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ON k-STRONG DISTANCE IN STRONG DIGRAPHS

� � � � � � � � �
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(Received January 15, 2001)

Abstract. For a nonempty set S of vertices in a strong digraph D, the strong distance
d(S) is the minimum size of a strong subdigraph of D containing the vertices of S. If S
contains k vertices, then d(S) is referred to as the k-strong distance of S. For an integer
k > 2 and a vertex v of a strong digraph D, the k-strong eccentricity sek(v) of v is the
maximum k-strong distance d(S) among all sets S of k vertices in D containing v. The
minimum k-strong eccentricity among the vertices of D is its k-strong radius sradk D and
the maximum k-strong eccentricity is its k-strong diameter sdiamk D. The k-strong center
(k-strong periphery) of D is the subdigraph of D induced by those vertices of k-strong
eccentricity sradk(D) (sdiamk(D)). It is shown that, for each integer k > 2, every oriented
graph is the k-strong center of some strong oriented graph. A strong oriented graph D
is called strongly k-self-centered if D is its own k-strong center. For every integer r > 6,
there exist infinitely many strongly 3-self-centered oriented graphs of 3-strong radius r.
The problem of determining those oriented graphs that are k-strong peripheries of strong
oriented graphs is studied.
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1. Introduction

The familiar distance d(u, v) between two vertices u and v in a connected graph is
the length of a shortest u− v path in G. Equivalently, this distance is the minimum

size of a connected subgraph of G containing u and v. This concept was extended
in [2] to connected digraphs, in particular to strongly connected (strong) oriented

graphs. We refer to [4] for graph theory notation and terminology not described
here.

Research supported in part by the Western Michigan University Arts and Sciences Teach-
ing and Research Award Program.
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A digraph D is strong if for every pair u, v of distinct vertices of D, there is both a

directed u−v path and a directed v−u path in D. A digraph D is an oriented graph
if D is obtained by assigning a direction to each edge of a graph G. The graph G is
referred to as the underlying graph of D. In this paper we will be interested in strong

oriented graphs. The underlying graph of a strong oriented graph is necessarily 2-
edge-connected. Let D be a strong oriented graph of order n > 3 and size m. For

two vertices u and v of D, the strong distance sd(u, v) between u and v is defined in
[2] as the minimum size of a strong subdigraph of D containing u and v. If u 6= v,

then 3 6 sd(u, v) 6 m. In the strong oriented graph D of Figure 1, sd(v, w) = 3,
sd(u, y) = 4, and sd(u, x) = 5.

y

u

v w

xD :

Figure 1. A strong oriented graph

A generalization of distance in graphs was introduced in [5]. For a nonempty set
S of vertices in a connected graph G, the Steiner distance d(S) of S is the minimum
size of a connected subgraph of G containing S. Necessarily, each such subgraph is
a tree and is called a Steiner tree with respect to S. We now extend this concept to

connected strong digraphs. For a nonempty set S of vertices in a strong digraph D,
the strong Steiner distance d(S) is the minimum size of a strong subdigraph of D

containing S. We will refer to such a subgraph as a Steiner subdigraph with respect

to S, or, simply, S-subdigraph. Since D itself is strong, d(S) is defined for every
nonempty set S of vertices of D. We denote the size of a digraph D by m(D). If
|S| = k, then d(S) is referred to as the k-strong Steiner distance (or simply k-strong
distance) of S. Thus 3 6 d(S) 6 m(D) for each set S of vertices in a strong digraph

D with |S| > 2. Then the 2-strong distance is the strong distance studied in [2],
[3]. For example, in the strong oriented graph D of Figure 1, let S1 = {u, v, x},
S2 = {u, v, y}, and S3 = {v, w, y}. Then the 3-strong distances of S1, S2, and S3 are
d(S1) = 5, d(S2) = 4, and d(S3) = 3.
It was shown in [2] that strong distance is a metric on the vertex set of a strong

oriented graph D. As such, certain properties are satisfied. Among these are: (1)

sd(u, v) > 0 for vertices u and v of D and sd(u, v) = 0 if and only if u = v and (2)
sd(u, w) 6 sd(u, v) + sd(v, w) for vertices u, v, w of D. These two properties can be

