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WEIGHT MINIMIZATION OF ELASTIC PLATES USING 

REISSNER-MINDLIN MODEL AND 

MIXED-INTERPOLATED ELEMENTS 

IVAN HLAVACEK, Praha 

(Received July 8, 1994) 

Summary. T h e problem to find an opt imal thickness of the plate in a set of bounded 
Lipschitz continuous functions is considered. Mean values of the intensity of shear stresses 
must not exceed a given value. Using a penal ty me thod and finite element spaces with 
interpolat ion to overcome the "locking" effect, an approximate optimizat ion problem is 
proposed. We prove its solvability and present some convergence analysis. 

Keywords: Reissner-Mindlin plate model , mixed-interpolated elements, weight minimiza­
tion, penal ty me thod 

AMS classification: 49A22, 65N30, 73K40 

INTRODUCTION 

We consider a weight minimization problem for an elastic plate, the bending of 
which is described by means of the Reissner-Mindlin model. The constraints are 
given in terms of the intensity of shear stresses. The role of design variable is played 
by the function of thickness, belonging to a class of Lipschitz-continuous functions. 

We consider two cases of boundary conditions, namely those for (i) hard clamped or 
(ii) hard simply supported edges of the plate. The finite element method proposed by 
Brezzi, Fortin, Bathe and Stenberg (see [3] and the literature therein) was extended 
to plates of variable thickness in a recent paper [1]. Here we employ penalty method 
and some results of [1] to introduce an approximate optimal design problem, to prove 
its solvability and to present some convergence analysis. The existence of an optimal 
thickness function for the weight minimization problem is proved, as well. 
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1. SETTING OF THE OPTIMAL DESIGN PROBLEM 

Throughout the paper we consider an elastic homogeneous anisotropic plate, which 

occupies a domain $lx(—t(xi,x2),t(xi,x2)), where fi is abounded, simply connected 

domain in R2 with a polygonal boundary dQ and t belongs to the set 

Wad = {te C (0 ) j l(il) (i.e., Lipschitz functions) | 

*min ^ t(x1,X2) ^ *max, \8t/dXi\ < C;, % = 1 , 2 } . 

Here tmin, tmSiX, Ci, C2 are given positive constants, tmin < £max. 
Let the transverse displacement w (deflection) of the midplane belong to Ho (^) 

and let the rotation vector (3 of fibers normal to the midplane belong either (i) to 
[Ho1 (ft)]2 for hard clamped plate or (ii) to V = {(3 G [H 1 ^ ) ] 2 I P ' r = 0 on dtt} for 
hard simply supported plate. Here r is the unit vector tangential to the boundary. 

The components of the small strain tensor are 

l(dpa d/3p\ 
e°0 = - X 3 2 ^ + dZ:h a ' 0 = 1 ' 2 ' 

1 / dw 1 / ow \ 
3 = 2 f e " ^ ) ' « = -.-• e M = 0 . 

Henceforth, we use Greek subscripts within the range {1,2} and the summation 
convention for repeated subscripts. 

The following stress-strain relations are considered 

(1.1) crap = capjscys, 

OQLZ = &apep3, 

where the coefficients cap^s, &ap are constant, 

(1.2) Ca^s = CySaP = Cf3a~iS 

Ca/3-fSTapTyS ^ CoTapTap 

holds for all symmetric matrices (Tap) with some positive c0; £ is a diagonal matrix 
with positive entries. 

Assume that body forces are zero and an external surface load f = (0,0, / ) T acts 
on the upper surface xs = t(xi,x2). 

The total potential energy is 

(1.3) n(/3,w) = \a(t\(3,0) + \t[Vw -(3,Vw-(3}~ (f,w), 
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where 

(1.4) ã(t;ß,rj) = - / ЃCaß^дßa/дxß^дщ/дxб^dx, 
ó Jçг 

t[u,v]= ì t(Su)тvdx, 
Jn 

(f,w) = / fwdx. 
JQ 

The latter brackets will be used also for vector-functions from [L2(f£)]2, so that 

t[u,v] = (t£u,v). 

