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COMPLEMENTS OF SOME GRAPHS

JAROSLAV IVANCO

(Communicated by Martin Skoviera )

ABSTRACT. The Hadwiger number of a graph G is the maximum size of a
complete graph to which G can be contracted. We investigate the Hadwiger
number of some graphs by the special structure of their complements. Determined
here are the Hadwiger number for the Zykov sum of graphs, and the Hadwiger
number for the complement of graphs without short circuits.

1. Introduction

In the present paper, we consider only finite undirected graphs without loops
or multiple edges. Concepts and notation not defined in this paper will be used
as in standard texts, for example [1].

Let G be a connected graph. A decomposition {V},...,V, } of its vertex set
V(G) into nonempty subsets with the following properties

(i) V; induces a connected subgraph of G for all i =1,...,m,
(i) Vv, u V; induces a connected subgraph of G for all i =1,...,m and all
j=1,...,m, ' :
is called an H-decomposition of G.

The Hadwiger number n(G) of a connected graph G is the maximum positive
integer m such that there exists an H-decomposition of G into m subsets. The
Hadwiger number of a disconnected graph is the maximum Hadwiger number of
its components.

In [2], there are established bounds of 7(G) depending on w(G) (i.e., the
maximal number of vertices in a clique of G) and ay(G) (i.e., the vertex covering
number of G).

AMS Subject Classification (1991): Primary 05C35.
Key words: Hadwiger number, H-decomposition, complement of graph.
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THEOREM 1. ([2]) Let G be a graph. Then

w(G) < n(G) < min{l + ay(G), {WJ } .

The vertices of an independent set of any graph G induce a clique of G (i.e.,
the complement of G), therefore w(a) is equal to the vertex independence
number fG,(G) of the graph G. By Theorem 1 and the Gallai theorem (i.e.,
oy(C) + By(G) = [V(G)]), we get:

COROLLARY 1. Let G be the complement of a graph G. Then
= : oy (G)
IV(G) = (@) < n(G) < mind 1+ |V(G)| - w(G), [V(G)| - | 25| ¢ -

Let K,, (P, ,,) denote the complete graph of order n (the path of length n),
then we get following Corollary.

COROLLARY 2. Suppose G is a graph such that ay(G) < 2. Then the Had-
wiger number of the complement of G satisfies:

If ay(G) =0, then 7(G) = |V(G)|.

If a4(G) =1, then n(G) = |V(G)| - 1.

If ay(G) =2 and G contains no subgraph isomorphic to K, or P,,
then n(G) = |V(G)| - 1.

If a4(G) =2 and G contains a subgraph isomorphic to K, or P,,
then n(G) = |V(G)| — 2.

Proof. By Corollary 1, the assertions are evident for ay(G) = 0 and
ay(G) = 1. Therefore, let us assume that ay(G) = 2. Let {u,v} denote a
minimal vertex covering set of G. Now we consider the following three cases.

Case 1. If G contains no subgraph isomorphic to K, or P,, then uv ¢ E(G),
and each vertex of the independent set V(G)— {u,v} = {w,,...,w,} is adjacent
to at most one vertex of {u,v}. Thus {{u,v},{w,},...,{w,}} is clearly an
H-decomposition of G, and so 7(G) > |V(G)| — 1. The opposite inequality
follows from Corollary 1.

Case 2. If G contains a subgraph isomorphic to K, then by Theorem 1,
w(G) = 3 (because ay(G) = 2), and by Corollary 1, we get 7(G) = |[V(G)| -2

Case 3. If G contains a subgraph isomorphic to P,, then there exist edges zu,
uv, vy in the graph G. Let G, be the subgraph of G such that V(G,) = V(G)
and E(G,) = {zu,uv,vy}. If a partition {V},...,V,} is an H-decomposition of
G, then the sets {u} {v} cannot both belong to this partition. Thus, without
loss of generahty, let u € V; and |V;| > 2. It can be easily seen that {V {u},

} is an H-decomposition of G — u, and so n(G ) (G’ — u)
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Since G is a subgraph of G, and ay(G, —u) = 1, we have 7(G) < 7(G,) =
17(_(}'—1 - u) = |[V(G) — {u}| — 1 = |V(G)| — 2. The opposite inequality again
follows from Corollary 1. O

2. The Hadwiger number of the Zykov sum of graphs

In general, the problem to determine 17(5) is difficult for a graph G when
ao(G) > 2. Therefore, next we will study only graphs of some special types.

