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OSCILLATION THEOREMS FOR SECOND ORDER 
NONLINEAR DELAY INEQUALITIES 

JAN SEMAN 

Consider the differential inequality 

x(t)[(r(t)x'(t))' +f(t, x(t), x(g(t)))] ^ 0 (1) 

and the corresponding differential equation 

(r(t)x '(t))' +/(*, x(t), x(g(t))) = 0 (2) 

on some <t0, oo) £ (0, oo), where the functions r, g9f satisfy the assumptions 

(i) re C<t0, oo), r(t) > 0 for t ^ t0 and lim R(t) = oo, (3) 

- ! 
ds 

where R(t) = | for t ^ t0, 
r(s) 

(ii) fe C« t0 , oo) x /? x /?),f(t, x,, yx) ^f(t, x2, y2) ^ 0 for t ^ t0, x, ^ x2 ^ 0, 
yi ^ y2 ^ 0 and the function h(t, x, y) = —f(t, — x, —y) has the same 
properties, 

(iii) ge C<t0, oo), 0 < g(t) ^ t for t ^ t0 and lim g(t) = oo. 

We shall also consider the differential equation 

(r(t)x'(t))' + a(t)F(x(g(t))) = 0. (4) 

where the functions r, g satisfy the assumptions (3)(i) and (3) (iii) and the 
functions a, F satisfy 
(i) aeC<t0, oo) and a(t) ^ 0 for t ^ t0, (5) 

(ii) Fe C(R) is nondecreasing and xF(x) > 0 for x ^ 0. 
We shall consider only these solutions of (1) defined on some <tl9 oo) ^ 

= <to, oo) such that sup{t ^ t]9 x(t) ^ 0} = oo. Such solution x of (1) is said to 
be oscillatory if sup{t ^ t}9 x(t) = 0} = oo, otherwise it is said to be nonoscillat-
ory. The inequality (1) is said to be oscillatory if it has only oscillatory solutions, 
otherwise it is said to be nonoscillatory. The same definitions can hold for the 
equations (2) and (4). 
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In this paper we shall show that the oscillatoriness of (1) and (2) is equivalent, 
then we shall prove some analogy of Sturm's comparison theorem and give 
some oscillatory criteria for the equations (2) and (4). These results will be the 
generalization of those given in [1] and [2], where the authors assumed r(t) = 1 
or r(t) to be bounded. Some of our results will be better even in these cases. 

In the proofs of the existence of the nonoscillatory solutions of the equation 
(2) or (4) we shall use one very simple algebraic fixed point theorem. 

Fixed point theorem. Let Y be a complete lattice and &: Y -» Ybean isotonous 
operator. Then Q has at least one fixed point in Y. 

Proof. See the theorem II.3.3 in [3]. 
Lemma 1. Let the assumptions (3) hold and x be the nonoscillatory solution of 

(1). Then there exists tx ^ t0 such that 

*(t)x(g(t)) > 0, x(t)x'(t) > 0, x(t)x'(g(t)) ^ 0 fort>tx. 

The same is valid for the equations (2) and (4). 
Proof. Suppose that x(t) > 0 for all sufficiently large t (the proof for x(t) < 

< 0 is analogous). Then there exists tx ^ t0 such that x(t) > 0 and x(g(t)) > 0 
for t ^ t!. Then by (1) (r(t) x'(t))' ^ 0 and the function r(t) x'(t) is nonincreasing 
in <tl9 oo). If there exists t2 ^ t{ such that r(t)x'(t) ^ r(t2)x'(^) < 0 for t ^ t2, 
then dividing this inequality by r(t) and integrating it from t2 to t ^ t2 we get 

Ґ ds 
1 — 
h r(s) 

x(t) ^ x(t2) + r(t2)x'('2) I for t ^ t2 

r(s) 

and the assumption (3) (i) leads to the contradiction with the positivity of x. 
Hence t, ^ t0 can be chosen so that x'(t) ^ 0 and x'(g(t)) ^ 0 for t ^ tx. The 
proof for the equations (2) and (4) is analogous. 

