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OSCILLATION THEOREMS FOR SECOND ORDER
NONLINEAR DELAY INEQUALITIES

JAN SEMAN

Consider the differential inequality

x()[(r() x"(1)) + [, x(2), x(g(HN] <O (1)
and the corresponding differential equation
(rD) x"(2)) + f(1, x(1), x(g(1))) =0 ()
on some {#,, ©) < (0, o), where the functions r, g, f satisfy the assumptions
(i) reC<t,, ), r(t) >0 for t = t, and lim R(z) = oo, 3)
where R(t) = ds for t = 1,,
w0 1(s)

(11) fG C(<t0s CD)XRX R)’f(t’ X1, yl) Zf(t9 X2, ,V2) 2 0 fOI' = tO’ Xy 2 Xy = 0,
¥y =y, =0 and the function A(¢, x, y) = —f(t, —x, —y) has the same
properties,

(iii)) ge C{t,, ), 0 < g(t) <t fort = t, and lim g(¢) = o0.

We shall also consider the differential equation

(r(0) x'(1))" + a(1) F(x(g(2))) = 0, Q)

where the functions r, g satisfy the assumptions (3)(i) and (3)(iii)) and the
functions a, F satisfy

(i) ae C<t,, ) and a(t) = 0 for ¢t > ¢, &)
(i) Fe C(R) is nondecreasing and xF(x) > 0 for x # 0.

We shall consider only these solutions of (1) defined on some (¢, ) =
< {t,, o0) such that sup {t > t,, x(t) # 0} = c0. Such solution x of (1) is said to
be oscillatory if sup {t = t,, x(t) = 0} = o0, otherwise it is said to be nonoscillat-
ory. The inequality (1) is said to be oscillatory if it has only oscillatory solutions,
otherwise it is said to be nonoscillatory. The same definitions can hold for the
equations (2) and (4).
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In this papér we shall show that the oscillatoriness of (1) and (2) is equivalent,
then we shall prove some analogy of Sturm’s comparison theorem and give
some oscillatory criteria for the equations (2) and (4). These results will be the
generalization of those given in [1] and [2], where the authors assumed r(z) = 1
or r(t) to be bounded. Some of our results will be better even in these cases.

In the proofs of the existence of the nonoscillatory solutions of the equation
(2) or (4) we shall use one very simple algebraic fixed point theorem.

Fixed point theorem. Let Y be a complete lattice and @ : Y — Y be an isotonous
operator. Then @ has at least one fixed point in Y.

Proof. See the theorem I1.3.3 in [3].

Lemma 1. Let the assumptions (3) hold and x be the nonoscillatory solution of
(1). Then there exists t, = t, such that

x()x@®) >0, x(Ox() >0, x(Ox@D)>0 fort>1,

The same is valid for the equations (2) and (4).
Proof. Suppose that x(¢) > 0 for all sufficiently large 7 (the proof for x(¢) <
< 0 is analogous). Then there exists ¢, = ¢, such that x(¢) > 0 and x(g(¢)) > 0
fort > t,. Then by (1) (r(¢) x’(¢))’ < 0 and the function r(¢) x’(¢) is nonincreasing
in {t,, o0). If there exists ¢, > ¢, such that r(¢) x'(t) < r(t,) x'(¢,) < 0 for t > t,,
then dividing this inequality by r(¢) and integrating it from ¢, to ¢ > ¢, we get
, " ds
x(t) <x(t) +r(t)x(t)| — fort>1¢,
1 r(s)
and the assumption (3) (i) leads to the contradiction with the positivity of x.
Hence ¢, > t, can be chosen so that x’(¢) > 0 and x"(g(¢)) = 0 for ¢ > ¢,. The
proof for the equations (2) and (4) is analogous.
Lemma 2. Let the assumptions (3) hold and there exists the function x defined
positive and nondecreasing on some {t,;, ) < {t,, o©) and such that

x(1) = x(1) + . 70) I S, x(8), x(g(8))dEds  fort=1,, (6)
2

where t, = t, is such that g(t) = t, for t = t,. Then the equation (2) has at least one

nonoscillatory solution y such that 0 < y(t) < x(t) for t = t,. The same is valid for

the equation (4) changing the assumption (3) (ii) by (5) and f(&, x(&), x(g(&))) in

(6) by a(&) F(x(g(£))).

Proof. Define Y as the set of all functions y defined, positive and nonde-
creasing on {¢,, o0) and such that y(¢) = x(¢) for te{t,, t,) and y(¢) < x(¢t) for
t > t,, with the obvious point-wise ordering. Then, clearly, Y is the complete
lattice. Define the operator @ by a form

(Py) (1) =y(1)  fortely, 1), (7
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(Dy) (1) = y(t) + j %s) f fE& y(&), y(g(&))déds  fort>t,and yel.