considered in a different setting. Let D be a strong oriented graph and let S ⊆ V (D),
where S 6= ∅. Then d(S) > 0 and d(S) = 0 if and only if |S| = 1, which is property
(1). Let S1 = {u, w}, S2 = {u, v}, and S3 = {v, w}. Then the triangle inequality
sd(u, w) 6 sd(u, v) + sd(v, w) given in (2) can be restated as d(S1) 6 d(S2) + d(S3),
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where, of course, |Si| = 2 for 1 6 i 6 3, S1 ⊆ S2 ∪ S3 and S2 ∩ S3 6= ∅. We now
describe an extension of (2).

Proposition 1.1. For an integer k > 2, let S1, S2, S3 be sets of k vertices in a

strong oriented graph with |Si| = k for 1 6 i 6 3. If S1 ⊆ S2 ∪ S3 and S2 ∩ S3 6= ∅,
then

d(S1) 6 d(S2) + d(S3).

�	��
�
�

. Let Di be an Si-digraph of size d(Si) for i = 1, 2, 3. Define a digraph D′

to be the subdigraph of D with vertex set V (D2)∪V (D3) and arc set E(D2)∪E(D3).
Since S2 ∩ S3 6= ∅ and D2 and D3 are strong subdigraphs of D, it follows that D′ is

also a strong subdigraph of D with S1 ⊆ V (D′). Thus m(D1) 6 m(D′). Therefore,

d(S1) = m(D1) 6 m(D′) 6 m(D2) + m(D3) = d(S2) + d(S3),

as desired. �

As an example, consider the strong oriented graph D of Figure 2. Let S1 =
{s, v, x}, S2 = {v, x, z}, and S3 = {s, x, y}. Then |Si| = 3 for 1 6 i 6 3, where
S1 ⊆ S2 ∪S3 and S2 ∩S3 6= ∅. For each i with 1 6 i 6 3, let Di be an Si-subdigraph
of size d(Si) in D, which is also shown in Figure 2. Hence d(S1) = 3, d(S2) = 4, and
d(S3) = 5. Note that the subdigraphD′ ofD described in the proof of Proposition 1.1

has size 6. Thus d(S1) 6 m(D′) 6 d(S2) + d(S3).

u v x y

w s z

t

D :

v x v x v x y

s s z s z

D1 D2 D3

Figure 2. An example of an extension of (2)

The extended triangle inequality d(S1) 6 d(S2) + d(S3) stated in Proposition 1.1
suggests a generalization of strong distance in strong oriented graphs, which we
introduce in this paper.
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2. On k-strong eccentricity, radius, and diameter

Let v be a vertex of a strong oriented graph D of order n > 3 and let k be an

integer with 2 6 k 6 n. The k-strong eccentricity sek(v) is defined by

sek(v) = max{d(S); S ⊆ V (D), v ∈ S, |S| = k}.

The k-strong diameter sdiamk(D) is

sdiamk(D) = max{sek(v); v ∈ V (D)};

while the k-strong radius sradk(D) is defined by

sradk(D) = min{sek(v); v ∈ V (D)}.

To illustrate these concepts, consider the strong oriented graph D of Figure 3. The

3-strong eccentricity of each vertex of D is shown in Figure 3. Thus srad3(D) = 8
and sdiam3(D) = 12.

8

11 11

12

11

11

12

11

11 12

D :

Figure 3. A strong oriented graph D with srad3(D) = 8 and sdiam3(D) = 12

For a nontrivial strong oriented graph D of order n, the radius sequence Sr(D) of
D is defined as

Sr(D) : srad2(D), srad3(D), srad4(D), . . . , sradn(D)

and the diameter sequence Sd(D) of D is defined as

Sd(D) : sdiam2(D), sdiam3(D), sdiam4(D), . . . , sdiamn(D).

For example, the strong oriented graph D in Figure 4 has order 9. Since srad2(D) =
6, srad3(D) = 9, and sradk(D) = 12 for 4 6 k 6 9, it follows that Sr(D) :
6, 9, 12, 12, . . . , 12. Moreover, sdiam2(D) = 9 and sdiamk(D) = 12 for 3 6 k 6 9.
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D :

Figure 4. A strong oriented graph

Thus Sd(D) : 9, 12, 12, . . . , 12. Note that both Sr(D) and Sd(D) are nondecreasing
sequences. This is no coincidence, as we now see.