Let G be a disconnected graph. If U C V(G) contains vertices from at least
two components of G, then it can be easily seen that for each vertex w € V(G)
the set U U {w} induces a connected subgraph of G. This fact can be useful for
the determination of n(a) . In this section, we determine the Hadwiger number
for the complement of a disconnected graph.

The Zykov sum (or join) G, + G, of disjoint graphs G| and G, is a graph
obtained from G, and G, by joining each vertex of G; with every vertex of G,
by an edge. It is clear that G is disconnected if and only if G is the Zykov sum
of some of its disjoint subgraphs. In [7], B. Zelinka proved that

n(Gy +G,y) 2n(Gy) +1(G,)  and (K, +G) =n+n(G).

The following assertion implies these results. However, first we remark that for
a set U of vertices in a graph G, we denote by (U) the subgraph of G induced
by U.

THEOREM 2. Let G, and G, be two disjoint graphs, and suppose that |V (G,)|
—w(Gy) S V(Gy)l —w(G,) . Then

(G, + G,) = |V(G))| + max{n((U)) : U CV(G,),
U] = |V(G,)| = V(Gy)| +w(Gy)} -

Proof. Let P be a subset of V(G,) such that |P| = |V(G,)| — |[V(G,)|
+w(Gy), n((P)) = k = max{n((T)) : T C V(G,), |T| = |P|}. Then there
exists an H-decomposition {P,,...,P.} of (P). Let U = {u,,...,u,} be a
subset of V(G,) = {uy,...,u,} such that t = w(G,) and (U) is a clique of
G, . Since [V(G,) — P = [V(&y)| - |P| = [V(G,)| - w(Gy) = [V(Gy)| — [U] =
[V(G,)—Ul|, there exists a bijective mapping f: (V(G,)-U) — (V(G,)—P).If
u € (V(G,)-U), then {u, f(u)} induces a connected subgraph of G, +G,. Now,
it is clear that {{ul},...,{ut},{ut+1,f(ut+l)},...,{up,f(up)},Pl,...,Pk} is
an H-decomposition of G, +G,, and hence n(G,+G,) = p+k. Thus n(G,+G,)
> [V(Gy)l +max{n((T) : T C V(Gy), ITI= V(G - V(&) +wl(Gy)]-
Moreover, (G, + G,) > |V(G,)| + w(G,) because |P| = w(G,), which implies
that n((P)) is at least w(G,).
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For the proof of the opposite inequality, we define some- invariants of an
H-decomposition of G, + G into r subsets, where r = (G, + G,) and G is a
subgraph of G, (note that n(G, + G) = n(G, + G,)). For an H-decomposition
U={U,,...,U} of G, + G we put

p.(L{)zl{iE{l,...:,r}: U;NV(G,) # 0},
q(U):HiE{l,...,’r}: UiQV(Gl)}I,
sU) =|{veU;nV(G,): U;nV(G,) # 0}|.

Now, let us assume that S = {S,,...,S,} is an H-decomposition of G; + G
such that any H-decomposition U = {U,,...,U,} of G, +G’, where G’ is any
subgraph of G,, satisfies exactly one of the following conditions

(1) p(8) > pl),

(2) p(5) =pU) and q(S) > q(U),

(3) p(8) =pMU), q(S) = q(Uf) and s(S) < s(U).