Lemma 2. Let the assumptions (3) hold and there exists the function x defined 
positive and nondecreasing on some </-, oo) c_= <t0, oo) and such that 

Г-Í 
J-2 r(s) J* 

x(t) > x(t2) + -f- /(& x(cf), x(g(®)) dt ds for t>t2, (6) 
Jt2 r(s) Js 

where t2 ^ tx is such that g(t) ^ t!for t ^ t2. Then the equation (2) has at least one 
nonoscillatory solution y such that 0 < y(t) ^ x(t)for t ^ t1. The same is valid for 
the equation (4) changing the assumption (3) (ii) by (5) andf(^ x(£), x(g(%))) in 

(6)bya(t;)F(x(g(t;))\ 
Proof. Define Y as the set of all functions y defined, positive and nonde-

creasing on <tl9 oo) and such that y(t) = x(t) for te <t1? t2> and y(t) ^ x(t) for 
t ^ t2, with the obvious point-wise ordering. Then, clearly, Y is the complete 
lattice. Define the operator 0 by a form 

(0y)(t)=y(t) for te< t1 ? t2>, (7) 
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(<*W(0 = y(t2) + f TT f / ( ^ y^ y^(m^ ds for t > t2 and yG K 
J/2 r(s) Jv 

Using the assumptions (3)(ii) and (6) we can easily show that &Y <^Y and <P 
is isotonous. Then by the fixed point theorem there exists y e Y such that y = &y. 
By the definition (7) such y is the neede nonoscillatory solution of (2). 

Theorem 1. Let the assumptions (3) hold. Then the inequality (\) is oscillatory 
if and only if the equation (2) is. 

P r o o f It remains to prove that the existence of the nonoscillatory solu­
tion of (1) implies the same for (2). Let x be the nonoscillatory solution of (1) 
and, without loss of generality, x(t) > 0, x(g(t)) > 0, x\t) > 0 and x\g(t)) > 0 
for t > tx > t0. Then integrating (1) from t to s > t > tx we get 

r(t)x\t) > r(s)x\s) + j / ( £ x(£), x(g(£)))d£ 

and from this 
/•oo 

1 / ( s -r(t) x'(t) > Ĵ  f(s, x(s), x(g(s))) ds for t > tx. 

Dividing this inequality by r(t) and integrating it from t2 to t > t2, where t2 > t, 
is such that g(t) > tx for t > t2, we can obtain the inequality (6) in lemma 2 and 
the application of this lemma completes the proof. 

R e m a r k 1. With regard to the theorem just proved we can consider in 
the sequel only the equatins (2) and (4). 

Theorem 2. Let the functions r,, ghf satisfy the assumptions (3) for i = 1,2 and 

r\(t) > r2(0, gi (0 ^ g2(0, 1/(>, x, y)\ ^ \f2{t, x, y)\ (8) 

for t > t0 and xy > 0. 

If the equation 

(rx(t)x\t)Y + / ( t , x(t), x(gx(t))) = 0 (2X) 

is oscillatory, then the equation 

(r2(t)x'(t))' +f2(t, x(t), x(g2(t))) = 0 (22) 

is oscillatory, too. 
Proof. Suppose to the contrary that (22) has the nonoscillatory solution x 

and, without loss of generality, that x(t) > 0, x(gi(t))>0, x\t) > 0 and 
x'(gx(0) > 0 for t > t,. Let t2 > t, be such that g2(t) > gx(t) > tx for t > t2. In 
the same way as in the proof of the theorem 1 we can obtain that 

x(t) > x(t2) + \ 4 T \ fi& x(Z), x(g2(Z)))dt ds 
Jt2 r2(s) Js 
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and using the assumptions (3) for (22) and (8) that 

x(t)>x(t2) + f — f MS,x(Z),x(gi(Z)))d£ds ľ-ľ 
Jh r, (s) J.» 

for t ^ t2. Then by lemma 2 the equation (2,) is nonoscillatory. This contradic­
tion completes the proof. 