Proposition 2.1. For a nontrivial strong oriented graph D of order n and every

integer k with 2 6 k 6 n− 1,

(a) sradk(D) 6 sradk+1(D) and (b) sdiamk(D) 6 sdiamk+1(D).

�	��
�
�

. To verify (a), let u and v be two vertices of D with sek(u) = sradk(D)

and sek+1(v) = sradk+1(D). Let S be a set of k vertices of D such that sek(u) =
d(S) = sradk(D). Now let x be a vertex of D such that x = v if v /∈ S and

x ∈ V (D)−S if v ∈ S. Let S′ = {x}∪S. Since S ⊆ S′, it follows that d(S) 6 d(S ′).
Moreover, S′ is a set of k + 1 vertices of D containing v and so d(S ′) 6 sek+1(v).
Thus

sradk(D) = d(S) 6 d(S′) 6 sek+1(v) = sradk+1(D)

and so (a) holds. To verify (b), let S be a set of k vertices of D with d(S) =
sdiamk(D). If S′ is any set of k + 1 vertices of D with S ⊆ S ′, then

sdiamk(D) = d(S) 6 d(S′) 6 sdiamk+1(D)

and so (b) holds. �

Equalities in (a) and (b) of Proposition 2.1 hold for certain strong oriented graphs,

for example, the directed n-cycle
−→
Cn for n > 3. In fact, sradk(

−→
Cn) = sdiamk(

−→
Cn) = n

for all k with 2 6 k 6 n. As another example, let D be the strong oriented graph
of order n > 3 with V (D) = {v1, v2, . . . , vn} such that for 1 6 i < j 6 n, (vi, vj) ∈
E(D), except when i = 1 and j = n, and (vn, v1) ∈ E(D) (see Figure 5). Then
sradk(D) = sdiamk(D) = n for all k with 2 6 k 6 n. In fact, there are many other

strong oriented graphs D with the property that sradk(D) = sdiamk(D).

v1 v2 v3 vn

D :

Figure 5. A strong oriented graph D of order n with sradk(D) = sdiamk(D) for 2 6 k 6 n
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On the other hand, for a strong oriented graph D, the difference between

sradk+1(D) and sradk(D) (or sdiamk+1(D) and sdiamk(D)) can be arbitrarily
large for some k.

Proposition 2.2. For every integer N > 3, there exist a strong oriented graph
D and an integer k such that

sradk+1(D)− sradk(D) > N and sdiamk+1(D)− sdiamk(D) > N.

�	��
�
�

. Let ` > 3 be an integer. For each i with 1 6 i 6 `, let Di be a copy of

the directed N -cycle
−→
CN and let vi ∈ V (Di). Now let D be the strong oriented graph

obtained from the digraphs Di (1 6 i 6 `) by identifying the ` vertices v1, v2, . . . , v`.

It can be verified that sradk+1(D)− sradk(D) = N and sdiamk+1(D)− sdiamk(D) =
N for all k with 2 6 k 6 `− 1. �

For an integer k > 2, the k-strong radius and k-strong diameter of a strong oriented

graph satisfy familiar inequalities, which are verified with familiar arguments.

Proposition 2.3. Let k > 2 be an integer. For every strong oriented graph D,

sradk(D) 6 sdiamk(D) 6 2sradk(D).

