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FINITE-VALUED DUALLY RESIDUATED 
LATTICE-ORDERED MONOIDS 

J A N K U H R 

(Communicated by Anatolij Dvurečenskij ) 

A B S T R A C T . Lattice-ordered groups, as well as GMV-algebras (called also 
pseudo MV-algebras), are both particular cases of dually residuated lattice-
ordered monoids (DB£-monoids) . In the paper we study values in DH^-monoids, 
especially if the ideal lattice is a member of the class X1ZM of algebraic, distribu­
tive lattices whose compact elements form a relatively normal sublattice, and we 
characterize finite-valued DR£-monoids whose ideal lattices belong to XlZJ\f. 

1. Introduc t ion 

K. L. N. S w a m y [19] introduced commutative dually residuated lattice-
ordered monoids (DR£-semigroups) as a common abstraction of Abelian lattice-
ordered groups and Brouwerian algebras (by a Brouwerian algebra is meant a du­
ally relatively pseudo-complemented lattice). J. R a c h u n e k [13], [14] proved 
that well-known MV-algebras ([2]), an algebraic counterpart of Lukasiewicz's 
logic, and F?L-algebras ([9]), structures for Hajek's basic logic, that captures the 
three most significant fuzzy logics (Lukasiewicz logic, Godel logic and product 
logic), can be viewed as particular kinds of bounded commutative DR£-monoids. 

In the paper we deal with (non-commutative) DR£-monoids, which include 
lattice-ordered groups, and likewise non-commutative generalizations of men­
tioned MF-algebras and I?L-algebras, i.e. GM"V-algebras ([15]) called also 
pseudo AfV-algebras ([7]), and pseudo J5i-algebras ([4], [5]), respectively. In 
[17], [18] and [6], the class XTZAf of algebraic, distributive lattices whose com­
pact elements form a relatively normal sublattice was examined; it turns out 
that lattices in XTZAf have similar properties as e.g. the lattice of all convex 
^-subgroups of an £ -group. We define and study the notion of a value of a non­
zero element of a I^It^-monoid. Further, we show that given a I}I?i-monoid 

2000 M a t h e m a t i c s S u b j e c t C l a s s i f i c a t i o n : Pr imary 06F05, 06D35, 03G25. 
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JAN KUHR 

satisfying an additional identity, its ideal lattice is a member of XTlM and this 
enables us to describe finite-valued DRl-monoids that satisfy this identity. 

The present concept of a (non-commutative) dually residuated lattice-ordered 
monoid is due to T. K o v a f [10]: 

An algebra (A; + , 0, V, A, --*, v-) of type (2, 0, 2,2, 2, 2) is said to be a dually 
residuated lattice-ordered monoid (DRl-monoid) if 

(1) (A;+ ,0 , V,A) is an ^-monoid, i.e., (A;+,0) is a monoid, (A;V,A) is a 
lattice and the monoid operation distributes over the lattice operations; 

(2) for any a, b G A, a —- b is the least x G A such that x + b > a, and 
a v- b is the least y £ A such that b + y >a; 

(3) A fulfils the identities 

((x ^ y) V 0) + y < x V j / , y + ((x v- y) V 0) < x V y , 

X -^ X > 0, £ v - £ > 0 . 

In the definition, the condition (2) can be equivalently replaced by the fol­
lowing identities ([10], [15]): 

(x -*- y) + y > x , y + (x T- y) > x , 

x-±y<(xVz)-xy, x^-y<(xVz)^y, 

(x + i/) - - y < x , (y + x) v- y < x . 

The following lemma catalogues a few basic properties of dually residuated 
£ -monoids: 

LEMMA 1.1. ([10]) In any DRl-monoid we have: 

(1) x —- x = 0 = x v- x; 
(2) ((x - y) V 0) + y = x V y = y + ((a v- y) V 0) ; 
(3) x -^ (y + z) = (x -^ z) - - y . x v- (y + z) = (x v- y) v- z; 
(4) if x < y, then x —- z < y —- z, x v- z < y v- z . z ^ x > z —- y and 

0 v- x > z v- y ; 
(5) x<y iff x ^y <0 iff x^~y <0; 
(6) x —- (y A z) = (x —- y) V (x —- z ) . x v- (y A z) = (x v- y) V (x v- z); 
(7) (x V y) -* z = (x •-- z) V (y -± z), (x V y) v- z = (x v- z) V (y v- z ) . 

