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Summary. The preconditioned conjugate gradient method for solving the system of linear 
algebraic equations with a positive definite matrix is investigated. The initial approxima­
tion for conjugate gradient is constructed as a result of a matrix iteration method after 
77i steps. The behaviour of the error vector for such a combined method is studied and 
special numerical tests and conclusions are made. 
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1 . INTRODUCTION 

Let us consider the system of n linear algebraic equations 

(1.1) Ax = b 

supposing that the matrix A is real, symmetric and positive definite. Let x* denote 
the solution of (1.1). Before presenting an overview of the results of our work, 
in this introduction, we will make the following consideration, which will contribute 
towards better understanding of the whole problem. Let us mention here the notation 
used in this article. By Rn we denote the real linear space of all column vectors 
x = ( x i , . . . ,xn)

T with real components. The symbol L((Rn) denotes the set of 
all real n x n matrices. The vector e;(n) is the ith column of the identity matrix 

This paper was supported by the Grant Agency of the Czech Republic under Grant 
No 201/93/0429. 
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I € L(Rn). We will write only e*, if the dimension n is prescribed. Let 

n 

e(n) = £ e . ( n ) = ( l , l , . . . , l ) T . 
1 = 1 

If ut- e Un, i = 1,2,.. .,s, then (wi,. . . ,w s) is the matrix with columns U{. The 
symbol 0 denotes the null vector in (Rn. 

Let C be a nonsingular matrix n x n. If we multiply the system (1.1) from the 
left by the matrix CT, we obtain 

(1.2) CTACC~1x = CTb, 

and if we substitute 

(1.3) A = CTAC; x = C~lx\ b = CTb, 

we obtain from (1.2) the system 

(1.4) Ax = b 

with a symmetric and positive definite matrix A, having the solution x* = C~lx*. 
Let xo € Rn and let us put f0 = b — Ax0- Let us suppose that the Krylov subspace 

span{fo, Afo, • . . , Ak~lfo} has the dimension k. The vector xk that we obtain in the 
kth step when applying the conjugate gradient method is just the vector which lies 
in the linear variety 

(1.5) xo + span{f0,-4fo,...,-4fc_1fo} 

and fulfils the condition 

(1.6) rk = b- Axk± s p a n ^ i f o , . . . , - ^ - 1 ^ } . 

Let us define 

(1.7) M = CCT, Pk = Cpk, xk = Cxk, b = C~Tb. 

Thus 

rk = b - Axk = CTb - CTACC~1xk = CT(b - Axk) 

and if we write in the sequel 

(1.8) r(x) =b- Ax, 
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then 

(1.9) rk=CTr(xk). 

By analogy with the relations (1.5) and (1.6) the vector xk that we obtain in the 
kth step when applying the well known conjugate gradient method with precondi-

. tioning given by the matrix M is such a vector in the linear variety 

(1.10) x0 + span{Mr(rr0), (MA)Mr(x0),..., (MA)k~lMr(xo)} 

that fulfils the projection condition 

(1.11) r(xk) _L span{Mr(x0), MAMr(x0),..., (MA)k~lMr(xo)}. 

(For details see [D.O'L].) 

There are more possibilities how to practically realise the calculation of xk. For 
programming purposes the preconditioned conjugate gradient method for solving the 
system (1.1) is usually formulated by the following sequence of recurrences. 

Algor i thm 1.1 

1) Choose xo G lRn and put r(x0) = b- Axo, Po = Mr(xo). 
2) For k = l , . . . , n do 

if r(xfc_i) = 0 
then 

set x* = xk-i and quit 
else 

Afc_i =r(xk-i)
TMr(xk-i)/pl_lApk-i 

xk = Xk-i + Xk-iPk-i 

r(xk) = r(xk-i) - Afc-iAp/c-i (or r(xk) = b- Axk) 

Pk = r(xk)
T Mr(xk)/r(xk-i)

T Mr(xk-i) 

Vk = Mr(xk) + Pkpk-i 

endif 

endfor 
O) X = = xn 
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The other possibility is to construct the sequence {£fc}n_0 by the three-term re­
currence algorithm given by the formula 

(1-12) £fc+i =xk-i+u>k+i('yk+iZk + Xk-Xk-i) 

where the coefficients u>k+i and 7^+1 are calculated according to well known formulas 
(see [G-L]) and Zk = Mr(xk). Putting 7^ = uJk = 1 for all k, we obtain the iterative 
process 

(1.13) £fc+i = (I - MA)xk + Mb. 

