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Summary. An algorithm for using the preconditioned conjugate gradient method to solve
a coarse level problem is presented.
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1. INTRODUCTION

Let us consider a system of linear algebraic equations
Ax =,

where A is a positive definite matrix of order n. The cfficiency of a multigrid solver
depends on the properties of a prolongation operator p. The multigrid solver is
well constructed if the range of p contains all vectors that cannot be effectively
climinated by smoothing. These vectors will be called smooth. Non-smooth vectors
from the range of p can be suppressed using the operator MYp instead of p, M being
a smoothing operator, v a positive integer. If we use this prolongation operator the
coarse level problem with the matrix A, = pT(M*)T AM*p must be solved. Choosing
v 2 1 the rate of convergence is very good but the construction of the matrix A,
becomes time consuming. In this paper an algorithm not requiring the construction
of the matrix mentioned above is proposed. The properties of Ag = pT Ap are similar
to those of A, therefore Ay is suitable for preconditioning in the conjugate gradient
method. The rates of convergence of both the conjugate gradient method and the
multigrid method are analysed.
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2. NOTATION

Let m, n be positive integers, m < n. We will denote by (z,y) the usual scalar
product in R,, the norm in R,, being ||z|| = (z,z)%, (z,y)2 will denote the standard
scalar product in R,,. Let H be a finite dimensional Hilbert space. For an arbitrary
linear operator L on H, ||L| denotes the operator norm of L defined by the norm
Illl, (L) the spectral radius of L, L* the adjoint operator. Every positive definite
operator K on H defines the I{-scalar product (K., .), ||.|| x denotes the corresponding
norm and || L|| x denotes the corresponding operator norm. For I{, L positive definite
operators on H let us denote by Q(z),

_ (Lz,7)
Q) = (Kz,2)

for every = € H, = # 0. Let us define the so called relative condition number of K

and L by

max Q(z)

cond(K,L) = ———.
min Q(z)

Lemma 2.1. Let K, L be positive definite operators on H. Then

/\max(I(_lL)

COlld(K, L) = m——_l—L)-

Proof. It is not difficult to see that
o(K™'L) = o(K~31LK"%),

therefore

__% —
Amax(E L) = Amax(K~ ¥ LI %) = max (K"*LK"2z,7)
z#0 (z,z)

and setting y = I —iz we get

Ly,y)
’\ma -1 = ( ny .
x(K~'L) max Ky.v)

The statement of the lemma follows from the analogous expression for Amin(K™'L).
O
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3. ALGORITHM

Let us consider the iterative method
S(z) = Mz + Nb,
where M, N are linear operators on R, satisfying the consistence condition
I=M+ NA,

M is regular and o(M) < 1. Let p: R,, = R, be a linear injective operator. Let us
note p is usually constructed so that Mp = p (for technical details see [5], [9]). Let
us denote by r the linear operator adjoint to p with respect to the standard scalar
products on R, and R,,.

Definition 3.1.  For every integer ¢ > 0 let us define

pi = MiP
Ti = 7’(Mi)‘
Ai = T‘iApi.

Remark 3.1. It is easy to see
L po=p,ro =7, A =r(M*)*AM'p,
2. A; is positive definite for all i.

Algorithm 3.1. For given z; we set

i =8 (z;) (&-times iterating S)

d= Az =)
dy =r(M*)"d
(3.1) v is determined so that r(M*)" AM"pv = d,
I=%—-M"py

21 = S®@ (@),

&1, &2, v are positive integers, v & 1 — 4, £ = 2v. The matrix A, = r(M*)*AM"p is
not constructed, the problem (3.1) is solved by the preconditioned conjugate gradient
method in the following form.
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Algorithm 3.2.
Step 1. Given vg =0, let k =0 and

go =dy — Ayvo = dy,
hO = A61907
So = h().
Step 2. Repeat
Sky ¢
oy = (8K gk)2 ’
(Al/sk1 sk)Z
Vk41 = Vg + Qi Sk,
k+1 = Gk _akA Sk,
(32) Gk+ g B v
i1 = Ay gk,
_ (grt1, ht1)2
fr = il Biki)a
(9ks T )2
Sk41 = N1 + Brsk.
Let us note that the preconditioning matrix Ag = rAp. Let us define the error
e(v) by e(v) = v — v, where 7 is the exact solution of (3.1).
Then for the error of the preconditioned conjugate gradient method the following
formula can be derived—see [3]:

_ cond(Ag, A,) —1°
(3.3) ne(muA,,sz( \/—Vd(AA)H) le(wo)lla,

4. COARSE LEVEL PROBLEM CONVERGENCE ANALYSIS
Definition 4.1.  For every integer ¢ > 0 let us define
Si = R(pi)-

Lemma 4.1. Let I be a regular selfadjoint operator on a Hilbert space H. Then

1K)l K]
- z
&2l ~ el

for every x € H, x # 0.

Proof.
K x|* = (K22, 2) < | K22 |||l
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Definition 4.2. For every z € R,,, i 2> 0 let us define
llall: = (AM'z, M)},
Remark 4.1. Let us note that
ll-llo = 1l-ll.a-

Definition 4.3. Let us denote by ¢,, C, the constants of the norm equivalence
between ||.||, and ||.Jlo on the subspace Sp, i.e.

collzlia < llell, < Collzlla for every z € So.