Suppose some class of the H —decompo'sition S (e.g., S;) contains at least
two vertices of V(G,). Then at least 1+ w(G,) classes of S contain no vertex
of G, (because r = n(G, + G,) > |V(G,)| + w(G,)). Since the union of one
element classes of an H-decomposition induces a clique, there exists a class of
S (eg., Sz) which contains at least two vertices of G, and no vertex of G,. If
u € $;NV(G,) and v € S,, then it can be easily seen that §; = {{v}U(S;—{u}),
{u}u(S,—{v}), S,,...,S,} isan H-decomposition of G, +G. However p(S,) =
p(S)+1, which contradicts our assumptions. Hence we conclude that any class of
S contains at most one vertex of G, , and so p(S) = |V (G,)|. Therefore, without
loss of generality we may assume that |S; N V(G,)| =1 for 1 < i < p = p(S),
S, CV(G,) for 1<i<qg=¢q(S),and S; CV(G,) for p<i<r.

Since S;US,U---US, induces a clique of G of size ¢, then ¢ < w(@G,). If
g <w(G,) =t, and the set U = {u,,...,u,} C V(G,) = {uy,...,u,} induces
a clique of G, then S, = {{u},..., {u}, {ue 1} U (S NV(Gy)), -y {uy} U
(S'p N V(Gz)),SpH, ...,8,} is an H-decomposition of G, + (G - ((Sq+1 U...
US,)NV(G,))). However, ¢(S,) = w(G,) > q(S) and p(S,) = p(8), which is a
contradiction. Thus we deduce that ¢ = w(G,).

Suppose some class of the collection S g+10+ 2 Sp (e.g., Sp) contains at least
two vertices of G,, and z € Sp NV(G,). Then S; = {Sl,...,Sp_l,S — {z},
Spt1rec S,r} is evidently an H-decomposition of G, + (G —z). This is again a
contradiction because p(S,) = p(S), ¢(S;) = ¢(S), and 5(S3) = s(S)—1. There-
fore |S;NV(G,)| =1 for each i = g+1,...,p, and |S,,,U...US,| < |[V(G,)| -
(p—q) = V(G| = V(G| + w(Gy). {Sps1»---»5,} is an H-decomposition
of the subgraph (S,,, U---US,) of G;, and so r —p < max{n((T)) : T C
V(Gy), IT| = V(G| = [V(Gy)| +w(G))}. Hence n(G) + G,) < [V(Gy)| +
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max{n((T)) : T CV(G,), T =|V(G,)| - |V(G,)] +w(G1)}, which com-
pletes the proof. O

The complete k-partite graph is a graph whose vertices can be partitioned into
k classes Uy, ..., U, such that two vertices are adjacent if and only if they belong
to distinct classes. If |U;| =n, for all ¢ =1,...,k, then the complete k-partite
graph is denoted by K(ny,...,n;). It can easily be seen that K(n,,...,n;) =
K, _+K, +-+K, k) and so the Hadw1ger number of the complete multlpartlte

[2], where it is proved by Theorem 1).

COROLLARY 3. Let k > 2, and 1 < n; < -+ < ng be integers. Then the
complete k-partite graph K(n,,...,n,) satisfies:

k
n(K(ny,...,ny)) zmin{1+"1+"'+nk_1, [ +n1+2 +nkJ}‘

V. G. Vizing [5] suggested the study of the function X, (n) which denotes
the maximal possible number of edges of a graph with n vertices and with
the Hadwiger number k. A. A. Zykov [8] and B. Zelinka [6] proved that
Ap(n) = (k=1)n — ( ) for k <4, n > k. The following theorem extends this
result.

THEOREM 3. Let n, k be two positive integers such that §"4—‘2 <k<n. Then

,\k(n)=1+2k+m§—i).