Therefore the conjugate gradient method represents an acceleration of convergence 
of the successive iteration (1.13). To give some quantitative connection between the 
iterative process (1.13) and the preconditioned conjugate gradient algorithm we will 
consider the following algorithm. 

Algor i thm 1.2 

1) Choose y0 G IRn and an integer m. 
2) Calculate the mth iteration ym by the following iterative process: 

(1.14) yi = (I~ MA)y /_i -I- Mb, / = 1,2,..., m. 

3) Put x0 = ym and carry out k steps of the preconditioned conjugate gradient 
method (i.e., Algorithm 1.1). 

In the sequel we set 

(1.15) S = MA, Q = I-S. 

Let us note that in the notation (1.15), the iterations (1.14) have the form 

(1.14') yi = Qyi-i + Mb. 

From the equalities (1.14)' and x* = Qx* + Mb it follows that 

(1.16) yi-x* = Q(yt-1-x*). 

If the matrix Q is convergent then the sequence {yi}™0 constructed by an iterative 
process (1.14) converges to the solution of the equation (1.1). From (1.16) it follows 
that 

(1.17) yi-x* =Ql(y0-x*). 
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The aim of this paper is to investigate theoretically the behaviour of the sequence 
{xk — x*}k_Q, where the sequence {-Efc}n

=0
 1S obtained by using Algorithm 1.2, and 

on the basis of the results obtained to draw conclusions for practical calculations. 
In view of the connection between extrapolation and projection given in the paper 
[Si 88], it could be expected that we obtain an analogous formula as in [Si 86] or 
[Zi 84]. The formula (3.16) in Theorem 3.1 inspired us to use some small number of 
successive iterations (1.14) before starting conjugate gradients. This approach could 
be of advantage if one iteration (1.14) costs substantially less work than one step of 
Algorithm 1.1. For the demonstration of this idea two examples are presented. The 
numerical experiments show that if we do not calculate with a high accuracy then 
the use of Algorithm 1.2 could be more advantageous. 

In Section 2, preparatory considerations are made. In Section 3, the formula for 
the difference Xk — x* is derived and formulated in Theorem 1.3. Some numerical 
experiments are demonstrated in Section 4. 

2 . PREPARATORY CONSIDERATIONS 

For the vector x G Un we have defined r(x) = b — Ax. Let us further set 

(2.1) r(x) = Mb-(I- Q)x = Mr(x). 

First, we shall prove the following lemma. 

Lemma 2 .1 . For any positive integer k and any nonzero vector v define spaces 

Wx = span{Mi;, SMv, S2Mv,..., Sk~lMv}, 

W2 = span{Mv, QMv, Q2Mv,..., Qk~lMv}. 

Then 

(2.3) WX = W2. 

P r o o f . Let us consider a matrix polynomial G in the form 

(2.4) G = G(S) = fi0I + ViS + . . . + / i f c - i^" 1 . 

Then let us modify the equality (2.4): 

k 

G= 5> fc_J(-l)*-->(I-S-I)*--' 
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k-1 

= /xfc-i(-i)
fc-1X3 rfc. ^{-mi-s)^-* 

t=0 ^ l ' 

+^_2(-i)*-2 53 [k"2) ( - ^ v - 5)fc"2"i+• • • 
t=0 v l ' 

1 

+ /i1(-i)"r(-i)«(/-5) i- i+/.oI 
t=0 

= !/*_!(/ - S)*"1 + I/fc_2(/ - S)k~2 + . . . + !/!(/ - 5) + I/QI, 

where numbers i/*-/ are defined by the last equality according to which 

(2.5) ^ - ' H - 1 ) * " ' _ > - < ( * ! ; ) for.-.-,...,*. 

Let /Vjfc_i be a lower triangular matrix whose /th row is the row vector 

<-)"-'[C:1
1)'C:2

2)'-Co')'° •]• 
If we set 

H = (/Xfc_i,//fc_2 , . . . , /xo) , 

i/ = (l/ik-l,l/fc-2,...,I/o)T, 

then the above mentioned procedure reveals that 

(2.7) v = N*_i/i. 

At the same time Nk-i is a lower triangular matrix with +1 and - 1 alternating on 
the diagonal. Thus, it is nonsingular. 

k-i 
If q G Wi then q = £ ^iS{{Mv). However, 

fc-i fc-i 

~T /..^(Mv) = ~T I/Í(7 - SY(Mv), 
i=0 i=0 

where the numbers i/i are defined by the relation (2.7) and thus q G VV2. As IV^-i 
is nonsingular, it is clear that the inverse implication, i.e., g G VV2 =!> q G VVi, holds. 