Using the assumptions (3) (i) and (6) we can easily show that @Y < Y and @
isisotonous. Then by the fixed point theorem there exists y € Y such that y = ®y.
By the definition (7) such y is the neede nonoscillatory solution of (2).

Theorem 1. Let the assumptions (3) hold. Then the inequality (1) is oscillatory
if and only if the equation (2) is.

Proof. It remains to prove that the existence of the nonoscillatory solu-
tion of (1) implies the same for (2). Let x be the nonoscillatory solution of (1)
and, without loss of generality, x(¢) > 0, x(g(¢)) > 0, x’(¢) > 0 and x’(g(¢)) = 0
for t > t, > t,. Then integrating (1) from # to s > ¢ > t, we get

rmxm>mnﬂn+fﬂ¢A@J@@mM

and from this
r(t)x'(t) = f f(s, x(s), x(g(s)))ds fort>1¢,.

Dividing this inequality by r(¢) and integrating it from Ltot=t,, wheret, > t,
is such that g(¢) > ¢, for t > t,, we can obtain the inequality (6) in lemma 2 and
the application of this lemma completes the proof. '

Remark 1. With regard to the theorem just proved we can consider in
the sequel only the equatins (2) and (4).

Theorem 2. Let the functions r,, g;, f; satisfy the assumptions (3) for i = 1,2 and

r(1), &) <&@, LG x <L X, p) ®

If the equation

(r (@ x'() + 4@, x(2), x(@ (1) =0 (2))
is oscillatory, then the equation
() x()) + £, x(1), x(g:(1))) =0 (2)

is oscillatory, too.

Proof. Suppose to the contrary that (2,) has the nonoscillatory solution x
and, without loss of generality, that x(¢) >0, x(g,(£)) >0, x’(¢) >0 and
x'(g,(®)=0fort>1t,. Lett,>t, be such that g,(¢) > g,(¢) = t, fort > ¢,. In
the same way as in the proof of the theorem 1 we can obtain that

ﬂ02ﬁ9+f !

1 15($)

J £2(8, x(8), x(g2(8)))d& ds
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and using the assumptions (3) for (2,) and (8) that
x(t) =2 x(ty) + o J 16 x(8), x(g,()))d& ds

for ¢t > t,. Then by lemma 2 the equation (2,) is nonoscillatory. This contradic-
tion completes the proof.
Theorem 3. Let the assumptions (3) hold. Then the condition

forany a#0 ©)]

J R(1) f(t, a, a)dt| =

is sufficient and neccessary for the equation (2) not to have any bounded nonoscill-
atory solution.

Proof. To prove the suﬂicnency of (9) suppose to the contrary that there
exists the bounded nonoscillatory solution x of (2) and, without loss of general-
ity, that x(¢) > 0, x(g(¢)) > 0, x’(#) = 0 and x’(g(¢)) = 0 for ¢t > ¢, > t,. Then
there exists a > 0 and ¢, > ¢, such that

2a = x(t) = x(g(t)) = a fort>1t,. (10)
Multiplying (2) by R(¢) and integrating it from ¢, to ¢ > ¢, by parts we have
R(0)r(1) x'(t) = R(1) r(1) x'(t) + x(8) — x(t) —

t
- J: Z R(s) f(s, x(s), x(g(s))ds
and using (3) (i1) and (10) we have
0SS RHOr@)x'(t) < K- JIR(s)f(s, a, a)ds fort>1t,,
n
where K = R(t,)r(t,) x'(t,) + 2a — x(t,). The last inequality contradicts the
assumption (9).

To prove the neccessity part of the theorem suppose that (9) does not hold,
i.e. there exists a # 0, say a > 0, (the case a < 0 is analogous) such that

J R(t) f(t, a, a)dt < .

Then there exists ¢, = ¢, so that g(¢) = ¢, for t > ¢, and

a
L r(t)J f(s, a, a)dsdr < -2—
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Define the function x(¢) = a/2 for te{t,, t,> and x(t) = a for ¢t > ¢t,. Then,
clearly, such a function x satisfies the assumptions of lemma 2 and the simple
application of this lemma completes the proof.