�	��
�
�

. The inequality sradk(D) 6 sdiamk(D) follows directly from the defini-

tions. It was shown in [2] that result is true for k = 2. So we may assume that k > 3.
Let S1 = {w1, w2, . . . , wk} be a set of vertices of D with d(S) = sdiamk(D) and let
v be a vertex of D with sek(v) = sradk(D). Define S2 = {v, w1, w2, . . . , wk−1} and
S3 = {v, w2, w3, . . . , wk}. Thus S1 ⊆ S2 ∪ S3 and S2 ∩ S3 6= ∅. It then follows from
Proposition 1.1 that

sdiamk(D) = d(S1) 6 d(S2) + d(S3) 6 2sradk(D),

producing the desired result. �

3. On k-strong centers and peripherals

A vertex v in a strong digraph D is a k-strong central vertex if sek(v) = sradk(G),
while the k-strong center SCk(D) of D is the subgraph induced by the k-strong
central vertices of D. These concepts were first introduced in [3] for k = 2. For
example, consider the strong digraph D of Figure 4, which is also shown in Figure 6.
Each vertex of D is labeled with its 3-strong eccentricity. Thus the vertices x, y, z

are the 3-strong central vertices of D. The 3-strong center SC3(D) of D is a 3-cycle
as shown in Figure 6.
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D : SC3(D) :

Figure 6. The 3-strong center of a strong digraph D

It was shown in [3] that every 2-strong center of every strong oriented graph D

lies in a block of the underlying graph of D. However, it is not true in general for
k > 3. For example, although the 3-strong center of the strong oriented graph D in

Figure 6 lies in a block of the underlying graph of D, the 4-strong center of D is D

itself and D is not a block. On the other hand, as Hedetniemi (see [1]) showed that

every graph is the center of some connected graph, it was also shown in [3] that every
oriented graph is the 2-strong center of some strong digraph. We now extend this
result by showing that, for each integer k > 2, every oriented graph is the k-strong
center of some strong digraph.

Theorem 3.1. Let k > 2 be an integer. Then every oriented graph is the k-strong

center of some strong digraph.
�	��
�
�


. For an oriented graph D, we construct a strong oriented graph D∗ from

D by adding the 3k new vertices ui, vi, wi (1 6 i 6 k) and arcs (1) (wi, vi), (vi, ui),
and (ui, wi) for all i with 1 6 i 6 k and (2) (ui, x) and (x, vi) for all x ∈ V (D) and
for all i with 1 6 i 6 k. The oriented graph D∗ is shown in Figure 7. Certainly, D∗

is strong. Next, we show that D is the k-strong center of D∗.

D

u2

w2

v2

u1

w1

v1
uk

wk

vk
D∗ :

Figure 7. A strong oriented graph D∗ containing D as its k-strong center

Let U = {u1, u2, . . . , uk}, V = {v1, v2, . . . , vk}, and W = {w1, w2, . . . , wk}. For
each x ∈ V (D), let S(x) = {x} ∪ (W − {wk}). Then sek(x) = d(S) = 6(k − 1).
For each ui ∈ U , where 1 6 i 6 k, let S(ui) = {ui} ∪ (W − {wi}). Then sek(ui) =
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d(S) = 6(k − 1) + 3 for 1 6 i 6 k. For each vi ∈ V , where 1 6 i 6 k, let

S(vi) = {vi} ∪ (W − {wi}). Then sek(vi) = d(S) = 6(k − 1) + 3 for 1 6 i 6 k.
For each wi ∈ W , where 1 6 i 6 k, let S = W . Then sek(wi) = d(S) = 6k for
1 6 i 6 k. Since sek(x) = 6(k − 1) for all x ∈ V (D) and sek(v) > 6(k − 1) for all
v ∈ V (D∗)− V (D), it follows that D is the k-strong center of D∗, as desired. �

Independently, V. Castellana and M.Raines also discovered Theorem 3.1 (personal
communication). A vertex v in a strong digraph D is called a k-strong peripheral

vertex if sek(v) = sdiamk(D), while the subgraph induced by the k-strong peripheral
vertices of D is the k-strong periphery SP k(D) of D. Also, these concepts were first
introduced in [3] for k = 2. A strong digraph D and its 3-strong periphery are shown
in Figure 8. The following result appeared in [3].

9

1212

9
12

12

9

12

12

u2u1

v1

v2 w2

w1

u2u1

v1

v2 w2

w1

D : SP3(D) :

Figure 8. The 3-strong periphery of a strong digraph

Theorem A. If D is an oriented graph with srad2(D) = 3 and sdiam2(D) > 3,
then D is not the 2-strong periphery of any oriented graph.