D 
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Before examining Algorithm 1.2 let us present one of the characteristics of Krylov 
subspaces. The matrix S is similar to the symmetric matrix CTAC and thus the 
eigenvectors of the matrix S form a base in Rn. Let (£i,t/Ji), (£2*^2), . . . (£n, wn) 
be all eigenpairs of the matrix S. The pairs are written as follows (eigenvalue, 
eigenvector). Let us also define the sets M = {1 ,2 , . . . ,n} and JVf = Af — {i} for all 
i. Let W = span^JieA/-, W* = span{ivj} j €^.. Since dim Wi = n - 1 there exists 
a nonzero vector V{ _L W« such that vjwi ^ 0. (The equality relation is met only 
for the null vector V{.) Let us also denote by Pi (i = 1 , . . . , rc) the projection Rn to 
spanfwi}. 

Theorem 2.1 . Let £»• (i = 1 , . . . ,n) be mutually different numbers and let at 
least k vectors (k ^ n) from the set FiMr(xo), P2Mr(x0),..., PnMr( .r0) be nonzero. 
Then fc.be Kryiov subspace 

(2.8) ^pan{Mr(x0), SMr(x 0 ) , . . . , 5 fc-1Mr(rr0)} 

has the dimension k. 

P r o o f . Without any loss of generality, let us suppose that the first k vectors 

PiMr(xo), P2Mr(xo), . . . , P*Mr(a;o) 

are nonzero. Let us write the spectral decomposition 

n 

(2.9) Mr(x0) = ^ P i M r ( a : o ) . 
i=0 

This implies that 

n 

(2.10) S*Mr{x0) = Yl%PiMr(xd> J=0 , l , . . . , f c -1 . 
2 = 1 

Let us suppose that the vectors on the left hand side of (2.10) for j = 0 , 1 , . . . , k — 1 
are linearly dependent. Then there exist real numbers 70, . . . ,7^-1 of which at least 
one is nonzero, such that 

fc-i 

(2.11) ^ 7 J 5 j M r ( r r o ) = 0 . 
3=0 

Let us multiply the equality (2.11) from the left successively by the vectors vj (s = 
1,2,. . . , k) defined above (i.e., vs _L Ws and vjvjg 7-- 0) and let us substitute from the 
relation (2.10), then we obtain 

k-i 

(2.12) J2 -Yj&TP'Mrixo) - 0 for 5 = 1,2,.. . ,*. 
3=0 
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Since the vector PsMr(x0) is, due to the difference of the eigenvalues &, a multiple 
of the vector ws, then vs

rPsMr(x0) 7- 0 and after reducing in (2.12), we obtain 

(2.13) 7*- i£" - 1 + 7fc-2^"2 + • • • + 7o = 0 for 3 = 1,2,..., fc, 

which means that the polynomial /yk^.1z
k~l + jk-2z

k~2 + • • • + 7o of the (k - l)th 
degree has k different roots, which is a contradiction. • 

From the proof of Theorem 2.1 it is easy to see how to reformulate this theorem 
in the case that the eigenvalues are not mutually different. But such investigations 
are not the purpose of our paper and therefore we will omit them. Let us mention 
that according to Lemma 2 A also the space 

(2.14) span{Mr(x0), QMr(x0), Q2Mr(x0),..., Qk~lMr(x0)} 

has the dimension k. 
Let us suppose the following: 

Supposi t ion 1. The space (2.14) has the dimension k. 

And now we will go back to the conjugate gradient method. 
With respect to Lemma 2.1 

(2.15) xk=x0 + v0Mr(x0) + vxQMr(x0) + ... + vk^1Q
k~1Mr(x0), 

where the numbers *v0, ui,..., vk-\ are constructed so that the conditions of verti­
cally (11.1) are fulfilled, i.e., 

(2.16) r(xk) L QsMr(x0) for j = 0 , 1 , . . . , k - 1. 

