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Abstract. Using the concept of the λ-lattice introduced recently by V. Snášel we define
λ-lattices with antitone involutions. For them we establish a correspondence to ring-like
structures similarly as it was done for ortholattices and pseudorings, for Boolean algebras
and Boolean rings or for lattices with an antitone involution and the so-called Boolean
quasirings.
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The well-known correspondence between Boolean algebras and Boolean rings (see
e.g. [1]) was extended to orthomodular lattices by H. Länger [12] and to ortholattices
by the author in [3]. A general setting was described by G.Eigenthaler, H. Länger

and the author in [4] and [5]. It was generalized to lattices with antitone involution by
D.Dorninger, H. Länger and M.Mączyński [6], [7] and to generalized orthomodular

lattices, see [5]. It was motivated by the use of these ring-like structures in certain
logics of quantum mechanics, see e.g. [6], [7] for the description. However, in quantum

mechanics it can happen that we cannot distinguish between two possibilities. It
leads us to study more general structures than lattices where still ring-like structures

can be induced.
Suitable tools for our investigation thus can be the so-called λ-lattices introduced

by V. Snášel [13] and treated in [11], [13] and the so-called λ-semilattices known
also under the name commutative directoids in [9]. On the other hand, this level

of generality can make problems in computing formulas because some well-known

This work is supported by the Czech Goverment via the research project MSM
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results for lattices fail for λ-lattices. For example, if x 7→ x′ is an antitone involution

on a lattice L = (L;∨,∧) then the De Morgan laws

(DM) (x ∨ y)′ = x′ ∧ y′ and (x ∧ y)′ = x′ ∨ y′

hold in L, see e.g. [1], [8]. However, this is not the case for λ-lattices. Hence we must
often require some additional properties.

1. λ-lattices with antitone involutions

First, we recall some well-known concepts. Let (A; 6) be an ordered set. For
a, b ∈ A denote

U(a, b) = {x ∈ A; a 6 x and b 6 x},
L(a, b) = {x ∈ A; x 6 a and x 6 b}.

An ordered set (A; 6) is called up-directed (down-directed) if U(a, b) 6= ∅ (or
L(a, b)6= ∅, respectively) for each a, b ∈ A. Further, (A; 6) is directed if it is both an
up- and down-directed set.
Let (A; 6) be a down-directed set. Denote by ExpA the power set of A. Let λ be

a mapping λ : ExpA → A such that
(i) λ(L(a, b)) ∈ L(a, b),
(ii) if a 6 b then λ(L(a, b)) = a.

Define a binary operation ∧ on A as follows:

a ∧ b = λ(L(a, b)).

The groupoid (A;∧) will be called a λ-semilattice (or a commutative directoid in [9]).
It is easy to verify that (A;∧) satisfies the identities
(I) x ∧ x = x (idempotency),
(C) x ∧ y = y ∧ x (commutativity),

(SA) x ∧ ((x ∧ y) ∧ z) = (x ∧ y) ∧ z (skew associativity).

Also conversely, if (A;∧) is a groupoid satisfying (I), (C), (SA) and 6 is defined by
the rule

a 6 b if and only if a ∧ b = a

then (A; 6) is a down-directed set and λ(L(a, b)) = a ∧ b satisfies (i) and (ii) men-

tioned above.
Moreover, if (A; 6) is a directed set and λ : Exp A → A satisfies also

(iii) λ(U(a, b)) ∈ U(a, b),
(iv) if a 6 b then λ(U(a, b)) = b
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then we can introduce another operation ∨ by setting
a ∨ b = λ(U(a, b))

and easily verify the following identities:

(I′) x ∨ x = x,

(C′) x ∨ y = y ∨ x,

(SA′) x ∨ ((x ∨ y) ∨ z) = (x ∨ y) ∨ z,

(Ab) x ∨ (x ∧ y) = x, x ∧ (x ∨ y) = x (absorption).

Then the algebra (A;∨,∧) is called a λ-lattice (see [11], [13]). Also conversely, if
(A;∨,∧) is an algebra of type (2, 2) satisfying the identities (I), (I′), (C), (C′), (SA),

(SA′), (Ab) then the relation defined by

a 6 b if and only if a ∨ b = b

coincides with the already introduced induced order on (A;∧). If we put

λ(U(a, b)) = a ∨ b

then (iii) and (iv) are satisfied.

Hence, λ-semilattices and λ-lattices can be viewed either as algebras satisfying
certain identities or as ordered sets with constrains on upper and lower bounds.