We now extend Theorem A to the k-strong periphery of a strong oriented graph
for k > 3 and show that not all oriented graphs are the k-strong peripheries of strong

oriented graphs.

Theorem 3.2. Let k > 3 be an integer. If D is an oriented graph with

sdiamk(D) > sradk(D), then D is not the k-strong periphery of any oriented graph.

�	��
�
�

. Let D satisfy the conditions of the theorem. Assume, to the contrary,

that D is the k-strong periphery of some oriented graphD′. Assume that sradk(D) =
r and sdiamk(D) = d. So d > r > 3. Let u be a k-strong central vertex of D.

Since sdiamk(D) = d > r, we have sdiamk(D′) = d′ > d > r. Moreover, since
D is the k-strong periphery of D′ and u ∈ V (D), it follows that D′ contains a set

S = {u, v1, v2, . . . , vk−1} such that d(S) = sdiamk(D′) = d′. Because u is a k-strong
central vertex of D, that is, u has k-strong eccentricity r in D, and r < d′, at least

one vertex from {v1, v2, . . . , vk−1} does not belong to V (D). Assume, without loss
of generality, that v1 /∈ V (D). Then the k-strong eccentricity sek(v1) of v1 in D′ is
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at least d(S) and so sek(v1) > d(S) = d′. Thus sek(v1) = d′, which implies that v1

is a k-strong peripheral vertex of D′. Since v1 /∈ V (D), it follows that D is not the
k-strong periphery of D′, which is a contradiction. �

In [3], a sufficient condition was established for an oriented graph D to be the

2-strong periphery of some oriented graph D′, which we state next.

Theorem B. Let D be an oriented graph of order n with strong diameter at least
4. If id v + od v < n− 1 for every vertex v of D, then D is the 2-strong periphery of
some oriented graph D′.

Observe that if v is a vertex of an oriented graphD of order n such that id v+od v <

n − 1, then there is a vertex u ∈ V (D) such that v and u are nonadjacent vertices

of D, that is, v belongs to an independent set, namely {u, v}, of cardinality 2 in D.
Thus the sufficient condition given in Theorem B is equivalent to that every vertex in

D belongs to an independent set of cardinality 2 in D. We now extend Theorem B to
obtain a sufficient condition for an oriented digraph D to be the k-strong periphery
of some oriented graph D′ for all integers k > 2.

Theorem 3.3. Let k > 2 be an integer and let D be a connected oriented graph.

If every vertex of D belongs to an independent set of cardinality k in D, then D is

the k-strong periphery of some oriented graph D′.
�	��
�
�


. By Theorem B the result holds for k = 2. So we assume that k > 3. Let
D be an oriented graph of order n which satisfies the conditions of the theorem and
let V (D) = {u1, u2, . . . , un}. We construct a new oriented graph D′ of order 2n + 2
with V (D′) = V (D)∪{v1, v2, . . . , vn, x, y} such that the arc set ofD′ consists of E(D)
together with arcs (1) (ui, vi) and (vi, uj) for 1 6 i 6 n and 1 6 j 6 n, (2) (vi, vj)
for 1 6 i < j 6 n, and (3) (y, x), (vi, x), (x, ui), (ui, y), (y, vi) for 1 6 i 6 n. The
oriented graph D′ is shown in Figure 9. We claim that D is the k-strong periphery

of D′. We will show it only for k = 3 since the argument for k > 4 is similar.

D
u1 u2 un

v1 v2 vn

x y
D′ :

Figure 9. An oriented graph D′ containing D as its k-strong periphery
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We first show that se3(ui) = 6 in D′ for all i with 1 6 i 6 n. Without loss

of generality, we consider only u1 ∈ V (D) and show that se3(u1) = 6. Let S0 =
{u1, up, uq} be an independent set of three vertices in D′, where 2 6 p < q 6 n.
Then the size of a strong subdigraph containing S0 is at least 6. On the other hand,

the directed 6-cycle C shown in Figure 10 contains S0. Thus d(S0) = 6 and so
se3(u1) > 6.

up
u1 uq

vp v1 vq

C :

Figure 10. A directed 6-cycle C in D′ containing S0

To show that se3(u1) 6 6. Let S be a set of three vertices of D containing u1.
Then the only possible choices for S are S1 = {u1, ui, uj}, where 2 6 i < j 6 n,