Let us define the numbers a0 ', a[',..., a[ ' as solutions of the following system 
of linear algebraic equations: 

(2.17) 

According to (2.1), f(x) = Qx + Mb-x. If {yi}™0 is a sequence obtained by the 
iterative process (1.14') then 

(2.18) f(x0) = f(ym) = ym+\ - y™ 
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+a\ ß 
+aík) = 1 

= v0 

= vx 

a(k) 
ak 

(k) 
ak 

+«ľЛ = Vk-2 

= vk-i 



and it follows that 

(2-19) <3*r(z0) = Vm+t+l ~ ym+t-

If we put r(xo) = Mr(x0) in the relation (2.15) and substitute for i/0,...,i/jt_i 
from the equalities (2.17), we obtain according to (2.19) 

xk = ( Yl atk)) v™ + ( 2 atk)) (ym+i - ym) 
M=0 ' M = l 7 

(2.20) / * \ / k \ 
+ ( d a*fc)) (^m+2 - ? /m+ i ) + ••• + ( X ] a ^ } ) (2/m+ jk" ^m+fc-i) 

t=2 £=/e 
(*0 • (*0 , (*0 

= Oi0
 lym + a\ 'ym+i + . . . + a £ '2/™+*. 

Let us calculate r(xk) by substituting from the first equality (2.17) and (2.20): 

k 

r(xk) = b - Axk =b~Yl a^ Ay™+t 
(2 '2 1) 

= ^a[k\b- Ayrn+t) = f^a[k)r(ym+t). 
t=o t=o 

Now we will formulate the conditions of verticality (2.16) by substituting from 
(2.20), (2.21) and (2.1) thus obtaining the following system of linear algebraic equa­
tions: 

J2(Qsr-(xo))Tr(ym+t)ar =0, s = 0,...,k-l, 

(2.22) t = 0
 fc 

£=0 

Lemma 2.2. If we denote by B = (bst) s-=o,...,* (rows) the matrix of the system 
t=0,...,k (columns) 

(2.22), then 

(2.23) bst = (C - 1 Q s r (^o)) r (C- 1 g i T (x 0 ) ) 

for t = 0 , . . . , k , s = 0 , . . . , k - 1. and 

(2.24) bk,t = 1 

for t = 0 , . . . , k. 
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P r o o f . Let us modify the coefficients of the system (2.22) according to (2.1) 
and (1.7) 

(Q9H*o))Tr(Vm+t) = f(xo)T(Qs)TM-lr(ym+t) 

= ?(xo)T(Qs)TC-lC-lQtr(x0) 

= (C-1Qsr(x0))
T-(C-1Qtr(xo)). 

• 
It follows from the relations (2.20) and (2.17) that 

k 

(2-25) xk-x* = J2a{k)(ym+t-x*). 
t=0 

The conditions (2.16) yield a system of linear algebraic equations for the unknowns 
v0, ..., Vk-\. The matrix of this system is positive definite because of Supposition 1 
and the vector a(fc) = (a0

k),a[k),.. .,a[k))T fulfilling (2.17) solves the system (2.22). 
If the matrix B of the system (2.22) is singular then the kernel N(B) ^ {0} and 
every vector a^k) + w, with w G N(B) solves (2.22) which is in contradiction to the 
existence of only one solution of (2.16) in view of (2.17). 

Therefore, the matrix B is nonsingular. 

No te . We do not indicate the dependence of the matrix B on m and write only B. 

3. CALCULATING THE DIFFERENCE xk - x* 

Let (A{, U{) be eigenpairs of the matrix Q = I-MA. Since the matrix Q is similar 
to the symmetric matrix I — CTAC, all the numbers X{ are real. Let the eigenvalues 
be numbered so that 

| A i | ^ | A 2 | ^ . . . ^ | A n | . 

In the following it will be seen that without any loss of generality we can suppose: 

Supposition 2. Let 

(3.1) |Afc+i| >|Afc+2| and A. ? 1 Vt. 

Let 

n 

(3.2) yo - x* = ^2 fcui 
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be the spectral decomposition of the vector y0 — x*. According to (1.17) and (3.2), 

n 

(3.3) y7n+t-x*=Y,PiK+tUi, 
i= i 

n 

(3.4) 2/w + f + 1 - y w + t = Yl A(A* " W ^ . " = Qlr(xo). 
i= i 

The last equality follows from (2.19). 
If we set 

(3.5) Vi = C~lPi(\i - l)uu i = 1 . . . , n, 

then Vi is the eigenvector of the symmetric matrix I — C7 AC and thus 

(3.6) vfvj = 0 for i ^ j . 

Lemma 3.1. If 7-. = vjvi then for the elements of the matrix B, defined by the 
relation (2.23), 

(3-7) bst = J2^x2im+S \-s+t 
H"i 

i=l 

holds for s = 0 , . . . , k - 1, t = 0 , . . . , k. 

