Vo)
+ (V(u —ipu), Vo)

and hence, with ¢ = 6;; and Lemma 2.1,

d d
E(IIMI% +160:13) + E(Vtﬁ)(t),vet(t)) — 1643

< ch? (llueellz + Nuells + llulla)® + (162 13-

DN | =

Thus, integrating with respect to ¢, we find from (4.5) that
(4.6)

t
100l + 102 < ¢ [ (1613 + 1602) s+ cl (0}
0
t s
T ent / (laseellz + lusellz + lfella + el + / Julls dr)? ds.
0 0

Let t =0 and ¢ = 04(0) in (4.4), then according to Lemma 2.1

16¢¢(0)llo < ch?(|luee ()2 + [[u(0)l)

which, together with (4.6) leads to Theorem 4.2 by the triangle inequality

Jufy, — wello < lJufy — inueello + [linue — ueello-

Theorem 4.3. For sufficiently smooth u, u; and us we have
lu = uflo,00 < ChQ{IIUIIzoo + lJugell2 + flulls + {(IIUtt(O)IQ + [[u(0)]|4)

t s 1/2
[ Qe+ Tl + sl + el + [ ullaar?as]
0 0

18



Proof. Taking ¢ = G" in (4.4), we get by Lemma 2.2

t t
(B, G +6(z,1) + / Bz 5)ds < ch((lurell2 + lulls + / lu(s)]la ds).
0 0

Now it follows from Theorem 4.2 that
t
10(2)] < /0 |0(2, s)|ds + chQ{IUttlb + flulla + {(IUtt(O)IQ + [[u(0)]]4)?

t s 1/2
+ [ el + ol + s + s + | ||u<f>|4df>2ds} }
0 0

Then, the theorem holds by Gronwall’s Lemma and the triangle inequality

(4.7)

||uh —u

l0.00 < |Ju” —inu

l0.00 + [linu — u

|0,o<:~

Theorem 4.4. For sufficiently smooth u, u; and u;; we have
R 2 1\1/2 2
[w" —inull1,00 < ch <1Og E) lJweell2 + llulla 4 [(flwee(0) 2 + [lu(0)][4)
t s
[ Qalle + e+l + e+ [ s an? asp2 .
0 0
Proof. Setting ¢ = 9,G" in (4.4), we have in terms of Lemma 2.2

t
(ett,azGQ)Jraze(z,t)Jr/ D.0(z,s)ds
0

) 1\ 1/2 t
<ch?(tog ) Nl + llulla + [ lullads ).

t 1\1/2
.00 < [ 10:6:,9) ds-+ c(1og 1) Il
0

9 1\1/2 ¢
+ch?(log - ) (||utt|2+ Julla + / ||u<s>|4ds).
0
Theorem 4.4 follows from (4.6),(4.7) and Gronwall’s Lemma.

or

In the same way as in Sections 2 and 3, we have the main

Theorem 4.5. For sufficiently smooth u and uss we have

t s 1/2
||I§huhu||1<ch2{|u|3+[/o (lusell2 + ulla + / ||u<¢>|4d7>2ds} }
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Theorem 4.6. For sufficiently smooth u and us; we have

1\1

/2
| = ull o < ch? = (log 3 ) {nung,m + lusell> + lulla

t
+ {(Iuﬁ(o)lz + [|u(0)]|4)* +/0 (wteell2 + ueellz + lluella + llulla

s 1/2
+/ ||u||4d7)2 ds} }
0

Theorem 4.7. For sufficiently smooth u, u; and us, we have
1Bt — el < ch? {IUtls + Jlueell2 + {(IUtt(O)IQ +[[u(0)]]4)?

t
+ / (Iumlz + lusellz + lluella + llulla
0

+/Os |u(7')||4d7')2ds} 1/2}.

Remark 1. In another paper, we shall discuss the case of elements which are of
degree k > 2 for the above problems.

Remark 2. When  is a convex quadrilateral domain, then the corresponding
superconvergent results hold for such problems if the quadrilateral meshes are al-
most uniform and are constructed by connecting the equi-proportional points of two
opposite boundaries (see [5]).

Acknowledgement. Professor Y.P. Lin generously gave us his papers about
integrodifferential equations when the first author visited Canada in 1994. His out-
standing work in this field aroused our interest in such problems. The authors would
like to thank Professor M. Kfizek whose comments improved the final version of the
paper. The authors also thank an anonymous referee and the editor in chief for their
many helpful suggestions.

References

[1] J. Cannon, Y. Lin: A Galerkin procedure for diffusion equations with boundary integral
conditions. Int. J. Eng. Sci. 28 (1990), 579-587.

[2] M. KviZek, P. Neittaanmiki: On Finite Element Approximation of Variational Problems
and Applications. Pitman Monographs and Surveys in Pure and Applied Mathematics,
Longman Scientific & Technical, Essex, 1989.

[3] Q. Lin: A new observation in FEM. Proc. Syst. Sci. & Syst. Eng., Great Wall (H.K.).
Culture Publish Co., 1991, pp. 389-391.

20



[4]
[5]

Q. Lin, N. Yan, A. Zhou: A rectangle test for interpolated finite elements, ibid.

Q. Lin, Q. Zhu: The Preprocessing and Postprocessing for the Finite Element Method.
Shanghai Scientific & Technical Publishers, 1994.

Y. Lin: Galerkin methods for nonlinear parabolic integrodifferential equations with non-
linear boundary conditions. SIAM J. Numer. Anal. 27 (1990), 608-621.

Y. Lin, T. Zhang: The stability of Ritz-Volterra projection and error estimates for
finite element methods for a class of integro-differential equations of parabolic type.
Applications of Mathematics 36 (1991), no. 2, 123-133.

Y. Lin, V. Thomeée, L. Wahlbin: Ritz-Volterra projection on finite element spaces and
applications to integrodifferential and related equations. SIAM J. Numer. Anal. 28
(1991), 1047-1070.

V. Thomée: Galerkin Finite Element Methods for Parabolic Problems. Lect. Notes in
Math., 1054, 1984.

V. Thomée, J. Xu, N. Zhang: Superconvergence of the gradient in piecewise linear
finite element approximation to a parabolic problem. STAM J. Numer. Anal. 26 (1989),
553-573.

V. Thomeée, N. Zhang: Error estimates for semidiscrete finite element methods for par-
abolic integrodifferential equations. Math. Comp. 58 (1989), 121-139.

M. Wheeler: A priori Ly error estimates for Galerkin approximations to parabolic partial
differential equations. SIAM J. Numer. Anal. 10 (1973), 723-759.

Q. Zhu, Q. Lin: Superconvergence Theory of the Finite Element Methods. Hunan Sci-
ence Press, 1990.

Authors’ address: Qun Lin, Shuhua Zhang, Institute of Systems Science, Academia

Sinica, Beijing 100080, P. R. China.

21



		webmaster@dml.cz
	2020-07-02T09:13:55+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