Let a specific weight u = const be given. Then one half of the weight of the plate 

is 

j[t) = / tudx. 
JQ 

The optimal design will be constrained as follows. We choose the second invariant 

of the stress tensor deviator (intensity of shear stresses) 

I2 = <~ii + a\2 - ana22 + 3(cr12 + O"i3 + cr23) 

at the extreme fibers (x% = ±t) of the plate or at the midplane (x$ = 0) to play the 

decisive role. Inserting the relations (1.1) and realizing that <ra3 = 0 for x3 = ±t by 

symmetry of stress tensor and aap = 0 for X3 = 0, we obtain 

(1.5) I2 =*2I2i(V/3) fora,3 = ±t 

I2 = I22(Vw-0) for 1x3 = 0 , 

where I21, I22 are homogeneous quadratic forms, namely 

(1.6) I2i(V/3) = (clllSd/3Jdx6)2 + ... + 2>(c12l6dP1/dx6)2, 

I22(Vw - p) = l{(£n(dw/dx^ - /37))2 + (^(dw/dx^ - /37))2}. 

Let us define functions 

^K(P,W) = (measA K ) - 1 / t2I21(V(3) dx - a2, K = l,...,s, 
JAK 

ipK(P,w) = (measAK)~1 / I22(Vw -/3)dx - T%, K = 5 + 1, ...,K< +00, 

JAK 

where AK C ft are given subdomains and ad, Td are given constants. 
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We define the constraints 

(1.7) <MM<0, K = 1,...,K 

and the set of statically admissible design variables 

sad = \te &ad | Yl [4>K{P(t)Mt))]* = o}, 
^ K=l ' 

where {(3(t),w(t)} is the minimizer of the potential energy Ii(t\(3,w) over (i) 
[Ho1 (ft)]2 x H^(ft) or (ii) V x Ho1 (ft). We shall consider the following Optimal 

Design Problem: 

(1.8) £o = argmin j(t). 
tesad 

2. EXISTENCE OF AN OPTIMAL THICKNESS FUNCTION 

The solvability of the Optimal Design Problem (1.8) will be proved by means of a 
penalty method. To this end, we introduce a penalized cost functional 

K 

/e(t;p(t)Mt))=3(t)+£-1 £ [i>,<((3(t)Mt))] + 

K=l 

where e > 0 is an arbitrary parameter. Then we define the following penalized 

optimal design problem 

(2.1) t£ = argmin J?£(t;(3(t),w(t)). 
teWad 

To prove the solvability of the problem (2.1) we shall need a continuous dependence 
of the solution {(3(t),w(t)} on the function t. The standard norms and seminorms 
in H/c(ft) will be denoted by \\ • \\k and | • |fc, respectively, k = 1, 2. 

Proposition 2.1. Let tn -> t in C(ft). as n -> oo, tn G Wad- Then 

||/S(*n)-/?(t)||l + H « n ) - ^ ) | l ">0. 

P r o o f . For brevity, let us denote U = {/3,uj}, Z = {I/,C}> fin = P(tn), wn = 
w(tn). Recall that [1—Lemma 1.3] positive constants Gi, c2, c3, c4 exist such that 

(2.2) °f™» (\\P\\\ + \w\\) < t[U, U]A < c4(\\j3\\l + M i ) 
C2 + C3t

2
m-m 
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holds for all {/3,w} € V x H^(Q) and all t € ^ad, where 

([U, Z)A = fi(*;/?, T?) + t[Vw - /3, VC - »?]. 

For any U„ = {/3n,wn} we have (cf. [1—(19), (20)]) 

(2.3) tAUn,Z)A = (f,Q Vz € V x i^ t f i ) ( [ # o W x ^ ( 0 ) , resp.). 

Inserting Z = Un and using (2.2) we obtain 

||/3«||2 + K l l < Cll/llolknllo ^ -^-H/llo + | C C F £ l K | 2 , 

where the Friedrichs inequality 

IKHo ^ CF\wn\\ 

has been employed. Choosing e\ = (CCF)~l, 

(2-4) r n | | 2 = ||/3n||2 + K | ? ^ C | | / | | g 

follows for all n. Consequently, a subsequence {Uk} C {Un} and a function U E 

V x Ho1!0)^ ([#o"(fi)]2 x # o " ( ^ resP-) e x i s t s u c h t h a t Uk - - U (weakly) in the 
corresponding space. 

We show that U = U(t), i.e., U solves the problem for the limit t. 