Remark 2. The condition (9) for the equation (4) will have the form
j R(t)a(t)dt = o0.
fo

We shall assume in the sequel that

|f(¢, x, )| = a(t) |F(x)| fort > t,, xeR. (1n

In the same way as in the proof of theorem 2 we can show that the oscillatoriness
of (4) if (11) holds implies the same for (2). Hence we shall consider in the sequel
only the equation (4). Moreover we shall assume that

g’'(t) =0 existsfor t=>1¢,. (12)
Theorem 4. Let (3) (i), (3)(iii), (5) and (12) hold. If
j - R(g(t))a(t)dt = oo (13)
and . 0
LE Fi()i—) < ® for any €> 0, (14)

then the equation (4) is oscillatory.

Proof. Suppose to the contrary that x is the nonoscillatory solution of
(4) and x(1) > 0, x(g(2)) > 0, x’(#) = 0 and x’(g(¢)) = 0 for t > ¢, > ¢,. Then in
the same way as in the proof of theorem 1 we can obtain

o«

r(t)x'(t) = j a(s) F(x(g(s))) ds fort>1,.

1

Since g, x, F are nondecreasing functions and from (4) r(¢) x’(¢) is nonincreasing
we get

r(g(l))x’(g(t))>F(X(g(t)))j- a(s)ds  forr>1,. (15)

Multiplying (15) by g’(¢) and dividing it by r(g(¢)) F(x(g(?))) and then integrat-
ing it from ¢, to ¢ > ¢, we have

t , '

J x'(g(s)) g'(s)ds > j

g6 [~
EACN )ded
T Fx() a(e)es s

1 7(8(5)) Js
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and from this

x x(g(1) to, !
[ o O[O g -
e F(y)  Jxeey F(y) 9y r(g(s)) Js

t

= f [R(g(s)) — R(g(t)]a(s)ds > % J R(g(s)) a(s)ds

for ¢t > t,, where ¢, > t, is such that R(g(¢))) < —;- R(g(?)) for t > t,. The last

inequality contradicts the assumptions (13) and (14).
Remark 3. The condition (13) is weaker than the analogous one given in
theorem 1 in [2], which for the equation (4) has the form

o s

J -g(t)a(t)dt = 0. (16)

See the following example.
Example 1. The equation

(1 x'(t))’ +Low=o
t t

does not satisfy the condition (16) but it satisfies the assumptions of theorem 4
and thus this equation is oscillatory.

Theorem 5. Let the assumptions (3) (i), (3) (iii), (5) and (12) hold. Let there exist
the nondecreasing function G € C(R) such that F(x) = |x| G(x) for xe R. Then, if

J R¥(g(1)) a(?) f a(s)dsdr = o 17)
) g(1)
and .

L % <o  forany >0, (18)

the equation (4) is oscillatory.

Proof. Suppose to the contrary that x is the nonoscillatory solution of
(4), and without loss of generality, that x(z) > 0, x(g(¢)) > 0, x’(t) = 0 and
x’(g(t)) = 0fort > t, > t,. Then x is the nonoscillatory solution of the equation

(r()x’(0)) + b(1) G(x(g(1))) = 0,
where b(t) = a(t) x(g(¢)). Then by theorem 4

I R(g(1)) a(t) x(g(1)) dr < c0. (19)
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In the same way as in the proof of theorem 4 we have

r(®) x'(t) 2 F(X(g(t)))f a(s)ds > F(x(g(tl)))f a(s)ds

for t > t,. Dividing this inequality by r(¢) and integrating it from ¢, to ¢ > ¢, we
get

x(1) > F(x(g(1) f Lf a(£)dEds >

= F(x(g(1)) f a(§)déds = F(x(g(t)) [R(1) — R(z, )]J a(s) ds.

1 r(s)

Then there exists ¢, = ¢, such that

x(g(1)) = % F(x(g(t,)) R(g(t))J( )a(s) ds fort>1t,

This inequality and (19) contradict the condition (17) and this completes the

proof.
Example 2. The equation

X"+ 172x3'") =0
satisfies the assumptions of theorem 5 but the condition (13) of theorem 4 does

not hold.
Remark 4. In an analogous way we can show that the condition

X ' ﬂ— 1
J RP(g(t)) a(r) [J a(s) ds:l dr = ©
‘o g(1)

for some 1 < < a — 1 is sufficient for the equation
(r@®) x'(8)) + a(?) |x(g(1))|“sgn (x(g(2))) = 0

with a > 2 to be oscillatory.
Finally, we shall consider the case F(x) = x, i.e. the linear equation

(r@x'(0)) + a(t) x(g(1)) = 0. (20)
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Lemma 3. Assume that (3) (i) and (3) (iii) hold and

J R(t)a(t)dt = 0. 21)
fy
Then for any nonoscillatory solution x of (20) there exists t, > t, such that
R(g(t t
x> ZED () and 1) < 20 22)