Theorem 3. Let the assumptions (3) hold. Then the condition 

f 
Jtn 

R(t)f(t,a,a)át oo for any a ф 0 (9) 

is sufficient and neccessary for the equation (2) not to have any bounded nonoscill­
atory solution. 

Proof. To prove the sufficiency of (9) suppose to the contrary that there 
exists the bounded nonoscillatory solution x of (2) and, without loss of general­
ity, that x(t) > 0, x(g(t)) > 0, x'(t) ^ 0 and x'(g(t)) ^ 0 for t ^ t, ^ t0. Then 
there exists a > 0 and t2 ^ tx such that 

2a ^ x(t) ^ x(g(t)) ^ a for t ^ t2. (10) 

Multiplying (2) by R(t) and integrating it from t2 to t ^ t2 by parts we have 

R(t)r(t)x'(t) = R(t2)r(t2)x'(t2) + x(t) - x(t2) -
%t 

R(s)f(s,x(s),x(g(s))ds 
Jh l2 

and using (3)(ii) and (10) we have 

)x'(t)^K-0 ^ R(t)r(t)x'(t) ^ K - \ R(s)f(s, a, a)ds for t ^ t2, 
J/ 2 

where K = R(t2)r(t2)x'(t2) + 2a — x(t2). The last inequality contradicts the 
assumption (9). 

To prove the neccessity part of the theorem suppose that (9) does not hold, 
i.e. there exists a # 0, say a > 0, (the case a < 0 is analogous) such that 

Ґ 
J'n 

R(t)f(t, a, a)dt < oo. 

Then there exists t2 ^ t0 so that g(t) ^ t0 for t ^ t2 and 

í — f(s, a, a)dsdt<:-. 
h r(t)J< 2 
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Define the function x(t) = a/2 for te<t0, t2> and x(t) = a for t > t2. Then, 
clearly, such a function x satisfies the assumptions of lemma 2 and the simple 
application of this lemma completes the proof. 

R e m a r k 2. The condition (9) for the equation (4) will have the form 

í R(t)a(t)dt = oo. 

We shall assume in the sequel that 

|/(t, x, x)\ ^ a(t)\F(x)\ for t ^ t0, xeR. (11) 

In the same way as in the proof of theorem 2 we can show that the oscillatoriness 
of (4) if (11) holds implies the same for (2). Hence we shall consider in the sequel 
only the equation (4). Moreover we shall assume that 

g'(t) ^ 0 exists for t ^ to. (12) 

Theorem 4. Let (3)(i), (3)(iii), (5) and (12) hold. If 

Г 
Ju 

R(g(t))a(t)dt = o o (13) 

and 
Г dx 

< oo for any є > 0, (14) 
J±« E(.x) 

then the equation (4) is oscillatory. 
Proof. Suppose to the contrary that x is the nonoscillatory solution of 

(4) and x(t) > 0, x(g(t)) > 0, x'(t) ^ 0 and x'(g(t)) 7* 0 for t ^ t] ^ t0. Then in 
the same way as in the proof of theorem 1 we can obtain 

Г-r(t) x'(t) ^ a(s) F(x(g(s))) ds for t ^ t,. 

Sinceg, x, Fare nondecreasing functions and from (4) r(0x'(t) is nonincreasing 
we get 

1в 
r(g(t))x'(g(t)) > F(x(g(t))) j a(s)ds for t>tx. (15) 

Multiplying (15) by g'(t) and dividing it by r(g(t)) F(x(g(t))) and then integrat­
ing it from t, to t ^ t, we have 

J», F(x(g(s))) W ( s ) ) J . v 
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and from this 
•x(g(t)) 

r * L > r , " j j L > r j M . f ' a ( ť ) d { < u _ 
J.vte(í,)) F(y) J.V(«(Í|» F(y) Ji, r(g(s)) J.< 

= f [R(g(s))-R(g(tl))]a(s)ds^]- f R(g(s))a(s)ds 
Jt\ 2 Jh 

for t ^ t„ where t2 ^ t, is such that R(g(t^) ^ - R(g(t)) for t ^ t2. The last 
2 

inequality contradicts the assumptions (13) and (14). 
R e m a r k 3. The condition (13) is weaker than the analogous one given in 

theorem 1 in [2], which for the equation (4) has the form 

I g(t)a(t)dt= oo. (16) 

See the following example. 
E x a m p l e 1. The equation 

(lx'(t)J + \x}(t) = 0 

does not satisfy the condition (16) but it satisfies the assumptions of theorem 4 
and thus this equation is oscillatory. 