2. Values in i9J?£-monoids 

First of all, let us recall necessary facts concerning ideals in Dit^-monoids. 
For x G A, let |x| = x V (0 -^ x), or equivalently, |x| = x V (0 v- x) , be the 

absolute value of x, and for I c i , let X + = {x G X : 0 < x } . 
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An ideal in A is a subset H such that 

(i) Oe t f , 
(ii) if x, y G H, then x + y G H, 

(iii) if x G H, 2/ G A and |H < |x|, then H G H. 
One readily sees that the ideals of any DR£-monoid form a complete lattice, 
Id(A), and therefore, for every 0 / A r C i , the set 

I(X) = {a G A : \a\ < |xx | H h \xn\ for some x l 5 . . . , x n G X } 

is the smallest ideal in A including X. In particular, for any x £ A, 

J(x) = {a G A : \a\ < n\x\ for some n G N} . 

For any DR£-monoid A, Id(A) is an algebraic, distributive lattice whose 
compact elements are obviously finitely generated ideals. However, by [11; Propo­
sition 12], 

I(x) H I(y) = I(\x\ A \y ) and I(x) V I(y) = l(\x\ V \y\) , 

for all x,H G A, and consequently, every finitely generated ideal is principal. 
Hence the compact elements of ld(A) are just the principal ideals that obviously 
form a sublattice of Id(.4). 

An ideal H is said to be normal if x + H+ = H+ + x for all x G A. The 
normal ideals are precisely the kernels of homomorphisms; if if is a normal ideal, 
then the corresponding congruence relation 0 ^ is given by 

x = y (eH) iff (x-^y)V(y--x)eH, 

so the quotient J5i?^-monoid A/H over H comprises the elements in the form 
x/H = {a G A : (x —- a) V (a —- x) G H}. In general, if H is an arbitrary 
ideal, then 1ZA(H) = {x/H : x G A} is a distributive lattice in which 

x / H < y/H iff (x - - y) V 0 G H. 

Since the ideal lattice ld(A) is algebraic and distributive by [11; Theorem 14], 
we can use several concepts and results from [17], [18] or [6]. 

Let L be an algebraic, distributive lattice with the greatest element 1, and 
let Com(L) be the join-subsemilattice of all compact elements in L. It is well 
known that L fulfils the join-infinite distributive law 

* A V 2 / Z = V X A ^ ' (JID) 
i£l i£l 

and consequently, L is a Brouwerian lattice, i.e., for any a,b £ L, there exists 
the greatest x G L such that x A a < b. 

An element a G K \ { l } is said to be 

(i) meet-prime if a > x A y implies a > x or a > y, 
(ii) meet-irreducible if a = x or a = y whenever a = x A H, for all x, y G L. 
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Observe that the primeness coincides with the irreducibility because of the dis-
tributivity of L. The concept of a completely meet-prime element and a com­
pletely meet-irreducible element, respectively, is obtained when allowing arbi­
trary meets in the above definitions. We should remind that every element of 
L is the infimum of a set of completely meet-irreducible elements. In addition, 
one readily sees that each completely meet-prime element is completely meet-
irreducible, but the converse holds if L satisfies the meet-infinite distributive 
law 

x v / \ H 2 = / \ x V H . , (MID) 
iei iei 

i.e., L is a dually Brouwerian lattice. 
If c G Com(L) \ {0}, then there is a maximal element x G i , a value of c in 

L, such that c ^ x. The set of all values of c in L is denoted by VL(c). By [17; 
p. 312], and [18; p. 43], an element a G L is a value of some c £ Com(L) if and 
only if a is completely meet-irreducible. Furthermore, completely meet-prime 
elements are determined by values: an element is completely meet-prime if and 
only if it is the unique value of some compact element. 

Let us return to DR£-monoids. We define an ideal II G ld(A) to be prime if 
it is a meet-prime element of ld(A), i.e. for all J,K e ld(A), if JnK C II, then 
J C II or K C II. By [12; Theorem 2.2], for every proper ideal II and a £ II, 
there is a prime ideal P such that II C P and a $_ P, and consequently, any 
ideal is equal to the intersection of all prime ideals exceeding it. If a DRl-monoid 
satisfies the identities 

(x-^y) A ( y - - x ) < 0 , 
(*) 

(x v- y) A (y T - x) < 0 , 

then we have several criteria for primeness of ideals (see [12; Theorem 2.12]): 

PROPOSITION 2 .1 . Let A be a DRl-monoid satisfying (*). Then for any 
II G Id (A). the following conditions are equivalent: 

(1) II is prime. 
(2) If x Ay G II. then x G II or y G H. 
(3) If x Ay = 0. then x G II or y G II. 
(4) For any x,y G A, (x - - u) V 0 G II Or (y - - x) V 0 G II. 
(5) 7lA(H) is linearly ordered. 
(6) Tfte set of all ideals containing II is a chain. 
(7) II is the intersection of a chain of completely meet-irreducible ideals. 