P r o o f . According to (3.4), (3.5) and (3.6), 

bst = (c"lQaf(xo)\ (C-'Q^xo)) 

T / n 

i>r+V) (j:xT+t^)=í:^im+s+t 

i= l ' M = l ' i=l 

holds. 

If 
« « = ( < # > . . . . . « « ) * • , 

we can rewrite the system (2.22) in the form 

(3.8) Ba( f c»=c f c + i . 

Now we will calculate the coefficients a\ ' according to Crammer's rule, substitute 
them into the sum (2.25) and express this sum in the form of a quotient of determi­
nants. This procedure is well-known (see [Si 86]) and so we can write directly the 
expression for xk - x* using the following simplifying notation. 

29 



For any positive integer t and an integer s G ( 1 , . . . , n) let us define the following 

vectors cteUk,gte Un and dts G Uk: 

*= ( _ 7 ^ , _ ^ + 1 , . . , _ 7 Л 4 + ' г - 1 ) Г , 
^ г = 1 г = 1 г = 1 ' 

(3.9) 4*) = (А^+ 1 , . . . ,А^- 1 ) Г , 
П 

i=\ 

According to (2.25), (3.7), (3.8) and (3.9), 

(3.10) xk-x* = 

detfC2m' 
* _ \ gm, 

C2m+1, • • • , C2m+k 

gm+1, • • • , 9m+k 

, (C2m, C 2 m + 1 , •••, C2m+A: \ 
e v i, i, ..., i ; 

In view of the notation (3.9) we have 

C2m, C2m+1, •••, C2m+fc 

gm, • gm+1, • • • , 9m+k 

í Er=17iA?™, Er = 1 7.A 2 m + i , . . . , Er= 17iA 2 m + f c \ 
Er = 1 7iA 2 m + i , Er = 1 7iA 2 m + 2 , . . . , Er= 17iA t

2 m + f c + i 

En \2m+k-\ ym \2m+k v ^ n /v \2m+2fc-l 

í=l HAi i l^i=\ nAi > " • •> Z^i=\ HAi 

V Er=iAAr«., Er=iAAm+i«ť, ••, Er=iftAr+fcu,- y 

and analogously in the denominator of (3.10). The determinant of this matrix is 
taken exactly according to definition. Thus it is the sum of (fc -f 1)! vectors. Each 
term of addition is a multiple of one of the vectors u\,... ,ixm, which will become 
evident from further modifications. A modification of the determinant of a similar 
type is described in the works [Si 86], [Zi 84] or [He]. For our case the process 
presented in [He] is the most suitable and we will now briefly outline it to elucidate 
the whole situation. 

By AC we denote the set of all (fc -f l)-tuples (Zi, /2, •.., h+i) of integers such that 
U G {1,2,..., n) and U / lj for i ^ j . Further, let C be the system of all permutations 
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of the numbers 1,2,..., k. According to this notation, 

, (C2m. C2m+1> •••? &2m+k \ 

V 9m, 9m+l, •••, 9m+k J 

7Zi4.>m,Zi> 7Z 2 ^2m+l,Z 2 ' ••*> 7Zfc+i"2m+,-c,Z 
" t i l , , . . . , / 3 . f c + 1 A m + > 

7<fc) ~. Ak) ~. Ak) 

__ V ^ Apf [ 7Zi^2m,Zi' 7Z 2d 2m+l,Z 2> ••*> 7Zfc+i"2m+fc,Zfc+l ) 

( .̂..Ž+oeic VAiA_u'i- « + 1 " ' * . •••> l^^X+J 
. . //v, r/(fc) 'v, d(fc) 'v, dKK) \ 

— ~C^ \ m \ m \ m Hof ř 7 ' i " m , Z i ' " 2 a
m + l , Z 2 > " "> 'tfc+iUm+ik,/ f c+l \ 

~ (......fcoe/c fc+ ^ ^ U | - A-^"1" •••' A - + X + . 0 •<fc+ 

(we expand the determinant with respect to the last line) 

{ /fc+i \ 2 m / f c + i \ 

. . . . . . \ j f=i / \ i = i / 
2ЛZ3 •••'ЛZ f c +i 

І9-1 І9-1 

j(fc) w(fc) H(fc) V _ i \ * xdet(d^,d^,...,d^+i)(-ir 
2тn 

( fc+1 \ / m / f c + l \ 

n^j [ii%yiX---xi+i 

xdet(4 1

),< ),...,4K+ 1)(-i) f c _ 1 + ---

( fc+1 \ 2 m / fc+1 \ 

n A ' ,J (̂  n %jA?1A
i

2...Af-1 

j^k+1 j^k+l 

xdet(<\...,4S)(-l)°} = (*). 