Theorem 5. Let the assumptions (3) (i), (3) (iii), (5) and (12) hold. Let there exist 
the nondecreasing function GeC(R) such that F(x) = |x | G(x)for xeR. Then, if 

R2(g(t))a(t) a(s)dsdt = oo (17) 
Jtn JgU) '0 Jg(t) 

and 
> ± x dx 

< oo før any є > 0, (18) 
)±є G(x) 
í 

the equation (4) is oscillatory. 
Proof. Suppose to the contrary that x is the nonoscillatory solution of 

(4), and without loss of generality, that x(t) > 0, x(g(t)) > 0, x'(t) 3* 0 and 
x'(g(0) ^ 0 for t ^ t, ^ t0. Then x is the nonoscillatory solution of the equation 

(r(t)^(t)X + b(t)G(x(g(t))) = 0, 

where b(t) = a(t)x(g(t)). Then by theorem 4 

í R(g(t))a(t)x(g(t))dt <oo. (19) 
0 
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In the same way as in the proof of theorem 4 we have 

i oo /»00 

a(s)ds>F(x(g(ti)))ji a(s)ds 
for t ^ f,. Dividing this inequality by r(t) and integrating it from t, to / ^ f, we 
get 

J/, r(s) J* 

I f - L f «(£)<!£ dy = F(x(g(/,)))[R(0 - R(t,)] í «( 
Ji, r(s) Jt Ji 

x(t)џF(x(g(tx))\ — a(Ç)dÇàsџ 
Jt\ r(s) Js 

> EWáK!.))) I 4 т I «(£)dŠdí = F(xfe(/,)))[R(0 - R(!,)] I a(s)ds. 

Then there exists t2 ^ ti such that 

x(g(t)) > \ F(x(g(tx))) R(g(t)) f a (s) ds for t ^ t2. 
2 Jg(/> 

This inequality and (19) contradict the condition (17) and (his completes the 
proof. 

Example 2. The equation 

x',(0 + t"3/2x3(t,/3) = 0 

satisfies the assumptions of theorem 5 but the condition (13) of theorem 4 does 
not hold. 

R e m a r k 4. In an analogous way we can show that the condition 

/• X [— /% X 

Rfi(g(t))a(t)\ a(s)ds 
J/0 LJg(t) 

l/*-i 
dt = oo 

for some 1 < /? < a — 1 is sufficient for the equation 

(r(t)x'(t))' + a(t)\x(g(t))\asgn(x(g(t))) = 0 

with a > 2 to be oscillatory. 

Finally, we shall consider the case F(x) = x, i.e. the linear equation 

(r(t)x'(t))' + a(t)x(g(t)) = 0. (20) 
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Lemma 3. Assume that (3) (i) and (3) (iii) hold and 

R(t)a(t)dt= oo. (21) 

Then for any nonoscillatory solution x of (20) there exists t, ^ t0 swc/z that 

\x{g{t))\>^^\x(t)\ and \ x \ t ) \ ^ ^ ^ - (22) 
R(t) R(t)r(t) 

for t^tx. 
Proof. Suppose that x(t) > 0, x(g(t)) > 0, *'(f) ^ 0 and x'(g(t)) ^ 0 for 

t ^ t2 ^ t0 (the case x(t) < 0 is analogous). Define the function y(t) = x{t)jR{t). 
Then 