In analogy with £-groups or GAIV-algebras we define the notion of a value 
of a non-zero element in a I}It£-monoid. Let a G A\ {0}. By Zorn's lemma, the 
set of all ideals that do not contain a has a maximal element; such an ideal is 
called a value of a. We use TA(a) to denote the set of all values of a in A, and 
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T(A) denotes the set comprising all values of all a G A \ {0}. It is easy to see 
that TA(a) = r i d ( A ) (1(a)) for any a G A \ {0}. 

An element a G A is said to be special if it has the unique value V in A\ in 
this case, V is called a special value. 

PROPOSITION 2.2. Let A be a DR£-monoid. Then the following conditions 
are equivalent for every ideal H G ld(A): 

(i) Her(A). 
(2) H is completely meet-irreducible. 

(3) H has the unique cover H* in the ideal lattice ld(A). 

Moreover, if A fulfils (*) and H is normal, then each of the above is equivalent to 

(4) A/H is linearly ordered and the ideal lattice ld(A/H) contains the 

unique atom. 

P r o o f . As pointed out before, since if is a value of a G A \ {0} iff it is a 
value of 1(a) in Id(A), the conditions (1) and (2) are equivalent by [17; p. 312]. 
The equivalence of (2) and (3) is obvious. 

CLAIM. If H is a normal ideal of A, then ld(A/H) = [H) C ld(A). 

One readily verifies that if J G ld(A), then J/H = {a/H : a G J } is an ideal 
in A/H, and conversely, K = {a G A : a/H G K} is an ideal in A with H C K 
provided K G ld(A/H). In addition, it can be easily proved that J i-» J/H and 
K \-> K are mutually inverse order preserving bijections between ld(A/H) and 
[H) = {J eld(A) : HC J } . 

We are now ready to verify the latter statement. 
(3) =-=-> (4): Since H is a prime ideal, it follows by Proposition 2.1(5) that 

^4/H is linearly ordered and it should be evident by the claim that H*/H is 
the only atom in ld(A/H). 

(4) =*• (3): By the claim. • 

By [11; Theorem 13], every ideal H in a DR£-monoid A is a convex subal-
gebra of A, and hence our next aim is to describe the connections between the 
values of a G H in A and the values of a in H. 

PROPOSITION 2.3 . Let A be a DR£-monoid, H G Id (A) and a G H \ {0}. 
Then the mapping 

V^HHV, V eTA(a), 

is a bisection of TA(a) onto TH(a). 

P r o o f . Let Spec(H) be the set of all proper prime ideals in H and S(H) 
the set of all prime ideals in A that do not include H. By [12; Proposition 2.6], 
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(p-.P^HnP, PeS(H), 

ip:Q^H*Q, QeSpec(H), 

H*Q= {xeA: \x\ A \y\ € Q for all y G H} 

is the relative pseudo-complement of H with respect to Q in the ideal lat­
tice ld(A), are mutually inverse, order preserving bijections between S(H) and 
Spec(if) . It is easily seen that a G P iff a G if fl P and a G Q i& a e H * Q. 
Further, TA(a) C S(H) and r ^ ( a ) C Spec(if) . If V G V^(a), then there 
exists W G TH(a) such that i f n V C IV, whence V C if * IV. It is clear 
that H n V = IV since otherwise V C i f * IV and so V £ T^(a) . Similarly, if 
IV G r ^ ( a ) , then if * IV G r A ( a ) . Therefore, F e r » iff if n V G TH(a) 
and IV G TH(a) iff if * IV G TA(a), so that </? |pA(a) and ^ ^^(a) a r e mutually 
inverse bijections. D 

Now, let us recall some facts from [3]. Again, L is an algebraic, distributive 
lattice. We say that L is generated by its set of all meet-irreducible elements T 
if each element of L is the meet of some filter in T. If, moreover, /\F1 = f\F2 

entails F1 = F2, then L is freely generated by T. Thus T freely generates L if 
there is a natural one-to-one correspondence between the elements of L and the 
filters in T. 