S2 = {u1, vi, vj}, where 1 6 i < j 6 n, S3 = {u1, ui, vj}, where i > 2 and 1 6 j 6 n,
S4 = {u1, x, y}, S5 = {u1, ui, y}, where 2 6 i 6 n, S6 = {u1, ui, x}, where 2 6 i 6 n,

S7 = {u1, vi, y}, and S8 = {u1, vi, x}, where 1 6 i 6 n. If S = S1, then the directed
6-cycle u1, v1, ui, vi, uj , vj , u1 is a strong subdigraph of D′ containing S and so

d(S) 6 6. Let S = S2 = {u1, vi, vj}, where 1 6 i < j 6 n. If i = 1, then the
directed 4-cycle u1, v1, uj , vj , u1 is a strong subdigraph of D′ containing S and so

d(S) 6 4. If i > 2, then the directed 4-cycle u1, y, vi, vj , u1 is a strong subdigraph
of D′ containing S and so d(S) 6 4. Let S = S3 = {u1, ui, vj}, where i > 2 and
1 6 j 6 n. If j = 1 or j = i, say j = 1, then the directed 4-cycle u1, v1, u1,
vi, u1 is a strong subdigraph of D′ containing S and so d(S) 6 4; Otherwise, the
directed 5-cycle u1, y, vj , ui, vi, u1 is a strong subdigraph of D′ containing S and so
d(S) 6 5. If S = S4, then the directed 3-cycle u1, y, x, u1 is a strong subdigraph of

D′ containing S and so d(S) 6 3. If S = S5 (or S = S6), then the directed 5-cycle
u1, v1, ui, y, vi, u1 contains S (or the directed 5-cycle u1, v1, x, ui, vi, u1 contains S).

Thus d(S) 6 5. Let S = S7 = {u1, vi, y} or S = S8 = {u1, vi, x}, where 1 6 i 6 n.
If i = 1, then directed 4-cycle u1, y, v1, x, u1 contains S and d(S) 6 4. If i > 2, then
either the directed 5-cycle u1, v1, ui, y, vi, u1 contains S or the directed 5-cycle u1,
v1, x, ui, vi, u1 contains S. Thus d(S) 6 5. Hence d(S) 6 6 for all possible choices
for S and so se3(u1) 6 6. Therefore, se3(u1) = 6. Similarly, se3(ui) = 6 for all i with
2 6 i 6 n.

Next we show that se(x) 6 5 and se(y) 6 5 in D′. Let S be a set of three vertices
in D′ containing x. Then the only possible choices for S are S1 = {x, ui, uj}, where
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1 6 i < j 6 n, S2 = {x, vi, vj}, where 1 6 i < j 6 n, S3 = {x, ui, vj}, where
1 6 i 6 n and 1 6 j 6 n, S4 = {x, y, ui}, where 1 6 i 6 n, and S5 = {x, y, vi},
where 1 6 i 6 n. For S = S1, S2, S3, the directed 5-cycle ui, vi, x, uj , vj , ui contains
S and so d(S) 6 5. For S = S4, the directed 3-cycle x, ui, y, x contains S and

so d(S) 6 3. For S = S5, the directed 4-cycle u1, y, vi, x, v1 contains S and so
d(S) 6 4. Therefore, se(x) 6 5. Similarly, se(y) 6 5.
Finally, we show that se(vi) 6 5 in D′ for all i with 1 6 i 6 n. Without loss

of generality, let vi = v1 and let S be a set of three vertices in D′ containing v1.