First we prove that 

(2.5) lim tk[Uk,Z]A = t[U,Z]A 
k —>oo 

holds for any Z. In fact, we may write 

(2.6) \a(tk;0k,ri)-a(til3,T))\ ^ \d{tk;/?fc,r;) - fi(t;/3*,r;)| + |a(*;/3fc - /? ,r-) | 

since 

j r^C i i^-^ iui&iMMii^o 
due to (2.4) and 

lim X2 = 0 
/e->oo 

by virtue of the weak convergence of (3k. 
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An analogous argument yields that 

(2.7) \(tk£(Vwk - 0k), 6) - (t£(Vw - /?), S)\ -> 0 V<5 € [L2(Q)]2. 

Combining (2.6) and (2.7), we arrive at (2.5). 
By (2.3), 

tk[Uk,Z]A = (f,0 VZ=( - ,C ) . 

Passing to the limit with k —> oo and using (2.5), we arrive at 

t[u,z]A = (f,Q. 

Since the solution of our boundary value problem is unique for any t G $Sad, 
U = U(t) and the whole sequence {Un} tends weakly to U(t). 

It remains to prove strong convergence. First of all, we have 

(2.8) lim tn[UniUnU = lim (/,tun) = (f,w) = t[U,U]A. 
n—>oo n—>oo 

Second, we can show that 

(2.9) \tn[Un,Un]A ~t[Un,Un]A\ ~> 0, as U -> CO. 

Indeed, by virtue of (2.4), we may write 

| a ( * n ; / 3 n , / 3 n ) - ^ 

and 

| ((tn - t)S(VWn ~ Pn), Vwn ~Pn)\^ \\tn - *HooC||Vwn - /Jn||g -> 0, 

so that (2.9) follows. 
Then we have 

lim t[Un,Un]A=t[U,U]Al 
n—too 

since 

\t[Un, Un]A ~ t[U, U]A\ ^ \t[Un, Un]A - tn [Un, Un]A\ 

+ \tn[Un,Un]A-t[U,U]A\->0. 

follows from (2.9) and (2.8). 

By virtue of (2.2) and the weak convergence of {Un} we obtain 

C\\Un - U\\l ^ t[Un -U,Un- U]A = t[Un,Un]A - 2,[Un,U]A + t[U,U]A -> 0. 

• 
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Lemma 2 .1 . Let tn-*t in C(Q) as n —> oo, tn 6 Wad- Then 

lim [iPK(P(tn)Mtn))]+ = [i>K(0(t)Mt))] + , K = 1,...,K. 
n—>oo L 

P r o o f . We may write 

\[i>K(P(tn)Mtn))]+ ~ [4>K(/3(t)Mt))] + \ 

^ \4>K(P(tn)Mtn)) ~ lpK(P(t)Mt))\ 

< (meas A * ) " 1 / |inI2i (V/?„) - (2J2i (V/?)+ 
• ! A K 

+ I22(Vu-n - pn) - I22(Vw -P)\dx 

^ (measAK)-1 f (*LxlI2i(V/?n) - J2i(V/3)| 
•lAK 

+ |i2 - t2 | |/2i(V/3)| + |l22(Vu,n - /3n) - I22(Vw - /J)|) do;. 

Since J2i and J22 axe homogeneous quadratic functions, the integral has a following 

upper bound 

C{\\Pn-m\\Ml + M\l) + \\t2n-t2\\oo 

+ (\\VW - (3\\0 + \\Vwn - /?n | |o)(| |VK " w)\\0 + Wn ~ / % ) } , 

which tends to zero due to Proposition 2.1. D 

Proposition 2.2. The penalized problem (2.1) has a solution for any e > 0. 

P r o o f . The functionals j(t) and [jpx{P(t),w(t))] are continuous in ^2/ad by 
virtue of Lemma 2.1. The set $/ad is compact in C(Q). Hence a minimizer t£ € ̂ /ad 
exists. D 

Theorem 2.1. Assume that Sad ?- 0. Let {e}, e -> 0+. be a sequence and 
let {t£} be a sequence of solutions to the penalized optimal design problem (2.1). 
{(3(t£),w(t£)} the sequence of corresponding rotation and deflection fields. 

Then there exist a subsequence {£} C {e} and to E Sad such that 

t£ -> t0 in C(ft), 

\\0(t£) - P(t0)\\i + \w(t£) - w(t0)\i -> 0, 

where to is a solution of the Optimal Design Problem (1.8). 