(R2(t)r(t)y'(t))' = i ? ( t ) ( r ( t ) x W < 0 

and the function I?2(/)r(t)y'(0 is nonincreasing for t ^ t2. If I?2(t)r(t)y'(0 ^ 0 
for all t ^ /2, then by the definition of y we have R{t)r{t)x\i) ^ x(t) for t ^ t2. 
Then multiplying (20) by R(t) and integrating it by parts we get 

| R(s)a( x(t) < R(t)r(t)x'(t) <_ K + x(t) - .x(/2) - | R(s)a(s)x(g(s))ds, 

where K = R(/2)r(/2).x'(/2) and from this we get 

t> /, 0 <. K - x(g(t2)) R(s) a(s) ds for '2 

and the condition (21) leads to the contradiction. Thus there exists /, >• t2 such 
that R2(t)r(t)y'(t) <. 0 for / ^ /, and this implies (22). 

Theorem 6. Assume that (3)(i), (3) (iii) and (\2) hold. Let one of the following 
conditions hold, either 

Rk(g(t))a(t)dt= oo for some Ae(0, 1), (23) 
J'o 

or 

[ Rk(t)a(t)dt =oo and [ * A ~ ' ( / ) d / < oo (24) 
k J'o R(g(tM0 

for some Ae(0, 1), or 

f ^ e x p | - | R(g(s))a(s)ds d / < oo. (25) 
J.„ R(^(/))r(g(/)) L J*,) J 

T/je/i //?e equation (20) w oscillatory. 
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Proof. Suppose to the contrary that x is the nonoscillatory solution of 
(20) and x(t) > 0, x(g(t)) > 0, x'(t) ^ 0 and x'(g(t)) ^ 0 for t 3* t,. Note that 
if any of the conditions either (23) or (24) or (25) holds, then (21) and by 
lemma 3 the condition (22) hold, too. 
1. Let the condition (23) hold. Define the function 

*'te(,)MQ*-(0 ,„ . 
x(g(l)) 

Then 

n o < -*<fe«)M0 + -*>-'<'>*-'Crt'»«-<'> < 
rfe(l))*te(.» 

'fe(O) 

and integration of this inequality from t, to t ^ t, leads to the contradiction with 
nonegativity of x'. 
2. Suppose that the condition (24) holds. Define the function V(t) by the form 

R>(,)r«)xV) 

x(g(t)) 

Then we can obtain the contradiction in an analogous way. 
3. Finally, let the condition (25) hold. Then x'(t) > 0 for t 3* t, and from (20) 
and (22) we get 

(r(t) x'(t))' + a(t) R(g(t)) r(t) x'(t) ^ 0 for t > tx. 

Dividing this inequality by r(t)x'(t) and integrating it from g(t) to t we have 

r(t)x'(t) ^ r(g(t))x'(g(t))exp[- J ^ R(g(s))a(s)ds^ 

for t 3* t2, where t2 3* t, is such that g(t) ^ t, for t 3* t2. Then we can finish the 
proof as in the previous cases using the function 

= R(g(t))r(t)x'(t) 

*(g(t)) 

E x a m p l e 3. The equation 

x"(t) + t-4l3x(til2) = 0 

satisfies (24) for A = 1/3 but (23) and (25) do not hold. 
E x a m p l e 4. The equation 
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x"(t) + - x(\n 0 = 0 
t 

satisfies (23) for any Ae(0, 1) but (24) and (25) do not hold. 
Example 5. The equation 

x'\t) + —— x(\n 0 = 0 
t \vrt 

satisfies (25) but (23) and (24) do not hold. 
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ТЕОРЕМЫ КОЛЕБЛЕМОСТИ ДЛЯ НЕЛИНЕЙНЫХ НЕРАВЕНСТВ 
ВТОРОГО ПОРЯДКА С ОТКЛОНЕНИЕМ 

1ап 5 е т а п 

Р е з ю м е 

В статье приведены некоторые достаточные условия, при которых дифференциальное 
неравенство 

х(1)[(г(1)х'(1))' + /(/, л-(0, *(#(/)))] < 0 (1) 

является колеблемым. Эти результаты являются расширением результатов, приведенных 
в [1] и [2], где авторы предполагали, что г(() = 1 или ограничено. 
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