A lattice L is called completely distributive if 

A \ K = V Aa*<.) (CD) 
iei jeJ v- i->J iei 

whenever the indicated suprema and infima exist in L. By [1; p. 232, The­
orem 17], (CD) and its dual are in complete lattices equivalent. 

A root-system P is a poset in which for all a, the principal filter [a) = 
{x G P : x > a} is a chain. A maximal chain in a root-system is called a root. 

THEOREM 2.4. Let A be a DM-monoid satisfying (*). Then T(A) is a root-
system that generates ld(A) and the following statements are equivalent: 

(1) T(A) freely generates ld(A). 
(2) ld(A) is completely distributive. 
(3) Id(A) is dually Brouwerian, i.e., Id(A) fulfils (MID). 
(4) Every value is special. 
(5) Id(A) is bialgebraic. 
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P r o o f . In view of Proposition 2.1(6), the set of all prime ideals in A is a 
root-system, and hence so is T(A). Since the values are precisely the completely 
meet-irreducible ideals, it follows that the ideal lattice Id(A) is generated by 
T(A). The conditions (l)-(4) are equivalent by [3; Theorem 2.1, Corollary to 
Proposition 2.4] since a lattice L is freely generated by T iff L is completely 
distributive iff T satisfies (MID) iff every a £ T is completely meet-prime, i.e., 
a is the unique value of a compact element. Finally, e.g. by [17], Lemma 1.1, an 
algebraic, distributive lattice is bialgebraic (algebraic and dually algebraic) iff 
every completely meet-irreducible element is even completely meet-prime. • 

THEOREM 2.5. If a DRl-monoid A satisfies (*) and T(A) contains only a 
finite number of roots, then Id (A) is freely generated by T(A). 

P r o o f . By [3; Theorem 2.3], if T is a root-system that generates L and 

contains only finitely many roots and if D( f\ aA = U D(ai) f° r e a c n chain 
Kiei J iei 

{ai)iei — r> where D(a) = {x £ T : x > a } , then L is freely generated 

by T. Therefore it suffices to show that D( f| VA = \J D(VZ) for every chain 
of values {V{}ieI in A. ** ^ I 

Obviously, U -CTO Q D( PI vi) • Conversely, let W £ D( f| Vt) , that is, 
iei Kiei J Kiei J 

V = p | V. C W. Since V is a prime ideal in A, by Proposition 2.1(7), it follows 
iei 

from (6) of Proposition 2.1 that W is comparable with every Vi. If IV C Vi for 
all i £ I, then IV C V, and so IV = V, which yields IV = Vio for some iQ £ / 
since IV £ T(A), which is a contradiction. Thus there exists iQ £ I such that 

V;o C IV, so IV £ D(VJ C U JO(^) Proving D( f] Vt) C U ^ ( ^ ) . • 
iG I V i G I y iGI 

3. Finite-valued Di?^-monoids satisfying (*) 

A lower-bounded, distributive lattice L is said to be relatively normal if its 
prime ideals form a root-system. This term is suggested by topological consider­
ations: a topological space is hereditarily normal (not necessarily a T2-space) if 
and only if the lattice of its open sets is relatively normal. 

The class of the ideal lattices of relatively normal lattices is denoted by TRM. 
If L is algebraic and distributive and Com(K) is a sublattice in L, then L is 
obviously isomorphic with the ideal lattice of Com(L) and the poset of the 
meet-prime elements of L is order-isomorphic to the poset of the prime ideals 
in Com(L). Therefore, Com(L) is a relatively normal lattice if and only if the 
meet-prime elements of L form a root-system, and so L belongs to ITZAf iff 
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L is an algebraic, distributive lattice such that Com(L) is a sublattice and the 
meet-prime elements of L form a root-system. 

THEOREM 3 .1 . If A satisfies (*). then its ideal lattice ld(A) is a member of 
the class TTZAf. 

P r o o f . We already knowr that ld(A) is an algebraic and distributive lattice 
and Com(ld(A)) is a sublattice of ld(A) as the compact elements in ld(A) are 
the principal ideals. In addition, due to Proposition 2.1, the meet-prime elements 
of ld(A), i.e. the prime ideals in A, form a root-system. D 

It can be easily seen that an ideal H is a value of a £ A \ {0} if and only 
if H is a value of the principal ideal 1(a) in Id(A). This allows to apply some 
results from [6] and [17], [18], particularly if A fulfils (*). 