P r o o f follows from Proposition 2.1, Lemma 2.1 and the compactness of the set 
^ad- For the details, see an analogous proof of Theorem 2.1 in [2]. D 
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Corollary 2.2. IfSad 7- 0, there exists at least one solution of the optimal design 

problem (1.8). 

P r o o f . An immediate consequence of Proposition 2.2 and Theorem 2.L • 

3. APPROXIMATE OPTIMAL DESIGN PROBLEM 

We are going to define an approximate problem, combining the penalty method 

with a finite element discretization, by means of mixed-interpolated elements [3]. In 

contrast with [3], however, we need a more general method, which includes plates 

of variable thickness. Such a generalization was given by the author in [1] together 

with an error analysis, concerning a particular choice of piece wise polynomial finite 

element spaces. Here we employ the same finite elements and exploit some results of 

the above-mentioned paper. 

Let us consider a regular family {<%}, h —> 0+, of triangulations of the domain ft. 

We denote by J?k the space of piecewise polynomials on 2?h of degree ^ s, which 

belong to Hk(ft). Let B3 be the space of "bubble functions" on 5~h of the third 

degree, i.e., 

B3 = {v\v\K e P3(K) n H^(K) f o r a11 triangles K e 3?h}. 

Let Hh be the intersection of (.i^10L?3)2 with [HQ (ft)]2 or V, respectively, (Crouzeix-

Raviart elements), Wh = ^ n H^(ft). 

Moreover, we use the space RT\ of Raviart-Thomas elements of the first degree. 

Recall that (see [3]) 

RT^K) = (Pi(K)f + xPi(K) VK e STh 

and RT\ C H(div;!f2), i.e., the degrees of freedom are chosen in order to ensure 

continuity of the flux at interelement boundaries. Let (RTi)1- denote the rotation 

of vector-functions from i?7i by TI/2, defined by aL = (-a-2,ai)T. We define the 

interpolation Uh: Hh -+ (RTi)L by means of 

Һ (r\h - Uhr]h) 'Tjjids = 0 V> e Pi (e) 

for all sides e e dK e S?h, and 

(r)h-Uhr)h)o\x = § VKe<3?h. L ІK 
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Here P\(e) denotes the space of linear polynomials on the side e. 
Instead of ^ad we introduce an internal approximation 

We define the Approximate Optimal Design Problem 

(3.1) te
h =zxgmmJe(th\Ph(th),Wh(th)), 

th€&ld 

where 

(3.2) {0h(th),wh(th)}= argmin {\a(th;Vh,r)h) 
{vhXh}eHhxwh 

+ \(thg(VQh - nhnh), v a - UhVh) - (/, a)} . 

Next, let us prove the solvability of the problem (3.1). To this end we first establish 

Lemma 3.1. Let &h be fixed and let tn G Wh
d, n = 1, 2 . . . , 

th —>• th, as n -» oo. 

Then 

Ph(tn
h) -+ Ph(th), 

wh(t
n) -+wh(th). 

P r o o f . We shall drop out the subscript "/i", in what follows. Let us denote 

Pn = 0(tn), wn = w(tn), (3 = /?(*), w = w(t), Un = {/3n,ivn}, U = {/3,w}, Z = 

(3.3) t[U, Z\\ = d(t- /?, n) + (t£(Vw - II/3), VC - Un). 

The definition (3.2) implies that 

(3.4) t,[Un,Z\h
A = (f,0 VZeHhxWh 

Let us denote 

lic|| = (M\l + K)1/2, 
An = Un-U = {/3n-p,wn-w}. 
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Using some results of [1—(16), (27)], we can prove that the form *[U, Z]A is uniformly 
elliptic, i.e., 

(3.5) t[U,U]h
A>c\\U\\2 

holds for all U G Hh x Wh, h G (0,1] and t G Wad, where c > 0 is independent of U, 

ft, t. (The proof is parallel to that of [1—Lemma 1.3]). 

Since %h
d is closed, t G Wh

d. By definition, we have 

(3.6) t[U,Z]h
A = (fX) VZeHhxWh. 

From (3.5) and (3.4) we get 

c||Un||2 ^ tAUn,U"]h
A = (f,wn) < C||/||o||t/n|| 

so that the sequence {||Un||} is bounded. 