Lemma 4.2. If M is selfadjoint with respect to the A-scalar product, then
1. C, < o(M?),
2. ¢, 2¢g-

Proof.
lpzll, < IM¥palla < IM7||allpzlla = o(M")|Ipzl|A-

Using Lemma 4.1 we get

Iyl _ Wtoprla UM vl WMprla o (IMprla -
Toella M Tpalla M 2pzla Tpalla > \ [pzlla

This incquality yields 2. 0O

Theorem 1. Let us consider the conjugate gradient method for the system of
linear algebraic equations with the matrix A, preconditioned by the matrix Ag (Al-
gorithm 3.1). Then

C,—c,\?
le(willa, <2(Gmor) lle(wo)lla,.

Proof. Forevery 2z € R,,, 2 #0

_ (r(M)*AM"px,x)y _ (AM"pr, M"pz) _ M pxlly  llpell?

Q(x) = = 5 = >
(rApz,z), (Apz,pz) (21 (2T
Therecfore
¢ < Q)< CE
and CoN2
cond(Ag, 4,) < (—) .
Cv
Substituting this inequality into (3.3) we get the statement. O
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Remark 4.2. 1. p is usually constructed so that Mp =~ p and therefore
¢, = C, = 1. Due to this fact the rate of convergence will be good.

2. Lemma 4.2 yields that C, can be replaced by 1 and ¢, by cg if M is chosen so
that M is A-selfadjoint (this is the case of the damped Jacobi method—see Section 5).

3. The spaces R,, with A,-scalar product and R(p,) with A-scalar product are
isometrically isomorphic, therefore

lle(vi)lla. = llpe(vi)lla-

5. FINE LEVEL PROBLEM CONVERGENCE ANALYSIS
In this section M will be the operator of the damped Jacobi method, i.e.
M =1-wD™ A, we (0,1), Ker(M) = {0}.

Lemma 5.1. AM is a selfadjoint operator.

Proof.
M*A=(I —wAD ™ )A = A(I - wD™'A) = AM.

Corollary. M is sclfadjoint with respect to the A-scalar product.

Definition 5.1. For integer ¢ > 0 let us define
T; = Ker(r; A).
Remark 5.1. Lemma 5.1 implies
T; = Ker(rAM?).
Lemma 5.2. Let us consider the Algorithm 3.1, where
S(x) = (I —wD 'A)z +wD™ 0.
If the coarse level problern is solved exactly the following estimate holds:

lle(zig1)lla

< IME N ANME || a.
el < VMENAlM 4

Proof. See [5]. a
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Lemma 5.3. Tp and T; are isomorphic, the corresponding isomorphism being M*,
i.e. x € T; if and only if Mz € Tp.

Proof. The statement is the immediate consequence of Definition 5.1. (]

Due to Lemma 5.1 M is selfadjoint with respect to the A-scalar product. Therefore
there exists an A-orthonormal basis v;, j =1, ..., n of R, consisting of eigenvectors
of M belonging to the eigenvalues A;, j =1,...,n.

Definition 5.2.  For ¢ > O integer let us denote by Tf the linear space of
coordinates of all vectors z € T; with respect to the basis v;, j =1,...,n, iec.

n
TS = {[cl,...cn]T, T = chvj, TE T,}
i=1
Lemma 5.4. Every element of Tf, i > 0 integer is of the form

C1 C. T
[E,,-X:-‘-] , where [ci,...,ca]T € T§.
n

Proof. Dueto Lemma 5.4, z € Tp if and only if M~z € T;. Let

n
T = E C;0j,

=1

then

n 2
>
Jo)\2
i=1 J
M5, 1% = max L—"_c:_’ where ¢ = [c1,...,cn)T.
c;‘.(‘), A—;'
i=1 J
Proof. For z € T, we have
» 3
"1""3\ = 2 ;\%7 c= [C],.. . ’cn]T € T'Oc
i=1 J
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(see Lemma 5.4) and

IMEa]; = z&;

a
Theorem 2. Let us consider the Algorithm 3.1, where
S(z) = (I —wD 'A)x +wD™ b
If the coarse level problem is solved exactly the following estimate holds:
2 n 2
sud Taed
21 J 21
le@unlly = A A
o S max —; 2 max 2 "2
lle(@lly — ce7s ¢ eeTy c
. c#o Z —2 C#O Z —2
j=1 A j=1 A
Proof. An immediate consequence of Lemmas 5.2 and 5.5. O

Remark 5.2 If the transfer operators po, 179 are well constructed then Ty
contains elements ¢ = [cy,...,c,|7 for which the components c¢; corresponding to
the small eigenvalues A;, i.e. |\;| = 0 are large in comparison with the others. The
stronger this property the smaller ]|M§~"|I 4 is (see Lemma 5.5). For small A; we have

c2
/\Zu >>C

while for large Aj, i.e. |A;] = 1,

|J.>m
2
(o}

>
SN
N
<

Therefore

n

Z)\f ..V f:/\fc

= j i=1
B T« ||ME | = max T —

c€Ty &
c#0 E

>
N I u.aw

<

M5, 114 = max ——

c€Ty =
c#0 E

<O Nlhﬁrv

can be expected.
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Theorem 3. Let us consider the Algorithm 3.1, where
S(z) = (I —wD 'A)z + wD'b.

Let &,& > v+ 1. If the coarse level problem is solved exactly the following estimate
holds: le( 2
e\Tit1)lla 2042
e S IMr I
lle(z:)li% A

Remark 5.3.  Techniques for estimating || M7, ||a can be found in [9].
Proof. Foreveryi>1,z€T; &> v+1ifandonlyif Ma € T;_,. Further,

IMEalla _ [MEalla [M'alla[|Ma
Tela  (MT il 1Ml Talla

Taking into account p(M) < 1 we get

M7, lla < IM,lla -+ 1M1, -

Lemma 4.1 implies
IMrlla < IMzlla, @2 0.

Thercfore
M5, |4 < | M |I5F,

and the usage of Lemma 5.2 completes the proof. 0
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