Contrary to the case of lattices, the choice of λ(L(a, b)) or λ(U(a, b)) need not be
unique. Consider e.g. the directed sets drawn in Fig. 1 and Fig. 2.
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b

Fig. 1

0

b

c

a

1

Fig. 2

In the first case, we have three choices for a ∨ b, namely c or d or 1. Analogously,

c ∧ d can be a or b or 0 (for comparable elements the choice is unique due to the
conditions (ii) and (iv)). In all 9 possible cases, the resulting algebra will be a λ-

lattice. Analogously, in the second case (which is a lattice) we can pick up e.g. a∨b = c

or a ∨ b = 1. In the latter case, the resulting algebra will be a λ-lattice which is not

a lattice.

Let (A; 6) be an ordered set. A mapping x 7→ x′ on A is called an antitone
involution if x′′ = x and x 6 y implies y′ 6 x′. It is well-known that if (L;∨,∧) is
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a lattice and x 7→ x′ is an antitone involution on (L; 6) where 6 is the induced order
then the De Morgan laws (DM) hold.

Consider our λ-lattice L = (A;∨,∧) visualized in Fig. 1. Define x 7→ x′ on A =
{0, a, b, c, d, 1} by the table

x 0 a b c d 1
x′ 1 d c b a 0

.

Then clearly it is an antitone involution on A. Let us pick up e.g. a ∨ b = c (for
other elements the operation ∨ is determined as supremum). Then (A;∨) is a λ-

semilattice (w.r.t. ∨). Now, if e.g. c ∧ d = a (for other elements it is determined as
infimum) then L = (A;∨,∧) is a λ-lattice with an antitone involution but

b′ ∧ a′ = c ∧ d = a 6= b = c′ = (b ∨ a)′,

thus in L the De Morgan laws do not hold. On the contrary, when choosing c∧d = b,

De Morgan laws hold in L. Hence, validity of (DM) depends not only on the induced

order but also on our choice of operations.

2. λ-Boolean quasirings

By a Boolean quasiring (see [4], [6], [7]) we mean an algebra R = (R; +, ·, 0, 1) of
type (2, 2, 0, 0) satisfying the identities

x + y = y + x,(R1)

x + 0 = x,(R2)

(x · y) · z = x · (y · z),(R3)

x · y = y · x,(R4)

x · x = x,(R5)

x · 0 = 0,(R6)

x · 1 = x,(R7)

1 + (1 + x · y) · (1 + y) = y.(R8)

For our purposes, we modify this definition as follows. An algebra R =
(R; +, ·, 0, 1) of type (2, 2, 0, 0) is called a λ-Boolean quasiring if it satisfies the
identities (R1), (R2), (R4)–(R8) and

(R3*) x · ((x · y) · z) = (x · y) · z.
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One can immediately verify that every Boolean quasiring is a λ-Boolean quasiring

since (R3*) follows easily by (R3), (R4) and (R5). The mutual correspondence
between Boolean quasirings and lattices with an antitone involution was established
in [6]. We are going to extend this correspondence to λ-Boolean quasirings.

Theorem 1. Let L = (L;∨,∧,′ , 0, 1) be a bounded λ-lattice with an antitone

involution. Define

x + y = (x ∨ y) ∧ (x ∧ y)′ and x · y = x ∧ y.

Then R(L) = (L; +, ·, 0, 1) is a λ-Boolean quasiring. If, moreover, the De Morgan

laws hold in L then R(L) satisfies the correspondence identity
(Cor) (1 + (1 + x) · (1 + y)) · (1 + x · y) = x + y.

���������
. Since (L;∧) is a bounded λ-semilattice, the identities (R3*), (R4)–(R7)

are immediate consequences of (I), (C), (SA) and the properties of the induced order.
The identity (R1) is a trivial consequence of the definition and (R2) is evident. It

remains to prove (R8) and (Cor).

For (R8) we use (Ab) to compute

1 + (1 + x · y) · (1 + y) = ((x ∧ y)′ ∧ y′)′ = (y′)′ = y′′ = y.

For (Cor), we apply De Morgan laws to derive

(1 + (1 + x) · (1 + y)) · (1 + x · y) = (x′ ∧ y′)′ ∧ (x ∧ y)′ = (x ∨ y) ∧ (x ∧ y)′ = x + y.

�

We can prove also the converse.

Theorem 2. Let R = (R; +, ·, 0, 1) be a λ-Boolean quasiring. Define

x ∧ y = x · y, x′ = 1 + x and x ∨ y = 1 + (1 + x) · (1 + y).