It is readily seen that 

(3.7) U4U,An)
h
A-t[U,An}

h
A\ 

£\a(tn,0,0n-0)-a(t;0,0n-0)\ 
+1 ((*« - t)*(Vw - n / ) ) ,vK -w)- n(/?„ - p)) \ 

^C{| | ( ( n ) 3 - t 3 | | oo | | /3 | | i | | /3„-^ | | i 

+ ¥n - t lUMi + ||n/3||o)(K - Hi + lin(/?„ - 0)h)} 
^ c(\\(tn)3 - <3iu + \\tn - <||oo)||U||||A„|| -> o, 

since | |An | | are bounded and 

l|n»7||o < Nli v»,eHfc 

(see [ l-(27)]) . 
Finally, we may write 

c | |A„ | | 2 ^ t , . [U" ,A„]^ - t n[U ,A„]^ 

= (t«[£T, An]
h

A - t[U,An}
h
A) + (t[U,An)

h
A - .»[£/, An]

h
A). 

Form (3.4) and (3.6) we see that the first term vanishes. The second term tends to 

zero by virtue of (3.7). • 
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Theorem 3.1. The Approximate Optimal Design Problem has at least one solu­

tion for any (fixed) triangulation &h and any positive e. 

P r o o f . Making use of Lemma 3.1, we prove that the functions 

th -» \}l>K(th\fih(th),wh(th))] 

are continuous in fya
h

d (cf. the analogous proof of Lemma 2.1). Consequently, the 
function th -> ^{th]Ph(th),Wh(th)) in (3.1) is continuous, as well. 

Obviously, we have 

th e Wa
h

d <=> {th(Qi)}Zi e*hC Rr", 

where Qi are vertices of <^. The set srfh is compact, being bounded and closed. 
Hence the functional J?e attains its minimum in Wa

h
d- • 

4. FINITE ELEMENT ANALYSIS 

A natural question arises, what happens if we keep the parameter e fixed and 
refine the mesh size h. We can prove, that a subsequence of solutions {t£

h}, h -> 0+, 
exists, which converges to a solution t£ of the penalized optimal design problem. 

Lemma 4 .1 . Let us assume that the solution {f3(t),w(t)} is regular, so that 

(Ai) p(t) G [H2(Q)]2, w(t)eH2(n) vtewad, 

and there exists a constant C > 0 such that 

\\P(t)h + \\™(t)h^C vte&ad. 

Then 

\\P(t) - Ph(t)h + MO - MOli ^Ch vt e wad, vli e (o, l] 

holds, where the constant C is independent oft and h. 

P r o o f . Denote again U = {/3,uj}, Z£ — (17,C), 

t[U, 3T\A = d(t; /?, 77) + t[Vw- /3, V77 - c]. 

The solution U = U(t) satisfies the condition 

(4.1) t[u,&\A = {f,o v2re[H'(n)}2xH'(n) (OVVXH^Q)). 
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The approximate solution Uh = Uh(t) = {(3h(t),wh(t)} satisfies the analogous con­
dition 

(4.2) t[Uh,2Th]
h

A = (f,Ch) V2?h£HhxWh 

(cf. (3.2) and (3.3)). 
Subtracting, we obtain 

(4.3) t[U,2fh]A-t[Uh,2fh]
h
A = 0 V2fheHhxWh. 

For the time being, let Vh G Hh x Wh be arbitrary. From the uniform elipticity (3.5) 
of the second bilinear form and (4.3) we obtain 

(4.4)O||U^ - yh\\
2 ^ t[uh - rh,uh - yh]

h
A 

= t[uh - rh,uh - yh]A + t[rh,uh - vh]A - t[n*uh - rh]\ 

^ c\\u - rh\\\\uh - rh\\ +1[%, uh - vh\A - t[rh, uh - vh]
h
A. 

We use the triangle inequality and (4.4) to derive that 

(4.5) ||U-U,KC inf U\U-n\\+ sup M'^U-tW'^AX 
rh£HhxWh I 2TheHhxWh \\-*h\\ J 

(which is a consequence of the First Strang Lemma—cf. [5—Th. 26.1, p. 192]). 
Let us substitute Yh := Uh, i-e. the projection of U into Hh x Wh with respect to 

the inner product 

(Uh,2k)io = (0h,Vh)i + (Vwh, VCOo. 

Thus we arrive at 

(4.6) ||U - Uh\\ ̂  C{\\U - Uh\\ + sup(t[Uh, &h]A - t[Uh, &k]h
A)l\m\}. 