In an algebraic, distributive lattice L, a £ L is called completely join-prime 
if a < V xi implies a < xio for some i0 £ 7; clearly, a is completely join-prime 

iei 
iff it is completely join-irreducible since L fulfils (JID). Similarly as completely 
meet-prime elements, by [17; p. 312] or [18; p. 43], likewise completely join-
primes can be characterized in terms of values in L: an element is completely 
join-prime iff it is compact and has a unique value. 

We say that a, b £ L are orthogonal if a A b = 0. 

THEOREM 3.2. Let A be a DRl-monoid satisfying (*) and let a £ A+ . Then 
the following statements are equivalent: 

(1) TA(a) is finite. 
(2) Every value of a is special. 
(3) 1(a) is the unique join of finitely many pairwise orthogonal completely 

join-prime ideals. 

P r o o f . Since Id(A) £ TIZAf and TA(a) = r i d ^ (1(a)), this is an immedi­
ate consequence of [17; Lemma 2.3] or [18; Lemma 3.5], stating that if L £ T1ZN, 
then the following are equivalent, for c £ Com(L): 

(1) c has only a finite number of values; 
(2) every value of c is completely meet-prime, i.e. the only value of some 

compact element; 
(3) c can be written uniquely as a finite join of pairwise orthogonal com­

pletely join-prime elements. 

D 

We define a Di?^-monoid A to he finite-valued if Y A(a) is finite for all a £ A. 
It is known that an £ -group G is finite-valued if and only if every value in G is 
special. The same holds for GMV-algebras by [16; Theorem 6]. 
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COROLLARY 3.3. A DR£ -monoid A satisfying (*) is finite-valued if and only 
if every V G T(A) is special. If T(A) contains only finitely many roots, then A 
is finite-valued. 

P r o o f . The former statement is just another formulation of the previous 
theorem, the latter one follows from the simple observation that for a G A\ {0}, 
TA(a) is an antichain in T(A), so it is necessarily finite provided T(A) has only 
a finite number of roots. • 

In what follows, we use two technical lemmata to turn the condition (3) of 
Theorem 3.2 in the form that generalizes another description of finite-valued 
^-groups (see [3; Theorem 3.9], and [17; Theorem 2.5]): an ^-group G is finite-
valued if and only if each positive element of G is a finite sum of pairwise 
orthogonal special elements. 

We shall call a, b G A orthogonal if \a\ A |b| = 0. 

LEMMA 3.4. Let A be any DR£-monoid. If 0 < b < ax + • • • + an for some 
ax,..., an G A+, then b = b1 + • • • + bn for some bi G A+ ivith bi < ai 

(1 < i < n). 

P r o o f . The proof proceeds by induction on n. For n = 1, the result is 
clear. Assume that b < a, + • • • + a„ and let b = b Ao„ . Then 

— J. ft Tl 11 

c = b - bn = b - (b A an) = (b - b) V (6 - a J = 0 V (b - an). 

Further, b < ax + • • • + an implies 

b -^ an < (a, + • • • + an_1 + an) -± an < ax + • • • + an_L . 

Hence 0 < c = 0 V (6 ^ an) < 0 V (ax + • • • + an_1) — a1 + • • • + an_1, and so 
by induction, c = bx + • • • + bn_1 for some 0 < bi < a{, where 1 < i < n — 1. 
Since bn < b, we have b = (b --• bn) + bn. Therefore c + bn = (b -^ bn) + bn = b 
and consequently b = b1 + • • • + bn-1 + bn for b{ < ai, 1 < i < n. D 

LEMMA 3.5. Let A be any DR£-monoid. If a 1 , . . . ,aA . G A + are pairwise 
orthogonal elements, then 

ai + *'' + ak = ai v ' ' ' v a k > 
n(a1 V • • • V ak) = nax V • • • V nak 

for every n G N. 

P r o o f . I f a A b = 0, then 

(a - - b) V 0 = (a -± b) V (a -^ a) = a ->- (a A b) = a -^ 0 = a. 

Therefore a V b = ( ( a _v fy v Q) + b == a + b. The rest is an easy induction. • 
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PROPOSITION 3.6. Let A be a DRl-monoid with (*) and let a G A+ . Then 
1(a) fulfils the condition (3) of Theorem 3.2 if and only if a can be uniquely 
expressed as a finite sum of positive, pairwise orthogonal special elements. 