Then L(R) = (R;∨,∧,′ , 0, 1) is a bounded λ-lattice with an antitone involution in

which the De Morgan laws hold.
���������

. By (R3*), (R4)–(R7), (R;∧) is a bounded λ-semilattice. If we put
y = x in (R8) and apply (R5), we obtain the identity

(∗) 1 + (1 + x) = x
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proving that the unary operation x′ = 1 + x is an involution on R. Suppose x 6 y.

Then x ∧ y = x · y = x and, by (R8),

1 + x′ · y′ = 1 + (1 + x) · (1 + y) = 1 + (1 + x · y) · (1 + y) = y.

Thus, applying (∗), we arrive at

x′ ∧ y′ = x′ · y′ = 1 + (1 + x′ · y′) = 1 + y = y′

whence y′ 6 x′, i.e. this operation is an antitone involution on R.

Further, using (∗), we obtain

x′ ∨ y′ = 1 + (1 + x′) · (1 + y′) = 1 + x · y = (x ∧ y)′

and
x′ ∧ y′ = (1 + x) · (1 + y) = 1 + (1 + (1 + x) · (1 + y)) = (x ∨ y)′

thus the De Morgan laws hold in L(R). Due to this fact, (R;∨) is also a λ-semilattice
and, by (R8),

(x ∧ y) ∨ y = ((x · y)′ · y′)′ = 1 + (1 + x · y) · (1 + y) = y.

The dual absorption law can be established by the De Morgan laws and involutorness.
Hence, L(R) = (R;∨,∧,′ , 0, 1) is a bounded λ-lattice with an antitone involution.

�

Theorem 3. Let R = (R; +, ·, 0, 1) be a λ-Boolean quasiring satisfying the cor-

respondence indentity (Cor). Then R(L(R)) = R.

Let L = (L;∨,∧,′ , 0, 1) be a bounded λ-lattice with an antitone involution in

which De Morgan laws hold. Then L(R(L)) = L.
���������

. Evidently, the multiplicative operations coincide in R(L(R)) and R. To
prove R(L(R)) = R we need only to show that also ⊕ = + where ⊕ is the additive
operation in R(L(R)). Applying (Cor) we compute

x⊕ y = (x ∨ y) ∧ (x ∧ y)′ = (1 + (1 + x) · (1 + y)) · (1 + x · y) = x + y.

Analogously, the operation meet clearly coincides in L(R(L)) and L. Hence, it

remains to prove t = ∨ and x∗ = x′ where t is the join and ∗ is the antitone
involution in L(R(L)). We have

x∗ = 1 + x = (1 ∨ x) ∧ (1 ∧ x)′ = 1 ∧ x′ = x′

and
x t y = 1 + (1 + x) · (1 + y) = (x′ ∧ y′)′ = x ∨ y

due to the De Morgan laws. �
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3. λ-ortholattices

By an ortholattice (see e.g. [2], [10]) we mean a bounded lattice L = (L;∨,∧,′ , 0, 1)
with an antitone involution which is a complementation, i.e. x∧x′ = 0 and x∨x′ = 1
for each x ∈ L. Of course, De Morgan laws hold in L and hence x∧x′ = 0 is equivalent
to x ∨ x′ = 1.

We can extend this concept to λ-lattices.

By a λ-ortholattice we mean a bounded λ-lattice L = (L;∨,∧,′ , 0, 1) with an an-
titone involution such that x ∧ x′ = 0 and x ∨ x′ = 1.

Formally, the definition is the same as for ortholattices, but we must be careful.

For example, the λ-lattice depicted in Fig. 3 is an λ-ortholattice.

b′

1 = 0′

d

b

0

d′

a′

c′

c

a

Fig. 3

Since it is a λ-lattice, we must specify joins and meets of non-comparable elements.
If e.g. a ∨ b = c and a′ ∧ b′ = d′ then a′ ∧ b′ = d′ 6= c′ = (a ∨ b)′ and hence the De
Morgan laws do not hold. It means that for a ∨ b = c we must set a′ ∧ b′ = c′ etc.
The mutual correspondence between ortholattices and the so-called pseudosemir-

ings was settled in [3]. However, it is easy to establish such a correspondence for
λ-ortholattices and certain λ-Boolean quasirings.

Theorem 4. Let L = (L;∨,∧,′ , 0, 1) be a λ-ortholattice in which the De Morgan

laws hold. Define

x + y = (x ∨ y) ∧ (x ∧ y)′ and x · y = x ∧ y.

Then R(L) = (L; +, ·, 0, 1) is a λ-Boolean quasiring of characteristic 2 (i.e. satisfying
the identity x + x = 0) satisfying the correspondence identity (Cor).
Let R = (R; +, ·, 0, 1) be a λ-Boolean quasiring of characteristic 2. Define

x ∨ y = 1 + (1 + x) · (1 + y), x ∧ y = x · y, x′ = 1 + x.