Then the only possible choices for S are S1 = {v1, ui, uj}, where 1 6 i < j 6 n,
S2 = {v1, vi, vj}, where 2 6 i < j 6 n, S3 = {v1, ui, vj}, where 1 6 i 6 n and j > 2,
S4 = {v1, ui, x}, where 1 6 i 6 n, S5 = {v1, vi, x}, where 2 6 i 6 n, S6 = {v1, ui, y},
where 1 6 i 6 n, and S7 = {v1, vi, y}, where 2 6 i 6 n. An argument similar to the

one above shows that d(S) 6 5 for each choice of S and so se3(v1) 6 5.
Since se3(v) = 6 for all v ∈ V (D) and se3(v) 6 5 for all v ∈ V (D′)−V (D), it follows

that D is the 3-strong periphery of the oriented graph D′. In general, for k > 3, we
have sek(v) = 2k for all v ∈ V (D) and sek(v) 6 2k − 1 for all v ∈ V (D′) − V (D).
Therefore, D is the k-strong periphery of the oriented graph D′. �

4. On strongly k-self-centered oriented graphs

Let D be a nontrivial strong digraph of order n and let k be an integer with

2 6 k 6 n. Then D is called strongly k-self-centered if sradk D = sdiamk D, that

is, if D is its own k-strong center. For example, the directed n-cycle
−→
Cn and the

strong digraph D in Figure 5 are k-self-centered for all k with 2 6 k 6 n. The

2-self-centered digraph was studied in [3]. The following result was established in [3].

Theorem C. For every integer r > 3, there exist infinitely many strongly 2-self-
centered oriented graphs of strong radius r.

We now extend Theorem C to strongly 3-self-centered oriented graphs.

Theorem 4.1. For every integer r > 6, there exist infinitely many strongly 3-
self-centered oriented graphs of strong radius r.

�	��
�
�

. For each integer r > 6, we construct an infinite sequence {Dn} of

strongly 3-self-centered oriented graphs of strong radius r. We consider two cases,

according to whether r is even or r is odd.
�������

1. r is even. Let r = 2p, where p > 3. Let D1 be the digraph obtained from
the directed p-cycle Cp : w1, w2, . . . , wp by adding the 2(p−1) new vertices u1, u2, . . .,
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up−1 and v1, v2, . . ., vp−1 and the new arcs (1) (ui, ui+1), (vi, vi+1) for 1 6 i 6 p− 2
and (2) (v, u1), (up−1, v), (v, v1), and (vp−1, v) for all v ∈ V (Cp). The digraph D1

is shown in Figure 11 for r = 6. Let U = {u1, u2, . . . , up−1}, V = {v1, v2, . . . , vp−1},
and W = {w1, w2, . . . , wp}. We show that D1 is a strongly 3-self-centered digraph
with 3-strong radius r.

w2 w3

w1

u2

u1

v2

v1

D1 :

Figure 11. The digraph D1 in Case 1 for r = 6

First, we make an observation. If S = {u, v, w}, where u ∈ U , v ∈ V , and

w ∈ W , then d(S) > r by the construction of D1. On the other hand, let DS

be the strong subdigraph in D1 consisting of two p-cycles w, v1, v2, . . . , vp−1, w and

w, u1, u2, . . . , up−1, w. Since DS contains S and has size 2p = r, it follows that
d(S) = r. Therefore, for every vertex x of V (D1), there is a set S of three vertices

of D1 such that S contains x and d(S) = r. This implies that se3(x) > r for all
x ∈ V (D1). So it remains to show that se3(x) 6 r for all x ∈ V (D1). There are two
subcases.
� � ���������

1.1. x ∈ U or x ∈ V . Without loss of generality, assume that x ∈ U .
We will only consider x = u1 ∈ U since the proofs for other vertices are similar. Let
S be a set of three vertices in D1 containing u1. If S ∩ V 6= ∅ and S ∩W 6= ∅, then
d(S) = r by the observation above. So we may assume that S is one of the following
sets: S1 = {u1, ui, uj}, where 2 6 i < j 6 p−1, S2 = {u1, ui, wj}, where 2 6 i 6 p−1
and 1 6 j 6 p, S3 = {u1, ui, vj}, where 2 6 i 6 p − 1 and 1 6 j 6 p − 1, S4 =
{u1, vi, vj}, where 1 6 i < j 6 p− 1, and S5 = {u1, wi, wj}, where 1 6 i < j 6 p. If