Proof. The assumption ¥ < k < n implies 2(2(n —k) - 1) < n and
n—k > 1. Let K denote the complete (2k—n-+1)-partite graph with 2(n—k)—1
classes of cardinality 2 and n — 2(2(n — k) — 1) classes of cardinality 1. By
Corollary 3, we have n(K) = k. Also, |E(K)| = 1+ 2k + ﬂnz_—sl’ and hence
Ao(n) > 1+ 2k + 228)

On the other hand, we will show that there does not exist a graph G with
more than 1 + 2n(G) + MEUL%&QU“_Q edges. Proceeding by contradiction,
suppose G to be a graph with the minimal possible number of vertices and
simultaneously the maximal possible number of edges which has more than
1+ 27(G) + ME)J&J_‘z_/j?_)Lj)_ edges. It is clear that G is not a complete graph,
and so the minimum degree §(G) is less than |V(G)| — 1. Let =, y be two
non-adjacent vertices of G, where = has the degree §(G). The graph G has
the maximal number of edges, then the Hadwiger number of the graph G,,
which we obtain from G by adding the edge zy, is greater than n(G) = k.
Therefore there exists an H-decomposition {V},...,V,;} of some component
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of G,. Without loss of generality, suppose z € V, . Evidently, {V,,...,V,}
is an H-decomposition of a subgraph of G which does not contain the ver-
tex z. Hence the Hadwiger number of G, = G — z is at least k. G, is a
subgraph of G, and so n(G,) = n(G@) = k. The graph G, has fewer ver-
tices than G, thus |E(G)| — §(G) = |E(G,)| < 1+ 2k + (GANW(G2IZ5)
142k + LY(_G_ZILI‘;JG_)I:EZ — (IV(G)| — 3). Therefore §(G) is at least |V (G)| - 2,
and since G is not a complete graph, §(G) = |V (G)| — 2. This means that G is
a complete multipartite graph every part of which has at most two vertices. Let
r denote the number of parts of cardinality two. Then by Corollary 3, we have
k=n(G) = V(Q)| - [5] and |E(@)| = LAUZEND _p < MOMKAID) _
2[5] +1 = MOUYGED'y oGy —af3) 1 - 1420 + illyioLs

This is a contradiction to our assumption, which completes the proof. O

3. The Hadwiger number of complements
of graphs without short circuits

For conciseness, we will denote by G, the family of graphs which contain no
circuit of length less than 7. In this section, we determine the Hadwiger number
of complements of graphs which belong to G,. First, we prove the following
assertion, which we shall use in the next.

PROPOSITION 1. Suppose G € G,. Let P be a set of vertices of G such that
the distance between any pair of vertices of P 1is at most two. Then there exists
a vertezx w € V(G) which is adjacent to each vertex of P — {w}.

Proof. We prove the assertion by induction on the cardinality of P. For
|P| = 1 and |P| = 2 the assertion is obvious. Assume |P| > 3. Let z, u,
v be distinct vertices of P. By the induction hypothesis, there exists a vertex
w € V(G) which is adjacent to each vertex of (P— {z}) — {w}. As the distance
between z and u (v) is at most two, there exists a vertex a (b) (a =u (b=v)
is also allowed) such that the set {z,a,u} ({z,b,v}, respectively) induces a
path. If z # w and z is not adjacent to w, then the subgraph of G induced by
{w,u,a,z,b,v} contains a circuit, which contradicts G € G,. Therefore, either
z =w or r is adjacent to w, which completes the proof. O

LEMMA 1. Suppose G € G,. Then n(—é) > V(&) - [’O%gl] -1

Proof. Proceeding by contradiction, let us assume that G € G, is a graph
with the minimal possible vertex covering number, and the Hadwiger number
of its complement less than |V(G)| — [5"—&9-)-] — 1. Then o4(G) > 3 because

a,(G) < [39%92] + 1, and by Corollary 1, we get n(G) = |V(G)| — a,(G) >
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V()| -| %G—l] — 1, otherwise. Let P be a minimal vertex covering set of G,
ie., |P| = ay(G) > 3. If the distance between some pair of vertices u,v € P
is at least 3 in G, then {u,v} induces a connected subgraph of G, and for
every vertex w € V(G) — {u,v} there exists an edge of G which joins w with
u or v. Thus {{u,v},Ul,.,.,Uk} is an H-decomposition of G if {U,,...,U;}
is any H-decomposition of G — {u,v}. This implies 'r](é) >1 +77(§—— {u,v}).
Evidently, the graph G, = G — {u,v} € G, aO(G ) = a,(G) — 2 and G,
G—{u,v}. Since G has the minimal vertex covering number, 7(G,) > |V (G, )I——
[20G)] _1 = |V(G)| - [242] — 2, and so 7(C) > 1+1(G;) > [V(G)| -
[9‘"—591 — 1. This contradicts our assumption, and thus the distance between
any pair of vertices of P is at most two in G.