In what follows, let the inequality 

(3.1') |A f c |> |A* + 1 | 

be valid. Then due to Supposition 2 we can find a dominant member in each term 

of summation. E.g. for the first term of summation we obtain it if we put l\ = k + 1 
fc+i 

and ]~[ Xij = A1A2 . . . \k and analogously for the other terms of summation. Let us 
i = i 
i?-i 

proceed further in the modification from ( * ) and to make it shorter let us also set 

for i = l , 2 , . . . , k + l 

(3.11) D\K> =det(d^...AZЛi!^---A:U1)-
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We have 

( • Î ^ A + I U ^ A Г + ^ J J A Л 
s = l ' 

2m 

fc+1 

2^ л м-i 

'л+i ' J b + l 

L P = I (/i,...,/p-i,-P+i,...,/fc+i)€iC V \ i = i 
JVP 

+ w(m) = (**), 

where tD(m) is a vector for which 

U%)[IlMr1MkH-i)h+i-> 
0 = 1 
i ^ p 

(3.12) 

holds. 

J&*w/fa(Uxi)^)=° 

To make things clear we shall expand YlP=i ' ar-d denote the fc-tuple from the 

set C by ( s i , . . . ,**). 

2rn / к / K ч ZГП / K v 

(**) = ßк+1uк+1\?+1 (ЦxA ( П 7i ) det(4>,..., á$) 
^ i = l 7 \ j = l 7 

,{[«-!,' E *C;, :, ;;;; :)vy:,-> 
(si,...,Sfc)Є--

(м,.tl)є/: V s i ' S2' •••' Sк) 

+ ( - D ^ s; * - ( £ * :::; ( 

л 2 л 3 л* 
ЛS2ЛS3 • ' - Л Sfc 

(si,...,Sfc)Є-C 

лO x l Л 2 Л f c - 1 
л s i Л s 2

Л s 3 • • *ЛSfc 

+ lü! (m) } 
where 

(3.13) lim гvi(m) — . 

The expression in the brackets of (3.11) is equal to 

det 

/ l Ai A? 
1 A2 A2 

AÍ \ 
A2

fc 

\ 1 Afe+i Xk_>-, . . . A t , i / fc+i • 
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which equals, according to (3.9), to 

det í d01 , d02 , . . . , dofc+1 J . 

Let us mention that if l is an integer then (d01, d 0 2 , . . . , d0/) is the Vandermond 

matrix. 

Thus the numerator in (3.10) equals 

/ k ч 2m / k \ 

(3,14) ^ + 1 A Г + 1 ( П Л i ) ( E Ы 
\ j = l / ^ j = l / 

x det(4?,...,4fc)det(4î+1).---.4*fc+1))г(«-+i +г"(™)) 

and the sequence {w(m)} satisfies (3.13). 

The denominat in (3.10) is handled in exactly the same way. Let us write only 

the result. The denominator in (10.3) is equal to the expression 

(3.15) 
/ k ч 2m / k v 

( П Л І ) ( П ^ Л d e t ( ^ 
\j=i s Vj=i / 

with lim (D(m) = 0. 
m—i-oo 

And now we can summarize the results of the whole study in the following theorem. 

T h e o г e m 3.1. Let the matrix A in the system (1.1) be symmetric aлd positive 

defìnite. Let (XiђUi) be eigenpairs of the matrix Q. Let x* be the solution of the 

system (1.1) found by applying Aìgorithm 1.2. Let Supposition 1, Supposition 2 and 
(З.ľ) be fulfìlled. Then 

(3.16) xk - x* = Sk+iXk+iíßk+iUk+i + v(m)) 

holds, where 

detfd(fc+1) d ( м _ 1 ) d ( * + 1 ) d ( f c + 1 ) ) 

lЗ 17) S = 0 2 ' " ' ' ^ QQfc-ri 1 

det(d0 1 , d 0 2 , . . . , doк , e) 

does not depend on m and 

(3.18) lim v(m) = . 
m—>oo 

P r o o f of (3.16) follows directly from the relations (3.14) and (3.15), the relation 

(3.18) follows from (3.13). D 
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N o t e 1. The sequence {v(m)} converges towards zero asymptotically as the 
quotient ( ^ - ) m . 