S = S1, S2, then the directed p-cycle wj , u1, u2, . . . , up−1, wj is a strong subdigraph
in D1 containing S and so d(S) 6 p. If S = S3, S4, then the strong subdigraph DS

in D1 consisting of two p-cycles w1, v1, v2, . . . , vp−1, w1 and w1, u1, u2, . . . , up−1, w1

contains S and so d(S) 6 2p = r. If S = S5, then the strong subdigraph consisting

of two p-cycles wi, v1, v2, . . . , vp−1, wi and wj , u1, u2, . . . , up−1, wj contains S and so
d(S) 6 2p = r.
� � ���������

1.2. x ∈ W . We may assume that x = w1 ∈ W and let S be a set

of three vertices in D1 containing w1. Again, if S ∩ V 6= ∅ and S ∩ U 6= ∅, then
d(S) = r by the observation above. So we may assume that S is one of the following

sets S1 = {w1, wi, wj}, where 2 6 i < j 6 p, S2 = {w1, wi, uj}, where 2 6 i 6 p and
1 6 j 6 p−1, S3 = {w1, wi, vj}, where 2 6 i 6 p and 1 6 j 6 p−1, S4 = {w1, ui, uj},
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where 1 6 i < j 6 p−1, and S5 = {w1, vi, vj}, where 1 6 i < j 6 p−1. An argument
similar to the one in Subcase 1.1 shows that d(S) 6 r for all possible choices for S.

Therefore, se3(x) = r for all x ∈ V (D1) and so D1 is a strongly 3-self-centered
digraph with 3-strong radius r.

For n > 1, we define the strong digraph Dn+1 recursively from Dn by adding the

2(p − 1) new vertices x1, x2, . . ., xp−1 and y1, y2, . . ., yp−1 and the new arcs (1)
(xi, xi+1), (yi, yi+1) for 1 6 i 6 p− 2 and (2) (v, x1), (xp−1, v), (v, y1), and (yp−1, v)
for all v ∈ V (Dn). The digraph Dn+1 is shown in Figure 12. We assume that Dn is
a strongly 3-self-centered oriented graph of 3-strong radius r for some integer n > 1
and show that Dn+1 is also a strongly 3-self-centered oriented graph of 3-strong
radius r.

Dn

xp−1

x2

x1

yp−1

y2

y1

Dn+1 :

Figure 12. The digraph Dn+1 in Case 1

Let X = {x1, x2, . . . , xp−1} and Y = {y1, y2, . . . , yp−1}. For v ∈ V (Dn+1), let S

be a set of three vertices in Dn+1 containing v. If v ∈ V (Dn) and S = {v, x1, y1},
then se3(v) = d(S) = r. So we may assume that v ∈ X ∪ Y , say v = x1. Let
S = {v, y1, z}, where z ∈ V (Dn). Then d(S) = se3(v) = r. Therefore, se3(v) = r

for all v ∈ V (Dn+1) and so Dn+1 is also a strongly 3-self-centered oriented graph of
3-strong radius r.
�������

2. r is odd. Let r = 2p + 1, where p > 3. Let D1 be the digraph obtained

from the directed (p + 1)-cycle Cp+1 : w1, w2, w3, w4, w1 by adding the p − 1 new
vertices u1, u2, . . ., up−1 and the new arcs (1) (ui, ui+1) for 1 6 i 6 p − 2 and (2)
(v, u1) and (up−1, v) for all v ∈ V (Cp+1). The digraph D1 is shown in Figure 13 for
r = 7.

w1

w2 w3

w4 u1

u2

D1 :

Figure 13. The digraph D1 in Case 2 for r = 7
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For n > 1, we define Dn+1 recursively from Dn by adding the p− 1 new vertices
x1, x2, . . ., xp−1 and the new arcs (1) (xi, xi+1), for 1 6 i 6 p − 2 and (2) (v, x1)
and (xp−1, v) for all v ∈ V (Dn). The digraph Dn+1 is shown in Figure 14.

Dn

xp−1

x2

x1

Dn+1 :

Figure 14. The digraph Dn+1 in Case 2

An argument similar to the one used in Case 1 shows that each strong digraph
Dn is a strongly 3-self-centered oriented graph of strong radius r for all n > 1. �
� ����� 
! #" �!$&%�'(����)*�

. The author is grateful to Professor Gary Chartrand
for suggesting the concept of strong Steiner distance and kindly providing useful

information on this topic.
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