Then L(R) = (R;∨,∧,′ , 0, 1) is a λ-ortholattice in which the De Morgan laws hold.
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Moreover, L(R(L)) = L and if R satisfies (Cor) then also R(L(R)) = R.

���������
. Of course, if x ∧ x′ = 0 then x + x = x ∧ x′ = 0, thus the induced

λ-Boolean quasiring R(L) is of characteristic 2 for each λ-ortholattice L. The rest of
the proof follows by Theorem 1.

Conversely, if R satisfies x+x = 0 then x∧x′ = (x∨x)∧ (x∧x)′ = x+x = 0 and,
due to the De Morgan laws, also x ∨ x′ = 1 and thus L(R) is really a λ-ortholattice.

The remaining statements follow directly by Theorems 2 and 3. �

In what follows we concentrate on a special case of a λ-ortholattice, the so-called
orthomodular λ-lattice which satisfies the orthomodular law

(OML) x 6 y ⇒ x ∨ (y ∧ x′) = y

which is equivalent to the identity

(∗∗) (x ∧ y) ∨ (x ∧ (x ∧ y)′) = x.

An example of an orthomodular λ-lattice can be constructed from the lattice drawn
in Fig. 4.

0

d

p

a b c

p′

b′

1 = 0′

c′ d′ a′

Fig. 4

One can easily verify that L is an orthomodular lattice. To change it into a λ-
lattice which is not a lattice, we define a ∨ b = 1 and a′ ∧ b′ = 0 and leave all other
joins and meets as they were in L. Of course, the new algebra is a λ-lattice but not

a lattice, but the orthomodular law remains valid.

We are wonder what a λ-Boolean quasiring corresponds to an orthomodular λ-
lattice.
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Theorem 5. Let L = (L;∨,∧,′ , 0, 1) an orthomodular λ-lattice in which the De

Morgan laws hold. Define

x + y = (x ∨ y) ∧ (x ∧ y)′ and x · y = x ∧ y.

Then R(L) is a λ-Boolean quasiring of characteristic 2 satisfying the identity

(OM) (1 + x · y) + (x + x · y) = 1 + x.

Let R = (R; +, ·, 0, 1) be a λ-Boolean quasiring of characteristic 2 satisfying the
identity (OM). Define

x ∨ y = 1 + (1 + x) · (1 + y), x ∧ y = x · y and x′ = 1 + x.

Then L(R) = (R;∨,∧,′ , 0, 1) is an orthomodular λ-lattice in which the De Morgan

laws hold.

Moreover, L(R(L)) = L and if R satisfies also (Cor) then R(L(R)) = R.
���������

. In virtue of Theorem 4, we need only to verify the orthomodular law

for L(R) and the identity (OM) for R(L).
Let L be an orthomodular λ-lattice in which the De Morgan laws hold. We can

easily derive x′ ∨ (x′ ∨ y′) = x′ ∨ y′ since x′ 6 x′ ∨ y′ and thus

x · (1 + x · y) = x ∧ (x ∧ y)′ = x ∧ (x′ ∨ y′) = x ∧ (x′ ∨ (x′ ∨ y′))

= x ∧ (x ∧ (x ∧ y))′ = (x ∨ (x ∧ y)) ∧ (x ∧ (x ∧ y))′ = x + x · y.

Since 1 + x · y = (x ∧ y)′ > x ∧ (x ∧ y)′ = x · (1 + x · y) and for a > b we have

a + b = (a ∨ b) ∧ (a ∧ b)′ = a ∧ b′ = a · b′,

then also (1 + x · y) + x · (1 + x · y) = (1 + x · y) · (1 + x · (1 + x · y)). Now we apply
(∗∗) to compute

(1 + x · y) + (x + x · y) = (1 + x · y) + x · (1 + x · y) = (1 + x · y) · (1 + x · (1 + x · y))

= [(x ∧ y) ∨ (x ∧ (x ∧ y)′]′ = x′ = 1 + x.

Thus R(L) satisfies (OM).
Conversely, let R be a λ-Boolean quasiring of characteristic 2 satisfying (OM).

Let x 6 y in L(R). Then

x ∨ (y ∧ x′) = 1 + (1 + x) · (1 + y · (1 + x))

= 1 + ((1 + x) + y · (1 + x)) = 1 + ((1 + x · y) + y · (1 + x · y))

= 1 + ((1 + x · y) + (y + x · y)) = 1 + (1 + y) = y

(by (∗) of the proof of Theorem 2). Hence, L(R) is an orthomodular λ-lattice. �
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