R(1) r(2)

fort>=1,

Proof. Suppose that x(¢t) > 0, x(g(¢)) > 0, x’(t) = 0 and x’(g(¢)) = 0 for
t = t, > t, (the case x(¢) < 01is analogous). Define the function y(t) = x(t)/R(t).
Then

(R*O)r()y (1)) = R@)(r()x'(1)) <0

and the function R*(¢) r(¢) y’(¢) is nonincreasing for t > t,. If R*(t) r(¢) y’(t) = 0
for all ¢ > t,, then by the definition of y we have R(¢) r(¢) x'(t) = x(t) for t > t,.
Then multiplying (20) by R(¢) and integrating it by parts we get

(1) S R(Or() x'(1) < K+ x(1) — x(8) — J R(s)a(s) x(g(s)) ds,
where K = R(t,) r(t,) X'(t,) and from this we get
0< K- x(g(tz))J R(s)a(s)ds fort =1,

and the condition (21) leads to the contradiction. Thus there exists ¢, > ¢, such
that R*(t)r(t)y'(t) < 0 for ¢ > ¢, and this implies (22).

Theorem 6. Assume that (3) (i), (3) (iii) and (12) hold. Let one of the following
conditions hold, either

J ‘ RYg()a(t)dt = o for some 1e€(0, 1), (23)

0
or

JlR‘(t)a(t)dt=oo and f R @mde (24)

n R(g(®)r(r)
for some L€ (0, 1), or

g [_—Jq R( ())a(s)ds]dt<oo. (25)
L RE)r@@) L w00

Then the equation (20) is oscillatory.
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Proof. Suppose to the contrary that x is the nonoscillatory solution of
(20) and x(r) > 0, x(g(¢)) > 0, x’(t) = 0 and x'(g(¢)) = 0 for ¢ > ¢,. Note that
if any of the conditions either (23) or (24) or (25) holds, then (21) and by
lemma 3 the condition (22) hold, too.

1. Let the condition (23) hold. Define the function

Yoy = RO r0x @

fort>1t,.
x(g(1)
Then
, Ar(t) x'(1) R*~'(g(1)) g’ (1)
V() < —R* 1)+ <
® (&) att) H(&(1) x&(1)
AR*2(g(1)) g'(1)
< —R* 1+
(g())a(®) &)

and integration of this inequality from ¢, to ¢ > ¢, leads to the contradiction with
nonegativity of x’.
2. Suppose that the condition (24) holds. Define the function V(¢) by the form

_ R r(x'(1)
x(g(1)

Then we can obtain the contradiction in an analogous way.
3. Finally, let the condition (25) hold. Then x’(¢) > 0 for ¢ > ¢, and from (20)
and (22) we get

r@)x'(®)) +a@)R@g)r(t)x' () <0 fort>1.
Dividing this inequality by r(¢) x’(¢) and integrating it from g(¢) to ¢ we have

fort>1¢,.

V()

1

r(0) x'(£) < r(g(1)) x"(g(1)) exp [— J ) R(g(s)) als) dSJ

8(

for t > t,, where t, > ¢, is such that g(¢) > ¢, for ¢t > ¢,. Then we can finish the
proof as in the previous cases using the function

) = Re®)r(1) x'(1)

40
x(g(1))

Example 3. The equation
X"(t)+t7*Px('?) =0

satisfies (24) for A = 1/3 but (23) and (25) do not hold.
Example 4. The equation
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x"(t) + ! x(Int) =0
t
satisfies (23) for any A€ (0, 1) but (24) and (25) do not hold.
Example 5. The equation

X"(1) + x(Int) =0

5

tin-¢

satisfies (25) but (23) and (24) do not hold.
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TEOPEMbI KOJIEBJIEMOCTU AJ1 HEJIMHENHBIX HEPABEHCTB
BTOPOI'O MOPAOKA C OTKJIOHEHUEM
Jan Seman
Pe3romMe

B craTbe npuBedeHbI HEKOTOPbIE J10CTATOYHBIE YCIOBHS, NPH KOTOPHIX IUddepcHLInanbHOe
HEpPaBEHCTBO

x()[(r()x"(1)) + f(2, x(1), x(g(1))] <0 M
ABASETCA KO.1€6.1eMbIM. DTH pe3y.1bTaThl SBISIOTCS PACLIMPEHHEM pEe3y.IbTATOB, MPUBEACHHBIX
B [1] u [2], roe aBTOpBI Mpeano:1ara.id. 4To r(t) = 1 UM OrpaHUyeHo.
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