Now, by Proposition 1, there exists a vertex w € V(G) which is adjacent to
each vertex of P — {w}. Each vertex of V(G) — (P U {w}) is adjacent to at
most one vertex of P, and so every nontrivial component of G, = G — w is
a star whose central vertex belongs to P. If P — {w} = P, U---U P, where

k= [JP_—2@}1J and |P;| > 2 for all ¢ =1,...,k, (evidently, such sets exist) and
V(G)—(Pu{w}) = {v,,.. vt} then it is clear that {P,...; P, {v,}, - {ve}}
is an H-decomposition of G2 = G — w. Therefore n(G) > n(G ) >t+k =
[V(G)— (PU{w})|+ [ E={24 | . If w belongs to P, then |V(G) - (PU{w})| =
V(@) = |P| = [V(G)] - ap(G) and |IE=fudl] = |(2o@=L| > |aof@)| .
If w is not an element of P, then |V(G) — (PU{w})| = [V(G)| - |P|-1=
IV(G)| — ay(G) — 1 and [lf;fﬂllj = |18l] = | 228 | Thus 1(G) > [V(G)| -
ay(G) + L%—ZJ -1=1|V(G)| - [@é@] — 1. This is again a contradiction to

our assumption, which completes the proof. O

Let k be a positive integer. We denote by T} a graph (tree) with the vertex
set {w,uy,..., U, v;,...,v;} and the edge set {wu,,...,wuy,uv,,..., UV}
The vertex w is called a central vertex of T}, . It can be easily seen that |V (T})| =
2k+1, oy(T},) = k, and thus, by Corollary 1 and Lemma 1, we have 2k — [g} <
n(T,) <2k—[£] +1.

LEMMA 2. Let k >3 be an integer. Then n(T,) = 2k — [£].

Proof. Let U = {U,,...,U,} (where t =n(T k)) be an H-decomposition
of the complement of T, . Without loss of generality, we may assume that
w e U,. If |Uj| =1, then U; — {u,...,u.} # 0 for all 4 = 1,...,¢, and so
t <k+1. This implies ¢t <2k +1— } 5 because k>3.1If |U;| > 1, then it can
be easily seen that {U; — {w},U,,...,U,} is an H-decomposition of T, —
By Corollary 1, we get t < n(—Tk - w) <2k - l-lﬂ

The opposite inequality follows from Lemma, 1. 0O
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THEOREM 4. Suppose G € G, and k = o,(G). If k is odd, then

_ V(@) - [E]1 -1 if 3<k and T, is a subgraph of G,
( ) — { 2 k
V(G)| - [£] otherwise.

Proof. For k =1, the assertion follows from Corollary 2.

Suppose k > 3 and T, is a subgraph of G. Then G is a subgraph of K +Tk,
where n = |V(G)| — 2k — 1. By Lemmas 1, 2 and Theorem 2, we get |V( )| —
I-—] -1<7(G) <n(K,+T,) = n+n(Tk) IV(G)| - [£] — 1, and so
1(G) = V(@) - [§] - 1.