N o t e 2. From (3.16) we can see directly that after n steps we obtain the exact 
solution x*. 

Let only Supposition 2 be fulfilled. For example, let the following equality be 
valid: 

|Afc0| = |Aл0+i| = . . . = |Afc| = |Aл+i|. 

It is easy to see from the calculations before Theorem 3.1 that the relation 

(3.16') 

holds, where 

(3.17') 

xk-x* = ~ök+1\?+1(ӣ(k+1ï+v(m)) 

ít(fc+1) G span(wfc0 > ujfe0+i,..., uk+i) 

and &k+i is a constant depending only on k. We do not know any elegant formula 
for 6k+i analogous to (3.17). 

N o t e 3. It is well known (see [D.O'L]) that the vector Xk minimizes the func­
tional (x — x*)TA(x — x*) over all x such that 

x e x0 + span{Mr(.20), QMr(x0), • • •, Qh~1Mr(x0)}. 

Let \\X\\A = VxTAx. From (2.25) we have 

(3.19) \\Xk - x \\A = ~]aк(ym+t - X*)1 

í=0 

If we substitute in the formula (3.19) instead of ak \ otk\,..., a0* successively the 
coefficients of the polynom q(t)/q(l), where 

q(t) = (t-\1)(t-\2)...(t-\k), 

and instead of ym+t — x* the right-hand side of (3.3) we obtain the estimate 

(3.20) \\xk - %*\\A ^ ~] \TPiq(K)ui 
i=k+l 

= K+1x(m) 

where limsupx(77i) < oo. We have that ^(1) ^ 0 according to Supposition 2. 
m—foo 

N o t e 4. It follows from the relations (3.16), (3.17), (3.18) or (3.16') or (3.17') 
that if we set 77(m) = \\xk — x*\\ for a given m in Algorithm 1.2, then there exists 
m> m such that 77(771) < 77(777). Numerical experiments show that 77(771 + 1) < 77(777) 
for all m. 
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4. NUMERICAL RESULTS 

In the paper [E-G] the authors consider the convection-diffusion equation 

(4.1) - Ax(s, t) + cr(s, t)xs + T(S, t)xt = f(s, t) 

on the unit square fi = (0,1) x (0,1) with the homogeneous Dirichlet boundary 
condition on dft. We suppose that T(S, t) > 0 and <r(.s, £) > 0 on ft. For discretization 
we consider a uniform mesh with the mesh size h = 1/(1V+ 1), where N is a number 
of inner mesh points in both directions 5 and t. 

For the five-point finite difference discretization and red-black ordering of mesh 
points the authors obtain a system of linear algebraic equations 

(4.2) 
D C\ (XW\ _ / / « \ 

E FJ Wb)J~\fWj 

for the approximate solution at mesh points represented by the vector (x^r),x^b))T. 
The components denote successively the approximate values of x at red and black 
points. The matrix of the system (2.4) is Or-ordered. With one step of cyclic re­
duction the red points are eliminated. If the reduced black points are ordered by 
diagonal lines in the NW-SE direction, then the matrix of the reduced system 

(4.3) (F - ED~lc\x{b) = / ( 6 ) - ED~lf{r) 

has the block tridiagonal form and the diagonal blocks are tridiagonal matrices. Let 
us assume that a(s,t) = a and r(s,t) = r are constant. If max (a, r) < 2/h then 
the matrix in (4.3) can be symmetrized with a real diagonal matrix. (See [E-G] or 
[Zi 92].) 

Acording to this, if we leave this NW-SE direction alone and number the black 
points again by red-black then after easy transformations by a diagonal and permu­
tation matrix the system (4.3) can be transformed into the form 

where in the case of constant coefficients all nonzero elements of the matrix C equal 
- 1 , D\ and D_ are Stieltjes matrices and the matrix of the system (4.4) is positive 
definite. The dimension of the system (4.4) equals the number of the original black 
points. 