P r o o f . The completely join-prime ideals are precisely principal ideals gen­
erated by special elements. Therefore, if a positive element a is the unique finite 
sum of positive, pairwise orthogonal special elements, then 1(a) satisfies (3) in 
Theorem 3.2. 

Conversely, let us suppose that 1(a) has the unique representation 

/ ( o ) = / ( 6 1 ) V - - - V / ( 6 f c ) = / ( 6 1 V - - - V 6 n ) , (3.1) 

where I(b{) are pairwise orthogonal completely join-prime ideals, i.e., every b2 

is a special element. Since I(b{) fl I(b,) = I(bi A b) = {0} for all i ^ j , it 
follows that bi A b- = 0 for all i ^ j . Clearly, a G I(b1 V • • • V bk), and so 
a < n(b1 V • • • V bk) = nbx V • • • V nbk = nb± + • • • + nbk by Lemma 3.5. In view 
of Lemma 3.4 this implies a = c1-\ h ck = cx V • • • V ck for some 0 < ci < nb 
(1 < i < k). Therefore, 1(a) = I(cx) V • • • V I(ck) and thus I(c{) = I(b.) as 
the expression (3.1) is unique. Altogether, a is the sum of pairwise orthogonal 
special elements cx,..., ck. D 

COROLLARY 3.7. A DR£-monoid satisfying (*) is finite-valued if and only if 
every positive element has the unique expression as the sum ( = the join) of a 
finite number of positive, pairwise orthogonal special elements. 

We are now going to show that the part "if" of Corollary 3.3 is true even for an 
arbitrary DRl-monoid A) i.e., if every value is special, then A is finite-valued. 

LEMMA 3.8. Let H be an ideal of an arbitrary DRl-monoid A, a G A+ \ {0} 
and let 

l(H) = f]{VeT(A): V£H}. 

Then a G 7(H) if and only ifWCH for all W G TA(a). In addition, H G T(A) 
is special if and only if 7(H) ^ H. 

P r o o f . Let a ^ 7(II). Then a ^ V for some V ^ II, and so there exists 
a value W of a such that V C W. Therefore W <£. II as TV C II would imply 
V C II. Conversely, let a G 7(H) and W G TA(a). If W <£ H, then a G IV, 
which is impossible. Thus W C II. 

For the last claim, note that II G T(A) is a special value of some a G A if 
and only if a G 7(II) \ II. Indeed, if a G 7(H) \ II, then every value of a is a 
subset of H and a £ II, so H is the only value of a. Conversely, if a is special 
with the unique value II, then a £ II and a G 7(if) as II C II. D 
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THEOREM 3.9. Let A be any DR£-monoid. If every value of a £ A f \ {0} is 
special, then a has finitely many values. 

P r o o f . Let K be the ideal generated by | J{^(V) : V £ YA (a)}. If a £ K, 
then there is TV £ Y A(a) with K C W, whence ^(W) C K C W. However, W 
is special and so 7(TV) ^ W by the last lemma, which is a contradiction. Thus 
a £ K. Lemma 3.4 now yields that a — ax + • • • + an, where a- is a positive 
element in 7(VJ for some Vi £ Y A(a) (1 < i < n). Moreover, any value of a-
is a subset of Vi since a{ £ 7(V^). If now V is a value of a, then V is a value 
of some a • since a £ H iff a x , . . . , an £ H for any ideal H, and consequently, 
V C T .̂ However, V, V̂  £ YA (a), which entails V = Vi, and so T 4 (a) is finite. 

• 

4. Main theorem 

Combining Theorem 2.4 and Corollaries 3.3 and 3.7 we have obtained the 
following characterization of finite-valued DR£-monoid verifying (*): 

THEOREM 4 . 1 . For any dually residuated lattice-ordered monoid A satisfy­
ing (*). the following statements are equivalent: 

(1) ld(A) is freely generated by Y(A). 
(2) Id(.A) is completely distributive. 
(3) Id (.A) is dually Brouwerian. 
(4) Id (A) is bialgebraic. 
(5) Every value is completely meet-prime. 
(6) Every value is special. 
(7) A is finite-valued. 
(8) Every positive element of A has the unique expression as the sum 

(= the join) of a finite number of positive pairwise orthogonal special 
elements. 
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