Suppose k£ > 3 and G contains no subgraph isomorphic to T}, . By Corollary 1
and Lemma 1, we have |V(G)| — [£] =1 < n(G) < |[V(G)| — [%]. Next, let
us assume by way of contradiction that G is a graph with the minimal possible
vertex covering number k, satisfying: G € G,, k is odd, k > 3, n(@) =
V(G)| - [g—] — 1, and G contains no subgraph isomorphic to T},. Let P be a
minimal vertex covering set of G, i.e., |P| = k. Without loss of generality, we
may assume that P contains a vertex = of degree one only if = is adjacent to a
vertex also of degree one. Now suppose that A is a maximal subset of P such
that the distance between any pair of its vertices is at most two in the graph G.
By Proposition 1, there exists a vertex w € V(G) which is adjacent to each
vertex of A — {w}. Moreover, each vertex of A is adjacent to some vertex from
the set V(G) — (PU {w}) because A C P cannot contain a vertex of degree one
by our assumption. Therefore G contains a subgraph isomorphic to T}, where
either t = |A| (if w ¢ A) or t =|A4] —1 (if w € A).

If |A] = k, then t = |A] —1 = k — 1 because G contains no subgraph
isomorphic to 7},. Thus w € A = P and each nontrivial component of G —w is
a star. As in the proof of Lemma 1, the graph G — w has an H-decomposition
into |V(G — w)| — (9_9@2;131] subsets. Since k is odd, [£] = 1+ I_kgl-] =
1+ [S'LC;"-”—)] Therefore n(G) > n(G —w) > [V(G)| -1 — [M—Gz——ﬂ'—)-] =
V(G)| - l-g] , which contradicts our choice of G.

If |A] < k, then there exist vertices z € P — A and y € A such that their
distance is at least 3. As in the proof of Lemma 1, we get n(—) >1+ ”7(6 ) ,

where G| = G — {z,y} and oo(G,) =k —2. If n(G,) = |V(G})| - fﬂg—‘—z],
then 1(G) 2 14 V(Gy)| - [28] = 14 V(@) -2 [552] = V(@) - 3],
a contradiction. If n(G, ) = |V(G,)|—- [M] —1, then G, contains a subgraph
isomorphic to T},_, (k—2 > 3) because G is a counter-example with the minimal

vertex covering number. Hence |A| = k—1 and w ¢ A. However, each nontrivial
component of G, = G — {z,w} is a star, and as in the proof of Lemma 1, there

exists an H-decomposition {U;,...,U,} of G,, where 7 = [V(G,)| — [MZG—ZZ]
and |U, N P| is equal to either 0 or 2 forall i =1,...,r. Since zw ¢ E(G) and
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the vertex z is adjacent to at most one vertex of A, {{m,w}, U,..., Ur} is an
H-decomposition of G. Therefore n(G) > 1+7 =1+ |V(G,)| — ]'9‘#’2] =
IV(G)|—1-[%52] = [V(G)| - [£]. This again contradicts our assumption. The
proof is complete. i

Let G be a graph, and P be a subset of its vertex set. By M(G, P) we will
denote a graph with the vertex set P, and two vertices u, v are adjacent in
M (G, P) if and only if either u, v are adjacent in G, or there exists a vertex
w € V(G) — P such that vw and wv are edges of G. Note that K (s > 3) in
M(G, P) enforces a star K, , with central vertex in V(G) — P or a circuit of -
length less than 7 in G.

LEMMA 3. Let G be a graph without 4-circuits whose verter covering number
aO(G) is even. Then n(G) = |V(G)| — a"(G) if and only if there exists a vertex
covering set P such that |P| = ay(G), and the complement of M(G, P) has a
matching.

Proof. Suppose n(G) = [V(G)| — #, and let {U,,...,U,} denote an
H-decomposition of G, where t = [V(G)| — 9—"%@ Without loss of generality,
we may assume that [U;| > 2 for i=1,...,r,and [U;[=1for j=r+1,...,t,
1<r<t AsU. ,U---UU, = Q induces a complete subgraph of G, U,u

--UU, = P is a vertex covering set of G, and so |P| > o(G). Evidently
r < “21], and the equality is true only if |U,| =2 for all ¢ = 1,...,r. Therefore
|P| +1Q| — 2S) — \v(G)| — 2% = ¢ = r 4 (¢t —7) < 21 1 |Q|. This implies
|P| < ay(G). Since the opposite inequality is also true, we have |P| = oy(G)
and |U,| =2 (ie. U; = {u,v;}) forall i =1,...,7. As U, and U, U {w}, for
every vertex w € Q = V(G) — P, induce connected subgraphs of G, u,v; is an
edge in M(G, P). Thus {u;v,,...,u,v,} is a matching of M(G, P).