Now, we compare the numerical results which we obtain by applying Algo­
rithms 1.1 and 1.2, respectively. We have used Algorithms 1.1 and 1.2 with 

f-z-0, (7 = 1, T = 2 and M " 1 = diag(.Di,D2). 
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The numbers log10 \\xk - x*\\ are compared for both the algorithms. On the fol­
lowing Graph 1 the lines [1] and [2] correspond to the behaviour of log10 \\xk - x*\\ 
for Algorithms 1.1 and 1.2, respectively. We have taken m = 50. The system was 
tested for a sequence for various IV and the behaviour was similar. In this case we 
see that if kn(e) and fci2(e) denote the first integer for which 

logio ||£fc - x*|| <e, 

obtained by using Algorithm 1.1 and 1.2, respectively, then ku(e) - fci2(e) = m 
for sufficiently small e. However, one iteration of (1.14) needs only the inverse of 
diag(j5i,I)2) if we have in view that the other elements out of the block diagonal 
equal -1 . One iteration in Algorithm 1.1 needs, moreover, lOn multiplications where 
n = N2/2 or (TV2 + l ) /2 if N is even or odd, respectively. The numerical tests show 
that using Algorithm 1.2 could be more advantageous for m e (5,50). 

N = 61, m = 50 

Graph 1 

The second example is analogous to the first which is in Appendix B in [V]. The 
matrix equation arises from discrete approximation of the second-order self adjoint 
elliptic partial differential equation 

(4.5) 
-(D(s, t)xs)s - (D(s,t)xt)t + cт(s, t)u = S(s, t) on R, 

дx/дn = 0 on Г(R), 

where R is the square 0 < s,t < 2.1 divided into nine regions and the functions 
D(s,t) > 0, cr(s,t) > 0, and S(s,t) are piecewise constant in every region. They are 
defined by the table given in [V]. 
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We have used a finer mesh so that we have solved the system of linear algebraic 

equations having 8100 unknowns. In the following table we compare the norms 

of the errors \\xk — x*\\ for chosen iterations k by using Algorithms 1.1 and 1.2, 

respectively. We take the iteration (1.14) as preparatory work and compare only 

conjugate gradients in both cases. The following table is for m = 5. 

k ALGORITHM 1.1 ALGORITHM 1.2 

25 0.438 ю + 1 0.131 ю + 0 
30 0 . 8 1 7 ю - l 0.3031 0 - 2 
35 0.214 ю - 2 0.527 ю - 4 
40 0.403 ю - 4 0.879 ю - 7 
45 0.440 ю - 7 0 . 1 9 7 ю - 9 
50 0 . 1 5 0 ю - 9 0 .839ю-12 

Table 1 

The following table is for the same linear system for m = 15. 

k ALGORITHM 1.1 ALGORITHM 1.2 

15 0.234ю + 4 0.533ю + l 
20 0.267 ю + 3 0 . 3 6 4 ю - l 
25 0.438 ю + 1 O . П З ю - 2 
30 0 . 8 1 7 ю - l 0 . 5 8 5 ю - 5 
35 0.335 ю - 2 0 . 3 3 5 ю - 8 
40 0.403 ю - 4 0.305 ю - 1 0 
45 0.440 ю - 7 0.000 
50 0 . 1 5 0 ю - 9 0.000 
55 0 .530ю-12 0.000 

Table 2 

R e m a r k . Let us put the following question: "What happens if we apply Algo­
rithm 1.2 to nonsymmetric linear systems?" For the demonstration we have formed 
the system 

where 
CUJ = (D- OJCL)-1{OJCU + (1 - v)D), 

c„ = (D-ujCL)-lub. 

We have considered the system (1.1) with a block tridiagonal Stieltjes matrix A aris­

ing from the five-point difference approximation of the second-order selfadjoint ellip­

tic partial differential equation on a triangle. As usual A = D — CL — C\j where D is a 
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diagonal, Ci a strictly lower and C\j a strictly upper triangular matrix, respectively. 

We have substituted part 3) in Algorithm 1.2 by the well known GMRES process 

and the SOR iterations introduced in part 2). We have used restarted GMRES after 

ten steps and the following table compares the errors for various m. We have taken 

n = 210 and LJ = 1.55. 

k m = 0 m = 20 m = 50 

10 0.511 ю + 1 0.863 ю - 2 0.747ю-9 

15 0.118 ю + 0 0.181 ю - 2 0.327ю-Ю 

20 0.996 ю - 3 0.464 ю -4 0.424ю-ll 

25 0.155 ю - 3 0.212 ю - 6 0.0 
30 0.352 ю - 5 O.lЗOю-7 0.0 
35 0.106 ю - 6 0.174ю-8 0.0 
40 0.711 ю - П 0.0 0.0 

Table 3. 

Let us add that k denotes the number of restarts of GMRES. 

Table 3 is very interesting in view of the fact that one restart of GMRES needs 

approximately the same number of multiplications as twenty iterations SOR. The 

program for GMRES in FORTRAN 77 was prepared by my student Miroslav Fol-

precht. 
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