3Th 

The classical approximation theory yields 

(4.7) \\U-Dh\\^ inf M / { | | / 3 -% | | i + h-C/. | i}<C7MI/3(l) |2 + Kt ) | 2 ) 
{rih£h}€H,„xWh 

Next, we may write 

t[Uh, &h}A ~ t[Uh, 2fh]h
A = [Vw/, - fa, VCfc - Vh] ~ [Vwh - Uhph,VCh - UhVh] 

= [-fa + Uhph, VOJ + [Vffih, -Vh + UhVh] + [fa,Vh] - [Uhfa,Uh,Vh] ± [UhPh,Vh] 

< c{(IC/.|i + l l / M M l i n ^ - fa\\0 + (liDfcli + \\nhfa\\0)\\nhr,h - r,h||o}. 
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Making use of the estimates 

\\Hh0h - 0h\\o ^ Ch\\ph\\u WKhfih - flh\\o < C7i||ffo||i 

and [1—(27)], we obtain 

(4.8) ([Uh, &h]A - [Uh, 2fh]A)l\\2?h\\ < Ch(\\M\i + K l i ) . 

Since ||Uh|| < ||U|| follows by definition, we have 

(4.9) U&ll! + Iffifclx < V2||C7fc|| ^ V2{\\{5{t)h + K O l i ) 

Inserting (4.7), (4.8) and (4.9) into (4.6), we arrive at 

(4-10) \\U-Uh\\^Ch{\\mh + \\w{t)\\2). 

Consequently, Lemma 4.1 follows from (4.10) and (Al). D 

Proposition 4.1. Let the assumption (Al) of Lemma 4.1 be fulfilled and let {th}, 
fh 
ad) 

h -» 0+ be a sequence ofth E ^^d, such that 

th -> t in C(Sl). 

Then 

\\0h(th) - P(t)\\i + \wh(th) - w(t)\i ^ 0 as h - • 0+. 

P r o o f . By triangle inequality, Lemma 4.1 and Proposition 2.1 we have 

\\Uh(th) - U(t)\\ < \\Uh(th) - U(th)\\ + \\U(th) - 1/(011 

^Ch + \\U(th)-U(t)\\-+0. 

Proposition 4 .2 . Let the assumptions of Proposition 4.1 be fulfilled. Then 

«/e(t„;/8„(tfc),Wfc(*)) -* t f*.(t ; / J( t) , t -( t)) , a s / . - > 0 + . 

P r o o f is analogous to that of Lemma 2.1. • 
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Lemma 4.2. Let each triangle K G 2?h € {^h}, /i - • 0+, have two sides parallel 
with the coordinate axes. Then for any t G ̂ ad there exists a sequence {th}, h —> 0+, 
such that th G ^ ^ and 

^ -> t in C(Q).. 

For the Proof—see [2—Lemma 4.2]. 

Theorem 4 .1. Let the regular family of triangulations {S?h}, h - r 0+. satisfy 

the assumption of Lemma 4.2. Let the solutions {/3(t),w(t)} satisfy the assumption 

(Al) of Lemma 4.1. 
Assume that {t^}, /i -> 0+, is a sequence of solutions of the Approximate Optimal 

Design Problems (3.1). 

Then there exists a subsequence {t£
h} C {t^} and an element t£ G ̂ a d such that 

(4.11) t? -> te in C(fi) 

(4.12) Wh(t\) - (5(t£)h + | ^ ( t ? ) - ^ ( t £ ) | ! -> 0, 

where t£ is a solution of the penalized optimal design problem (2.1). 

Each uniformly convergent subsequence of {th} tends to a solution of the problem 

(2-1). 

P r o o f . Since fyh
d C %ad and ^ d is compact in C(H), a subsequence of {t^} 

exists such that (4.11) holds with t£ G ̂ ad- Then (4.12) follows from Proposition 4.1. 
Consider any t G ^ad- By Lemma 4.2, there exists a sequence {rh}, T^ G ^ a ^ , 

such that Th —> t in C(fi). By definition of the problem (3.1) 

M^WK)^'M)) < */«fa; toWfa))-

Passing to the limit with h -> 0+ and using Proposition 4.2 on both sides, we obtain 

J?£(t£-p(t£),w(te)) ^ J?(t',P(t)Mt))> 

Consequently, te is a solution 6f the problem (2.1). The rest of the theorem is obvious. 
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