On the other hand, let P be a vertex covering set of G such that |P| =
a,(G) and M(G,P) has a matching {u,v,,...,u,v.}. By the definition of
M(G, P), it is clear that the sets {u,,v,} and {“u z,wj} (where {w,,...,w,} =
V(G) - P) induce connected subgraphs of G for all 4+ = 1,...,k and all
J = 1,...,t. Similarly, the set {u,,v,, j,vj} induces a connected subgraph
of G for all ., = 1,...,k, i # j, because G contains no 4-circuit. Thus
{{ul,vl},...,{uk,vk},{wl},...,{wt}} is an H-decomposition of G, and so
(@) > k+t =B+ V(@) - P = V(@) - F = V(@) - 2. The
opposite inequality follows from Corollary 1. O

Let k > 4 be an even integer. Denote by:

A, the family of trees T', which contain a vertex w such that 1+ay(T—w) =
ay(T') = k, and each component of T'—w is isomorphic to either K, or T, and
moreover, in the second case, w is adjacent to the central vertex of T, in T';
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B,, the family of graphs which can be constructed from the complete bipartite
graph Kt,k_t (where t is an odd integer, 3 < t < k — 3) by replacing at least
t(k —t) — 1 of its edges by paths of length two;

C, the family of graphs which are the union of T 4k and a graph with the

vertex covering number % — 1 and no circuit of length less than 7.
Finally, let D, = A, UB,, UC, U{T},_,}. By Lemma 3, it can be easily seen
that if G € Dy, then n(G) =|V(G)| -1 %.

THEOREM 5. Suppose G € G, and k = a,(G). If k is even, then

V(@] - % —1 ifk=2 and P, is a subgraph of G,
— or k > 4 and G contains a subgraph
n(G) = which belongs to D,,

V(G)|-% otherwise.

Proof. Since G € G, is a graph with vertex covering number &, then, by
Corollary 1 and Lemma 1, we have [V(G)|—1—£ <¢(G) <|V(G)| — %. Let
us assume that 7(G) = |V(G)|—1~ %, k > 4 and |P| = k, where P C V(G)
is a vertex covering set of G such that P contains a vertex = of degree one only
if z is adjacent to a vertex also of degree one. By Lemma 3, the complement of
M (G, P) has no matching, and, by a well-known result of Tutte’s [4] (also [1]),

there is a set S C P such that the number of odd components of M (G, P) — S
exceeds |S|.

If M(G, P)—S has at least 3 components, then they have the cardinality one
(because G contains no short circuits), and there exists a vertex w € V(G) — P
which is adjacent to each vertex of P — S. Now, it can be easily seen that G
contains a subgraph G’ isomorphic to T k, and a subgraph of G induced by
V(G)—V(G') has the vertex covering number £—1, i.e., G contains a subgraph
which belongs to C,.

If M(G,P) — S has less than 3 components, then S = 0 and M(G, P)
consists of two components with odd cardinalities ¢ and |P| — t. Evidently, if
3 <t <|P|—t,then G contains a subgraph which belongs to B, , and if t =1,
then G contains a subgraph isomorphic to T},_; or a subgraph which belongs
to A, .

Other cases are obvious. 0O

In (3], M. Stiebitz studied the function f(n, k) which denotes the minimal
possible Hadwiger number of the complement of a graph with n vertices and with
Hadwiger number k. It was proved that f(n,k) > %‘}}n - 1“—%:1 for 2 <k <3.
By Theorems 4 and 5, we easily get:
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COROLLARY 4. Let n, t, r be integers such that 4 < r < 7, t > 0 and
n=4t+r. Then

f(n,2) =3t + [%ﬂ and
f(n,k) =2, for each k, n >k > 3t + L%EJ
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